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Abstract

In this paper, we utilize Firth’s (1993)
method to propose a modified estimating
function to reduce the asymptotic mean
square error of the original estimator. Then,
we give an example from the generalized
least squares method to illustrate the
usefulness of thistheory.
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In this paper, consider a family
{E;nl N} of experiments defined on a
gatistical space (WF{Pzql @), where
N={1,2,...}, Wis the sample space, F is the
s-field generated by some subsets of W/ and
Py, is a complete probability measure on (W/F)
indexed by the parameter g in the parameter
space Q. Suppose that y(g) is the
p-dimensional parameter vector of interest
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and that /(q) is a g-dimensiona nuisance
parameter vector. Set Y={y(qg):gi @} and
L={/(g):gi Q. For simplicity of notation,
set y=y(q) and /=/(g). Suppose that Y
and L are open subsets of R’ and A,
respectively. Set S=Y(W. Foreachnl N,
let G, be the family of R’-valued estimating
functions G, for y with respect to E, such
that for each ¢i Q, the following conditions
hold:

Gy, Y TGy, YTy exists

Pras,;

(i)

(ii) both E(GKy,Yy) and Cov/ Giy,Yn))
exist and are non-singular.

Suppose that for large n, y",, is a root of
the estimating equation Gy 1, Y;)=0 for y,
where G| G,. The basis of the present work
is the idea that the asymptotic mean square
error of y", can be reduced by adding some
AdY,Yn) to Gy, Yr) such that the asymptotic
mean square error of the root y, of the
modified estimating equation G, (y n Yy)=
GAY m Y)*ALY n Y)=0 is smaller than that
of y",, where A, is some RP-valued function
onY S,

In what follows, we present the classical
theory with some appropriate technical

conditions. For simplicity of notation, set
GHSJ/):Gn(;Va )/17)! AH(J/):An(y, Yn) and
G, (V)=G, (v, Y)). Assume that the

following conditions hold:



Condition 1.1 For each gl Q, myq)
and al eigenvalues of Cov,(G(y)) are of the
same order as n®¥, whee m{qg® ¥ as
m ¥,

Condition 1.2 For each q O,
ELGAY))=O(m(q)) as m® ¥ for some red
number c.

Condition 1.3 For each q Q,
my"®419(g) and all eigenvalues of E(GKy))
are of the same order as r® ¥ .

Condition 1.4 Under each £,
GiKY)=E{G&Y))+om™> 3 (q) as m@ ¥.

Condition 15 Under each £,
Gn(yAn):Op(mnmaX{llz'C}(Q))i y An:y +0y(1) and
GAY " )=GY)+G&Y)V ' ¥)
+o (M™% (g)) as M@ ¥

Theorem 1.1 Suppose that Conditions
1.1-15 hold. Then ¢<1 and the following
hold:

(1) Under each y'ry
= [ELGAY))] *GAy)+RAq)

=0 (m™ Y20 (@) and (v V)Y y)T
=[ELGAY))] ' GAY) G (V) ELGE W)
+S{G)=0)(my"™ 12 D (g)) as m® ¥, where
RiQ=0m™C Y2 8(g)  and  S(g)
:Op(mnmax{— 1,2(¢ l)}(q)) as ,® v

Py

(2) For each g Q, if E{RAQ))
=o(m,™Y2¢ 3 (g)) as M® ¥, then
ELy i ¥)= [ELGAY )] ' ELGAY))
R ) e (i () S
m¥.

(3) For exch g Q, if E(S(Q)
=om™12e D g))  as  m@¥, then

EQW ) " ¥) TFLELGRY)T

[Covil Gy )+ EAGHY ) EAG (V)]
[EAGE W] H+o(my™ 2> P (q))
:qmnmax{— 12(c- 1)} (q)) asm ¥.

In this section, consider a fairly generd
modification of the estimating function G,
for y with respect to E, of the form
G, =G+A,, where A, is some R’-valued
function on Y S, such tha Afy,Y))
C TALy,Y)ITy") exists Pras. For each
gQ ad AN st A(y)=A,Y),
ARY)ZARY YD, G (V)=Gn (v.¥n)  and
G, €y)=GLy)+ALy). First of dl, we
assume that Conditions 1.1-1.4 and the
following hold:

Condition 21 For each q O
AdY)=- ELGAY))+Omy" V() and ALy)
= TELGAY)) Ty +OLm” 4(0)=0m1(q))
as M ¥ such that Ef(A{Y))=- ELGAY))

+o(my’ Y4(q)), Covi{Ady))=0(m® ()

and

ELAKY))=- TELGAY)) Ty +O(my" Y*(q))
=M, (q)) asM® ¥.

