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Abstract

Purpose – To study the optimization of a randomized control problem in an M/G/1 queue in which a
removable and unreliable server may provide two phases of heterogeneous service to arriving
customers.

Design/methodology/approach – Arriving customers follow a Poisson process and require the
first essential service (FES). As soon as FES of a customer is completed, the customer may leave the
system or opt for the second optional service (SOS). The service times of FES channel and SOS channel
are assumed to be general distribution functions. The server requires a startup time with random
length before starting service. When the server is working, he may meet unpredictable breakdowns
but is immediately repaired. The inter-breakdown time and repair time of the removable server are
exponentially random variable and generally random variable, respectively. By the convex
combination property and the renewal reward theorem, several system performances are obtained.
A cost model is developed to search the optimal two-threshold policy at a minimum cost. Sensitivity
analysis is performed.

Findings – Expressions for various system performances are derived. Sensitivity analysis of optimal
randomized control policy (based on the developed expected cost function) with respect to system
parameters is investigated.

Originality/value – It is the first time that analytic results of sensitivity analysis of optimal
randomized control policy for the complex system have been obtained which is quite useful and
significant for engineers.
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Introduction
In this paper, we study the optimal control of a ,T, p . -policy M/G/1 queue with
second optional service (SOS) and general startup times in which the server is typically
subject to unpredictable breakdowns. We say that the policy is a ,T, p . -policy if it
is prescribed by the following actions:

. switch the server off when the system becomes empty;

. if the server is turned off, he takes a vacation of time T whenever the system
becomes empty. If at least one customer presents in the system switch the server
on with probability p (p [ ½0; 1�), and leave the server off with probability (1-p).
As the server is turned off, he will take another vacation of time T until the
system becomes empty; and

. do not switch the server at other epochs.

In other words, the ,T, p . -policy is to control the server randomly at the beginning
epoch of the service when at least one customer appears.

By the definition of ,T, p . -policy, a ,T, 1 . -policy coincides with the T-policy
introduced by Heyman (1977) and a ,T, 0 . -policy coincides with the 2T-policy. One
of the important characteristics in queueing systems is the service process. Madan
(2000) introduced the ordinary M/G/1 queue with SOS that a customer may leave the
system either after the first essential service (FES) with probability (1-h) or at the
completion of FES may immediately go for SOS with probability h (0 , h , 1).We
will present this queue as the ,T, p . -policy M/G(G,G)/1 queue, where the second
symbol denotes service time distributions for both FES and SOS channels, the third
symbol denotes the repair time distributions for both FES and SOS channels and the
fourth symbol is the startup time distribution.

It is assumed that arriving customers follow a Poisson process with rate l. Arriving
customers form a single waiting line at a server based on the order of their arrivals;
that is, in a first-come, first-served (FCFS) discipline. A single server need serve all
arriving customers for FES. The service times of FES channel are independent and
identically distributed (i.i.d.) random variables obeying a general distribution function
S1(t) (t $ 0) with a mean service time mS1

and a finite variance s2
S1

. As soon as FES of a
customer is completed, a customer may leave the system with probability 1-h or may
opt for SOS with probability h, at the completion of which the customer departs from
the system and the next customer, if any, is taken up for his FES. The service times of
SOS channel are another independent and identically distributed (i.i.d.) random
variables having a general distribution function S2(t) (t $ 0) with a mean service time
mS2

and a finite variance s2
S2

. The server can serve only one customer at a time. When
the server is working, it may meet unpredictable breakdowns but is immediately
repaired. We assume that a server’s breakdown time has an exponential distribution
with rate a1 in the FES channel. In the SOS channel, the server fails at an exponential
rate a2. When the server fails, it is immediately repaired at a repair facility, where the
repair times of FES and SOS channels are independent general distributions with
distribution functions R1(t), R2(t), (t $ 0), and the mean repair times mR1

, mR2
, and the

finite variances s2
R1

, s2
R2

, respectively. Service is allowed to be interrupted if the server
breaks down, and the server is immediately repaired. Although no service occurs
during the repair period of the server, customers continue to arrive following a Poisson
process. Once the failed server is repaired, it immediately returns to serve a customer
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until the system is empty. When the system is empty, the server operates
,T, p . -policy. He requires a startup time with random length before starting
service. Again, the startup times are independent and identically distributed random
variables obeying a general distribution function U(t) (t $ 0) with a mean startup time
mU and a finite variance s2

U . Once the startup is terminated, the server begins serving
the waiting customers until the system becomes empty.

Queueing systems with server vacations have received considerable attention in
literatures since Levy and Yechiali (1975). Server vacations are useful for the system in
which the server may utilize his idle time for additional tasks. There have been several
contributions considering queueing systems with server vacations (Doshi, 1986;
Takagi, 1991). The well-known T-policy with a reliable server for controlling the
queueing system was first introduced by Heyman (1977) which is defined as follows: as
soon as the system is empty, the server deactivates and leaves for a vacation with fixed
length of time T. After a vacation period of length T, the server returns to the system. It
begins to serve if there is at least one customer in the waiting line; otherwise, the server
waits another period of length T and so on until at least one customer is present. Gakis
et al. (1995) developed the distributions and the first two moments of the busy and idle
periods in an M/G/1 queue operating under six dyadic policies. Tadj (2003)
investigated an M/G/1 quorum queueing system under T-policy with a reliable server,
where quorum is a bulk service that the server waits until the number of waiting
customer reaches a fixed accumulation level r (r $ 1). He derived the probability
generating function of the number customers in the system and system characteristics.
For an unreliable server, Gaver (1962) first proposed an ordinary M/G/1 queue with
interrupted service and priorities. Sengupta (1990) extended Gaver’s system to GI/G/1
case. Wang and Ke (2002) analyzed an M/G/1 queue with server breakdowns operating
under the N-policy, T-policy and Min(N, T)-policy. When operating a system, the
server often requires a startup time before starting the service. The server startup
corresponds to the pre-work of the server before starting the service. Doshi (1985) and
Takagi (1991), respectively, studied GI/G/1 and M/G/1 queueing systems where the
server requires a startup time before providing service. Later, Ke (2005) examined a
modified T-policy for the M/G/1 queue with an unreliable server and startup where a
single server may take most J vacations repeatedly until at least one customer appears
in the queue upon returning from a vacation, and the server needs a startup time before
starting each service period. Ke (2008a, b) extended Ke’s model (2005) to M[x]/G/1 queue
with an unreliable server, startup and closedown. He presented an efficient solution
algorithm to search the joint optimal two-threshold value so as to minimize the total
expected cost function. The joint optimal thresholds of two NT vacation policies of an
M/G/1 queue were examined by Ke (2006), in which server breakdown, startup and
closedown are possibly considered and the length of the vacation period is controlled
either by the number of arrivals during the vacation period, or by a timer.

For the randomized control policy, Feinberg and Kim (1996) investigated either
, p;N .- or , N ; p .-policy M/G/1 queue with a reliable sever at first. Kim and Moon
(2006) considered the system with the (T, p)-policy, exploited its properties and found
the optimal values of T and p for a constrained problem. In many real service systems,
one encounters numerous examples of the queueing situations where all arrivals require
the main service and only some may require the subsidiary service provided by the
server. A pioneering work in this queueing situation is Madan (2000), who first
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introduced the concept of SOS. Mandan (2000) examined the time-dependent as well as
the steady-state behavior of an M/G/1 queue with SOS, using the supplementary
variable technique in which he considered general service time distribution for FES
channel and exponential service time distribution for SOS channel. Medhi (2002)
proposed an M/G/1 queue with second optional channel and developed the explicit
expressions for the mean queue length and the mean waiting time. Based on the
supplementary variable technique, Wang (2004) studied the reliability behavior in an
M/G/1 queue with SOS and server breakdowns. Recently, Ke (2008a, b) analyzed an
M[x]/G/1 queue with a startup time and J additional options for service. He derived the
explicit formulae for various system performances such as the expected number of
customers in the system, the expected waiting time of an arbitrary customer in the
queue, expected lengths of busy, idle periods and the expected unfinished work, etc.

The paper is organized as follows. In the next section, we develop the probability
generating function and various system performances under T-policy M/G/1 queue
with SOS, server breakdowns and general startup times such as the expected number
of customers in the system, the expected length of the idle, the startup, the busy and the
breakdown periods, etc. In Section 3, we use the convex combination property and the
renewal reward theorem to derive some exact and important system performances
under the ,T, p . -policy M/G(G,G)/1 queue. In Section 4, we first construct the
expected cost per unit time in the long run based on the derived system performances
in the previous section. Then the optimal thresholds (T * and p*) of the ,T,
p . -policy M/G(G,G)/1 queue can be analytically determined which minimize the
expected cost per unit time. Sensitivity analysis and a numerical result are performed
in Sections 5 and 6, respectively. Finally, Section 7 gives some concluding remarks.

System performances of the T-policy queue with SOS
In this section, we develop important system performances for T-policy M/G(G,G)/1
queue, such as:

. the expected number of customers in the system;

. the expected length of the idle period;

. the expected length of the startup period and the completion period;

. the expected length of the busy period and the breakdown period; and

. the expected length of the busy cycle.

Expected number of customers in the system
Let us excerpt some important results of Medhi (2002) as follows:

E ½S� ¼ mS1
þ hmS2

; ð1Þ

E ½S 2� ¼ E S2
1

h i
þ 2hmS1

mS2
þ hE S2

2

h i
; ð2Þ

where S is the (total) service time random variable. E ½S2
1� and E ½S2

2�, respectively,
denote the second moment of the service time distributions of FES and SOS channels.

Let H1 and H2 be a random variable representing the completion time of FES and
SOS channels. The completion time of a customer consists of the service time of a
customer and the repair time of a server. Using the known results of Wang and Ke’s
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(2002) paper, we get the first two moments of the completion time distribution for FES
and SOS channels:

E ½Hi� ¼ mSi
ð1 þ aimRi

Þ; i ¼ 1; 2; ð3Þ

E H 2
i

h i
¼ ð1 þ aimRi

Þ2E S2
i

h i
þ aimSi

E R2
i

h i
; i ¼ 1; 2; ð4Þ

where E ½R2
1� and E ½R2

2�, respectively, denote the second moment of the repair time
distributions of FES and SOS channels.

Applying the Medhi’s formula (2002) for the probability generating function (p.g.f.)
of the number of customers in an M/G/1 queue with SOS and reliable channels, we
obtain the p.g.f. of the number of customers in an M/G/1 queue with SOS and server
breakdowns as follows:

GðzÞ ¼
ð1 2 r

H
Þð1 2 zÞH *ðl2 lzÞ

H *ðl2 lzÞ2 z
; ð5Þ

where H is a random variable denoting the (total) completion time of a customer,
rH ¼ lE½H � ¼ lðE ½H 1� þ hE½H 2� Þ and H *ð · Þ is the Laplace-Stieltjes transform
(abbreviated LST) of the total completion time for a customer.

Let Yt be the number of customers who arrive at the system during [0, t ]. Using the
definition of Poisson arrivals, e2ltðltÞn=n! is the probability that n customers arrive
during [0, t ]. Let Sn denote the epoch of the nth arriving customer and Fn(t) be its
distribution function. Then we get:

FnðtÞ ¼

Z t

0

lðlxÞn21

ðn2 1Þ!
e2lxdx ¼ 1 2

Xn21

k¼0

ðltÞk

k!
e2lt ¼ PrðYt $ nÞ: ð6Þ

It is obviously that:

Pr{Yt ¼ n} ¼ FnðtÞ2 Fnþ1ðtÞ; n ¼ 0; 1; 2; . . . ð7Þ

Given a period of length T, the distribution of Sn can be represented as:

FnðTÞ ¼ Pr{YT $ n} ¼ 1 2
Xn21

k¼0

ðlTÞk

k!
e2lT : ð8Þ

Let GB(z) be the p.g.f. of the number of customers who arrive during a period T. Thus,
one may write:

GBðzÞ ¼
X1
n¼0

znPr{YT ¼ n} ¼ e2ð12zÞlT : ð9Þ

After a period length T, the server begins to perform a startup once a customer arrives.
Let f denote the number of customers who arrive during a period length T and startup
period. The probability distribution is:

wk ¼ Prðw ¼ kÞ; k ¼ 0; 1; 2; . . . ð10Þ
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Since the Poisson process from any point on is independent of all that has previously
occurred, we use f(z) to denote the p.g.f. of f, which can be expressed as:

wðzÞ ¼
X1
k¼0

wkz
k ¼ GBðzÞU *ðl2 lzÞ ¼ e2ð12zÞlTU *ðl2 lzÞ; ð11Þ

where U *ð · Þ is the LST of U.
According to the well-known stochastic decomposition results by Fuhrmann and

Cooper (1985) and the above inferences listed, we obtain the p.g.f. of the number of
customers found in the T-policy M/G(G,G)/1 queue as follows:

GTðzÞ ¼ GðzÞ
1 2 wðzÞ

w 0ð1Þð1 2 zÞ

� �
; ð12Þ

where G(z) is given in Equation (5). Let LT be the expected number of customers in the
T-policy M/G(G,G)/1 queue. Thus, it follows that:

LT ¼ G 0
TðzÞ

��
z¼1

¼
1

ðT þ mU Þ

lT 2

2
þ rUT þ

lEðU 2Þ

2

� �
þ LH ; ð13Þ

where rU ¼ lmU and:

LH ¼ rH þ
l 2EðH 2Þ

2ð1 2 rH Þ
: ð14Þ

It has to be noted that rH is assumed to be less than unity.

Expected length of the idle period
The idle period begins when all the customers in the system are served and no
customers are waiting for service. It terminates when at least one customer arrives at
the period length T. We can easily see that:

E ½IT� ¼ T: ð15Þ

Expected length of the startup and completion periods
The server begins startup when there is at least one waiting customer at the end of
the fixed period T in the system. We call this startup period and denote it by UT.
It follows that:

E ½UT� ¼ mU : ð16Þ

The completion period is from the end of the startup period to the epoch of no
customers in the system, which occurs before the system becomes empty and can be
represented as the sum of the busy period and the breakdown period. A time interval
when the server is working continuously is called a busy period. During the busy
period, the server may break down when FES or SOS is provided and start its repair
immediately. This is called the breakdown period. After the server is repaired, it
returns and provides service until there are no customers in the system.

First let H*
OðuÞ denote the LST of the completion period in the ordinary M/G/1 queue

with SOS. Applying an important result of Kleinrock (1975), Tang (1997) and Wang
(1997) demonstrated that the LST of the completion period started with one customer
in the M/G/1 queue with SOS can be represented as:
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H*
OðuÞ ¼ H *½uþ l2 lH*

OðuÞ�: ð17Þ

Differentiating (17) with respect to u, we derive the expected length of the completion
period for the ordinary M/G/1 queue with SOS as:

E ½HO� ¼ 2
dH*

OðuÞ

du

�����
u¼0

¼
E ½H �

1 2 lE½H �
¼

mS1
ð1 þ a1mR1

Þ þ hmS2
ð1 þ a2mR2

Þ

1 2 rH
: ð18Þ

Then let H*
T ðuÞ be the LST of the completion period for the T-policy M/G(G,G)/1 queue.

It follows from a property of Poisson arrival process and the assumption of exhaustive
service that the instant of commencement of each idle period is the regeneration point
of the system. If there are k customers in the system at the end of the startup period, the
successive completion period will consist of k independent completion periods. Thus,
we have:

H*
T ðuÞ ¼

X1
k¼0

wk H*
OðuÞ

h ik
¼ w H*

OðuÞ
h i

; ð19Þ

Substituting Equation (11) into Equation (19), we obtain:

H*
T ðuÞ ¼ e2½12H*

O
ðuÞ�lTU *ðl2 lH*

OðuÞÞ: ð20Þ

The expected length of the completion period is given by:

E ½HT � ¼
ðT þ mU ÞrH

1 2 rH
¼

ðlT þ rU Þ½mS1
ð1 þ a1mR1

Þ þ hmS2
ð1 þ a2mR2

Þ�

1 2 lE½H �
: ð21Þ

Expected length of the busy and breakdown periods
We denote the expected length of the busy and breakdown periods by E [BT] and
E [DT], respectively. Recall that the completion period is composed of the busy period
and the breakdown period which implies that E ½HT� ¼ E ½BT� þ E ½DT�. Hence from
(21), we obtain:

E ½BT� ¼
ðlT þ rU ÞðmS1

þ hmS2
Þ

1 2 lE½H �
; ð22Þ

and:

E ½DT� ¼
ðlT þ rU Þða1mS1

mR1
þ ha2mS2

mR2
Þ

1 2 lE½H �
: ð23Þ

Expected length of the busy cycle
The expected length of busy cycle for the T-policy M/G(G,G)/1 queue is denoted by
E [CT]. Since the busy cycle consists of the idle period (E [IT] ), the startup period
(E [UT] ), the busy period (E [BT] ) and the breakdown period (E [DT] ). Hence, it can be
shown that:
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E ½CT� ¼ E ½IT� þ E ½UT � þ E ½BT� þ E ½DT � ¼
T þ mU

1 2 rH
: ð24Þ

The <T, p > -policy M/G (G, G)/1 Queue
The primary objective of this section is to develop the various system performances for
the ,T, p . -policy M/G (G, G)/1 queue, including:

. the expected length of the idle, startup, busy, breakdown periods and busy cycle;

. the long-run fraction of time measures; and

. the expected number of customers in the system.

Expected length of the idle, startup, busy, breakdown periods and busy cycle
We denote by (I2T, U2T, B2T, D2T) and (IT,p, UT,p, BT,p, DT,p) the idle, startup, busy,
breakdown periods for the 2T-policy and ,T,p . -policy M/G(G,G)/1 queue,
respectively. Let C2T and CT,p be the busy cycle for the 2T-policy and ,T,
p . -policy M/G(G,G)/1 queues, respectively. It follows from Feinberg and Kim (1996)
that the system performances for the ,T, p . -policy queue are the convex
combinations of the system performances for the T-policy queue and the 2T-policy
queue. Using the above formulas (15), (16) and (22)-(24), we have:

E ½IT;p� ¼ pE½IT� þ ð1 2 pÞE ½I 2T� ¼ Tð2 2 pÞ; ð25Þ

E ½UT;p� ¼ pE½UT� þ ð1 2 pÞE ½U 2T� ¼ mU ; ð26Þ

E ½BT;p� ¼ pE½BT � þ ð1 2 pÞE ½B2T � ¼
½lTð2 2 pÞ þ rU �ðmS1

þ hmS2
Þ

1 2 rH
; ð27Þ

E ½DT;p� ¼ pE½DT� þ ð1 2 pÞE ½D2T�

¼
½lTð2 2 pÞ þ rU �ða1mS1

mR1
þ ha2mS2

mR2
Þ

1 2 rH
;

ð28Þ

E ½CT;p� ¼ pE½CT� þ ð1 2 pÞE ½C2T� ¼
Tð2 2 pÞ þ mU

1 2 rH
: ð29Þ

Thus, we have the number of busy cycle per unit time:

1

E ½CT;p�
¼

1 2 rH

Tð2 2 pÞ þ mU

: ð30Þ

The long-run fraction of time measures
In steady-steady, let:

. PITP
; the probability that the server is idle (turned-off).

. PUTP
; the probability that the server is startup.

. PBTP
; the probability that the server is busy.

. PDTP
; the probability that the server is broken down.
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From Equations (25)-(29), we get:

PITP
¼

E ½IT;p�

E ½CT;p�
¼

Tð1 2 rH Þð2 2 pÞ

Tð2 2 pÞ þ mU
; ð31Þ

PUTP
¼

E ½UT;p�

E ½CT;p�
¼

mU ð1 2 rH Þ

Tð2 2 pÞ þ mU
; ð32Þ

PBTP
¼

E ½BT;p�

E ½CT;p�
¼ lðmS1

þ hmS2
Þ; ð33Þ

PDTP
¼

E ½BT;p�

E ½DT;p�
¼ lða1mS1

mR1
þ ha2mS2

mR2
Þ: ð34Þ

Expected number of customers in the system
We denote PT, P2T and PT,p by the cumulative amount of time that all customers
spent in the system during a busy cycle for the T-, 2T- and ,T, p . -policy
M/G(G,G)/1 queue, respectively. From the renewal reward theorem, we obtain:

E ½PT� ¼ LTE ½CT� ¼
1

1 2 rH

lT 2

2
þ TrU þ

lEðU 2Þ

2
þ LH ðT þ mU Þ

� �
; ð35Þ

where LH is given in (14). It follows that:

E ½PT;p� ¼ pE½PT � þ ð1 2 pÞE ½P2T�

¼
1

1 2 rH
lT 2 2 2

3

2
p

� �
þ TrU ð2 2 pÞ

�

þ
lEðU 2Þ

2
þ LH ½Tð2 2 pÞ þ mU �

�
:

ð36Þ

Let LT,p denote the expected number of customers in the ,T, p . -policy M/G(G,G)/1
queue. Again, form the renewal reward theorem, we have:

LT;p ¼
E ½PT;p�

E ½CT;p�

¼
1

Tð2 2 pÞ þ mU

lT 2 2 2
3

2
p

� �
þ TrU ð2 2 pÞ þ

lEðU 2Þ

2

� �
þ LH :

ð37Þ

It follows from Feinberg and Kim (1996) that LT,p is a convex combination of LT for a
T-policy and L2T for a 2T-policy. Thus, we get:

LT;p ¼ QLT þ ð1 2QÞL2T ; ð38Þ

where:

Q ¼
pðT þ mU Þ

ð2 2 pÞT þ mU
:

After some algebraic manipulation, it is significant to see that expression (38) is in
agreement with expression (37), which confirms the results by Feinberg and Kim (1996).
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From the explicit formula derived in (37), we will demonstrate the following
corollary. First, differentiating LT,p with respect to p, we obtain:

›LT;p

›p
¼

2lT 2T 2 þ 3TmU þ m2
U 2 s2

U

� �� 	
2½Tð2 2 pÞ þ mU �

2
in p [ ½0; 1�; ð39Þ

where s2
U ¼ EðU 2Þ2 m2

U . For T . ð23mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U þ 8s2

U

q
Þ=4, we can prove that

ð›LT;p=›pÞ , 0. Thus, LT,p is strictly decreasing in p [ ½0; 1� if

T . ð23mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U þ 8s2

U

q
Þ=4.

Next, differentiating LT,p with respect to T, yields:

›LT;p

›T
¼

l ð2 2 pÞ 2 2 3
2 p

� �
T 2 þ ð4 2 3pÞmUT þ ð2 2 pÞ m2

U 2 s2
U

� �
=2

� 	
½Tð2 2 pÞ þ mU �

2
: ð40Þ

For p [ ½0; 1�, we demonstrate that LT,p is strictly increasing in T when T is fulfilled

the following condition: T . ½2mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U 2 ð2 2 pÞ2ðm2

U 2 s2
U Þ=ð4 2 3pÞ

q
�=ð2 2 pÞ.

Finally, for p [ ½0; 1� and q [ ½0; 1�, we obtain from Equation (37):

L2T;q 2 LT;p ¼ lT 3½2ð4 2 3qÞð2 2 pÞ2 ð4 2 3pÞð2 2 qÞ� þ lT 2mU

�
� 6 2 6qþ

3

2
p

� �
þ ðlT=2Þ½2ð1 2 qÞ þ p� m2

U 2 s2
U

� 	�
� ½2Tð2 2 qÞ þ mU �½Tð2 2 pÞ þ mU �f g

21:

ð41Þ

Substituting p ¼ 0 and q ¼ 1 into Equation (41), it follows that L2T;q ¼ LT;p. On the
contrary, setting L2T;q ¼ LT;p, we can derive p ¼ 0 and q ¼ 1. From the listed above
results, we have the corollary as follows:

Corollary 1:
. For T . ð23mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U þ 8s2

U

q
Þ=4, LT,p is a strictly decreasing function in

p [ ½0; 1�.
. For p [ ½0; 1�, LT,p is a strictly increasing function in

T . ½2mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U 2 ð2 2 pÞ2ðm2

U 2 s2
U Þ=ð4 2 3pÞ

q
�=ð2 2 pÞ.

. LT;p ¼ L2T;q if and only if p ¼ 0 and q ¼ 1.

Optimal <T, p > -policy
We develop the expected cost function per unit time for the ,T, p . -policy
M/G(G,G)/1 queue, in which p and T are decision variables. Our objective is to
determine the join optimal threshold values (say (T *, p*)), so as to minimize this
function. Let us define the cost elements as follows:

. Ch, holding cost per unit time for each customer present in the system.

. Cf, cost per unit time for keeping the server off
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. CS, startup cost per unit time for the preparatory work of the server before
starting the service.

. Cl, setup cost per busy cycle.

Without loss of generality, we assume that CS . Cf. Utilizing the definition of each cost
element listed above and its corresponding system performances, the expected cost
with threshold (T, p) is given by:

F0ðT; pÞ ¼ ChLT;p þ CfPITP
þ CsPUTP

þ Cl
1

EðCT;pÞ
;

where LT,p is given in Equation (37). Since LH is independent of T and p, we omit this
term. Now, we are interested in obtaining the joint optimal thresholds (T*, p*) and to
minimize F0(T, p) is equivalent to minimize the following equation:

FðT; pÞ ¼
1

Tð2 2 pÞ þ mU

Ch lT 2 2 2
3

2
p

� �
þ TrU ð2 2 pÞ þ lEðU 2Þ=2

� �

þ CfTð2 2 pÞ þ CSmU þ C l

� 	
ð1 2 rH Þ

�
¼ ½lmUCh þ Cfð1 2 rH Þ�

þ
1

2
lCh 3T 2

1

Tð2 2 pÞ þ mU

½2T 2 þ 3TmU þ d�


 �
;

ð42Þ

where d ¼ m2
U 2 s2

U 2 2½ðCS 2 CfÞmU þ Cl�ð1 2 rH Þ=lCh.
In order to find the joint optimal thresholds (T*, p*), we further define:

M ðT; pÞ ¼ 3T 2
1

Tð2 2 pÞ þ mU
ð2T 2 þ 3TmU þ dÞ

¼ 3T 2
1

Tð2 2 pÞ þ mU
ðT 2 v1ÞðT 2 v2Þ;

ð43Þ

where v1 ¼ 23mU 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9m2

U 2 8d
q� �

=4 and v2 ¼ 23mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9m2

U 2 8d
q� �

=4.

Obviously, the following results can be derived:
. As 0 , T , v2, M(T, p) is an increasing function in p [ ½0; 1�. It implies that:

hðTÞ ¼
0#p#1
minM ðT; pÞ

¼ M ðT; 0Þ

¼ 3T 2
1

2T þ mU

ð2T 2 þ 3TmU þ dÞ; 0 , T , v2:

ð44Þ

. As T ¼ v2 . 0, it yields that M ðT; pÞ ¼ 3T ¼ 3v2 in p [ ½0; 1�.

. As T . v2, M(T, p) is a decreasing function in p [ ½0; 1�. We have:

gðTÞ¼
0#p#1
minM ðT;pÞ¼M ðT;1Þ¼3T2

1

TþmU

ð2T 2þ3TmU þdÞ; T.v2: ð45Þ
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. Differentiating h(T) in (44) with respect to T, we get:

dhðTÞ

dT
¼ 3 2

1

ð2T þ mU Þ
2

4T 2 þ 4TmU þ 3m2
U 2 2d

� �
: ð46Þ

Setting dhðTÞ=dT ¼ 0 yields T*1 ¼ ð2mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U 2 d

q
Þ=2. Since:

d2hðTÞ

dT 2

����
T¼T *

1

¼
8s2

U þ ð16½ðCS 2 CfÞmU þ C l�ð1 2 rH Þ=lChÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U 2 d

q� �3
. 0; ð47Þ

h(T) is a concave upward (convex) function. Thus, T*1 is the unique minimum of h(T)
and the minimum of h(T) can be expressed as:

h T*1

� �
¼ 22mU þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ

2½ðCS 2 CfÞmU þ Cl�ð1 2 rH Þ

lCh

s
; 0 , T , v2: ð48Þ

. Differentiating g(T) in (45) with respect to T, it follows that:

dgðTÞ

dT
¼ 3 2

1

ðT þ mU Þ
2

2T 2 þ 4TmU þ 3m2
U 2 d

� �
: ð49Þ

Setting dgðTÞ=dT ¼ 0 yields T*2 ¼ 2mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U 2 d

q
, Since:

d2gðTÞ

dT 2

����
T¼T *

1

¼
2s2

U þ 4 ðCS 2 CfÞmU þ Cl

� 	
ð1 2 rH Þ=lCh

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U 2 d

q� �3
. 0; ð50Þ

g(T) is also a concave upward (convex) function. Therefore, T*2 is the unique
minimum of g(T) and the minimum of g(T) is given by:

g T*2

� �
¼ 22mU þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ

2½ðCS 2 CfÞmU þ Cl�ð1 2 rH Þ

lCh

s
; T . v2: ð51Þ

Subsequently based upon (42)-(51), we can obtain the minimal value of FðT; pÞ, say
F*, which can be written as:

F* ¼ ½lmUCh þ Cfð1 2 rH Þ� þ
1

2
lChh T*1

� �
¼ ½lmUCh þ Cfð1 2 rH Þ� þ

1

2
lChg T*2

� �
¼ ½lmUCh þ Cfð1 2 rH Þ�

þ
1

2
lCh 22mU þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ

2½ðCS 2 CfÞmU þ C l�ð1 2 rH Þ

lCh

s" #

¼ F T*1 ; 0
� �

¼ F T*2 ; 1
� �

:

ð52Þ
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Summarizing the listed above results, the joint optimal threshold values (T*, p*) that
minimize (42) can be obtained by the following theorem:

Theorem 1. Let (T*, p*) be the joint optimal threshold values that minimize the
expected cost in (42), i.e. F(T*, p*) is minimum. If we define C by:

C ¼
1=2; if p ¼ 0;

1; if p ¼ 1:

(

Then p* is equal to 0 or 1, and T * is equal to Cð2mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
U 2 d

q
Þ. That is:

T* ¼ C 2mU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ

2½ðCS 2 CfÞmU þ Cl�ð1 2 rH Þ

lCh

s !
: ð53Þ

Sensitivity analysis
A system analyst often concerns with how the system performances can be affected by
the changes of the input parameters. Consequently, a major advantage of sensitivity
analysis on the queueing system is that they provide some guidance for the system
analyst. We now perform a sensitivity analysis for changes in the optimal values T*

along with changes in specific values of the system parameters l, m1, m2, a1, a2, b1, b2,
h, g and the cost parameters Ch, Cf, Cs, Cl, where mS1

¼ 1=m1, mS2
¼ 1=m2, mR1

¼ 1=b1,
mR2

¼ 1=b2 and mU ¼ 1=g.

Sensitivity for l
From Equation (53), differentiating T * with respect to l, we obtain:

›T*

›l
¼

2CQ

l 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ 2Qð12rH Þ

l

q , 0; ð54Þ

where Q ¼ ½ðCS 2 CfÞmU þ Cl�=Ch. It implies that T* decreases in l.

Sensitivity for m1 and m2

Differentiating T* with respect to m1 and m2, respectively, yields:

›T*

›m1
¼

CQð1 þ a1mR1
Þ

m2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ ð2Qð1 2 rH Þ=lÞ

q . 0; ð55Þ

›T*

›m2
¼

hCQð1 þ a2mR2
Þ

m2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ ð2Qð1 2 rH Þ=lÞ

q . 0: ð56Þ

This means that T* increases in m1 and m2 from Equations (55) and (56), respectively.

Second optional
service and

startup

795



Sensitivity for a1 and a2

Differentiating T* with respect to a1 and a2, respectively, we get:

›T*

›a1
¼

2CQmS1
mR1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
U þ ð2Qð1 2 rH Þ=lÞ

q , 0; ð57Þ

›T*

›a2
¼

2hCQmS2
mR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
U þ ð2Qð1 2 rH Þ=lÞ

q , 0: ð58Þ

The above results show that T* decreases in a1 and a2, respectively.

Sensitivity for b1 and b2

Differentiating T* with respect to b1 and b1, respectively, it follows that:

›T*

›b1
¼

CQa1mR1

b2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ ð2Qð1 2 rH Þ=lÞ

q . 0; ð59Þ

›T*

›b2
¼

hCQa2mR2

b2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ ð2Qð1 2 rH Þ=lÞ

q . 0: ð60Þ

From Equations (59) and (60), T * increases in b1 and b1, respectively.

Sensitivity for h
Differentiating T* with respect to h is given by:

›T*

›h
¼

2CQmS2
ð1 þ a2mR2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
U þ ð2Qð1 2 rH Þ=lÞ

q , 0: ð61Þ

In Equation (61), we observe that T* is decreasing in h.

Sensitivity for g
Without loss of generality, it is assumed that a startup time is a positive random
variable. An important quantity of a startup time is the coefficient of variation, which
is a (dimensionless) measure of the variability of a startup time, defined as j ¼ sU=mU .
In (53), jmU can be substituted for sU. Differentiating T* with respect to mU, we have:

›T*

›mU

¼ C 21 þ
2j 2mU þ D

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j 2m2

U þ DmU þ S

q
2
64

3
75; ð62Þ

where D ¼ 2ðCS 2 CfÞð1 2 rH Þ=ðlChÞ and S ¼ 2Clð1 2 rH Þ=lCh. Let G(mU) be a
function of mU, and it is expressed as GðmU Þ ¼ ð2j 2mU þ DÞ2 2 4ðj 2m2

U þ DmU Þ.
Recall that mU is equal to 1/g. From (62), three different conditions of G(mU) lead to
different results of ›T*/›mU as follows:
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. If G(mU) . 4S, we have ›T */›mU . 0. It shows that T * is increasing in mU (or
decreasing in g).

. If G(mU) ¼ 4S, it indicates that ›T*/›mU ¼ 0. It follows that T* is independent
of mU (or g).

. If G(mU) , 4S, it reveals that ›T*/›mU , 0. It can be seen that T* is decreasing
in mU (or increasing in g).

The relationship between G(mU) and 4S is applied to illustrate the sensitivity of mU (or g).
We provide four examples for four different startup time distributions such
as deterministic, 2-stage Erlang, exponential and 2-stage hyper-exponential, respectively.

Example 1. (Deterministic). When a startup time obeys a deterministic distribution,
it follows that j ¼ 0 and GðmU Þ ¼ D2 2 4DmU . From discussions above, we have:

. T* is increasing in mU (or decreasing in g) when mU , D=4 2 Cl=ðCs 2 CfÞ.

. T* is independent of mU (or g) when mU ¼ D=4 2 Cl=ðCs 2 CfÞ.

. T* is decreasing in mU (or increasing in g) when mU . D=4 2 Cl=ðCs 2 CfÞ.

Example 2. (2-stage Erlang). If the distribution of a startup time is a 2-stage Erlang

distribution, j is equal to 1=
ffiffiffi
2

p
. Thus, G(mU) can be written as 2m2

U 2 2mUDþ D2.
After some algebraic manipulation, it implies that:

. T* is increasing in mU (or decreasing in g) when mU , 2Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 2 4S

p
.

. T* is independent of mU (or g) when mU ¼ 2Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 2 4S

p
.

. T* is decreasing in mU (or increasing in g) when mU . 2Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 2 4S

p
.

Example 3. (Exponential ). As a startup time follows an exponential distribution, we
have j ¼ 1 and G(mU) ¼ D2. It results in:

. T* is increasing in mU (or decreasing in g) when D . 4Cl=ðCS 2 CfÞ.

. T* is independent of mU (or g) when D ¼ 4Cl=ðCS 2 CfÞ.

. T* is decreasing in mU (or increasing in g) when D , 4Cl=ðCS 2 CfÞ.

Example 4. (2-stage hyper-exponential ). While a startup time belongs to a k-stage
hyper-exponential distribution, j is greater than or equal to 1. Taking a 2-stage
hyper-exponential distribution for example, we suppose that the mean is m in stage 1
selected with probability 0.235 and 10m in stage 2 selected with probability 0.765.
This distribution has a coefficient of variation 2 (j ¼ 2). G(mU) can be calculated
as 48m2

U þ 12DmU þ D2. It follows that:
. T* is increasing inmU (or decreasing in g) whenmU . ½23Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48S2 3D2

p
�=24.

. T* is independent of mU (or g) when mU ¼ ½23Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48S2 3D2

p
�=24.

. T* is decreasing inmU (or increasing in g) whenmU , ½23Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48S2 3D2

p
�=24.

On the other hand, we can easily see from Equation (53) that T* is increasing in Cl, Cs

and decreasing in Ck, Cf. To close this chapter, we summarize the analytic sensitivity
analysis in the following:

. T* decreases in l.

. T* increases in m1 and m2.
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. T* decreases in a1 and a1.

. T* increases in b1 and b1.

. T* decreases in h.

. T* varies in g by the relationship between G(mU) and 4S.

. T* increases in Cl and Cs, whereas decreases in Ck and Cf.

Numerical result
We will now give a numerical result in this section to demonstrate how to make
decisions regarding the joint threshold values (T*, p*), which minimize the expected
cost function per unit time. Considering a ,T, p . -policy M/G(G,G)/1 queue, and it is
assumed that the system’s parameters are as follows:

. the arrival rate is l ¼ 1.0;

. the probability that when a customer who completes FES may immediately go
for SOS is 1/3 (h ¼ 1/3);

. startup time per busy cycle obeys 2-stage hyper-exponential with the first and
second moments E(U) ¼ 1/2 and E(U 2) ¼ 2/3, respectively. (we choose q1 ¼ 3/4,
q1 ¼ 1/4, gq1

¼ 3 and gq2
¼ 1);

. service time of FES channel is a 3-stage Erlang distribution with mean
mS1

¼ 1=2;
. service time of SOS channel is a 4-stage Erlang distribution with mean

mS2
¼ 3=4;

. FES channel and SOS channel are subject to breakdown with breakdown rate
a1 ¼ 0.10 and a2 ¼ 0.20, respectively;

Figure 1.
The expected cost F(T, p)
for different values of T
under p ¼ 0, 0.25, 0.50,
0.75 and 1.0
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. repair time of FES channel is a deterministic distribution with mean mR1
¼ 1=3;

and
. repair time of SOS channel is a uniform distribution over interval [0, 2], say U[0,

2], with mean mR2
¼ 1.

We choose p ¼ 0, 0.25, 0.50, 0.75, 1.0 and fix the following cost elements Ck ¼ 5,
Cf ¼ 60, Cs ¼ 100 and Cl ¼ 1200. The expected cost F(T, p) for different values of T
and p is shown in Figure 1. The minimum cost per unit time is $58.403 and it is
achieved at (T *, p*) ¼ (4.49, 0) or (8.98, 1). This result is coincident with Theorem 1.

Concluding remarks
This paper has analyzed the optimality of the ,T, p . -policy M/G/1 queue with SOS,
server breakdowns and general startup times. We first derived theoretical results of
some system performances for the T-policy M/G(G,G)/1 queue. Next, we utilize the
convex combination property and the renewal reward theorem to obtain some important
system performances for the ,T, p . -policy M/G(G,G)/1 queue. The expected cost
function per unit time is constructed to determine the optimal threshold values of T and
p, which minimize this cost model. Analytical results for sensitivity analysis are also
performed. Finally, a numerical result is presented and discussed. It is worth pointing
out that the developed results still hold when h is equal to zero or one.
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