Condition 2.2 For each q O,
m™ 1% and al eigenvalues of
EAG, &y)) are of the same order as ri® ¥.

Condition 2.3 Under each £,
G (v =amy™ V2 Y3(q)), vy my+ol1)
and Gn (v )=Gr W)+Gy &)V i ¥)
+o(my™Y2e V3 (g as @ ¥

Theorem 2.1 Suppose that Conditions
1.1-1.4 and 2.1-2.3 hold. Then the following
hold:

(1) Under ech P, Y.y
= [Eq(Gn*G{J/))]_ lGn*(J/)+Rn*(Q):Op(mn_ 1/2(q))
and e VO 7 Y) = ELG )]
Gn (V)G 'V ELGh C(V))] '+S ()
=0 m; () as mM¥, where R,(q)



=0/, ") and S, (=0m, (q)) s
e ¥,

(2) For each g Q, if EAR, (q))
=o(my %(q)) as m® ¥, then Efy - y)

= [ELGn )] 'ELGy (V) +alms **(q)
:qmnmin{- 12, 3/2}(Q))+0(mn- l/Z(q)) asmY.

(3) For each gl Q, if (S, (@))=o(my (q))
as M@ ¥, then Eq[(y*n' J/)(y*n' J/)T]
=[ELG, &)
[Covi( G (V))+ELGr (V) ELGr TW))]
[EALGn €(¥))] +a(my {(g)=0(my; (q)) as
mY.

As an example, suppose that under
each P, and for each il N, Y, has mean my(y)
and covariance / S(y), where Y, is the
response up to time n, m is a known
R'-valued function on Y, and S, is a known
n n positive definite covariance matrix
function on Y. In this case, g is the
parameter, y(q)(°y) is the p-dimensional
parameter vector of interest and / (q) (°/) is
a positive nuisance parameter. Set

Y= 1.y p) and 1 =(11,...,1 ).

For ech nN st G,()
=Gy (v, Yo=m' (V) S5 () Yor m(y)].
Then the classica iteratively reweighted
generalized least-squares estimator y , of y
is the root of the asymptotically optimal

linear unbiased estimating  equation
Gn (v n)=0 for y. Set i(y)
=m'(y)S, (y)m(y). Then,  under
regularity conditions we have

ELY V) y) =
7Y y)+o(n =0t asm® ¥.

However, the classica non-iteratively
reweighted least-squares estimator y, of ¥
is in genera inconsistent, where y’,
minimizes the generalized sum of sguares
GSS(y,Yn)  =[Yer mI"S: "W Yir Y]
Set Gly) =Gy, Yn)=1GSS(y, Y»)/fly. Then
Yy n is the root of the estimating equation

GAy )=0for y. Notethat G{y)=-2G, (y)
+([ Yo mOIS: )y AL Yor M),

[Yor mO)1S )y AL Yer mdy)])". Then
ELGAY)=I WS TS () Tyl
SIS WD) GYy)=2i(y)
+([Yor MO S )My iy L Yor miy)])
+Wi(y) and E{GA&y))=2i(y)
+ ([ SAY) S "0 iy 1), where
Wiy )=04ri %) is the remainder term. In
general, y~,is more efficient than y .

First of al, assume that the nuisance
parameter / is known. For example, when
each component of Y}, is binomial or Poisson
distributed, where the relationship between
mean and variance is known.

Case 1 For each n N, set
AdY)= EAGHY)), Gr=GitAn and Gy (")
=0. Then -/G,(y)/l2 is the score
estimating function for y when Y; is jointly
normaly distributed. Thus y ', is the
maximum likelihood estimator of y when Y
is jointly normally distributed. Therefore,
y"is more efficient than y~, when Y, is
approximately jointly normally distributed.

Case 2 For each n N, set A(y)
=- ([Vor mITIS: W) My 4l Yor )],
LY miy 1S, 0y d e o)) G
=G+A, and G, (y n)=0. Then G,=-2G,.
Thus y =y, is the classica iteratively
reweighted generalized |east-squares
estimator y ,of y.

Now consider the general case where
the nuisance parameter / is unknown. First
choose any estimator /*,, of / such that
I"y =1 +04ri'% as n®¥. For example,
one such /”,, , can be chosen as the root of
the generalized estimating equation (GEE)
for /:

Thy DI Wiy I THAY » Ya)- hly .1)1=0,
where H/y,Y; is the vector of different
components  of [ Y m)I[Yir m(y)]’,
hy 1 )=E(HAy,Ys)) and Wi(y,/) is some
working covariance matrix. In the following,
we choose /7, , as the moment estimator

[Yer m()17Ss W) Yer my)1inof 1.



Case 1 For ech N set
Bngy,/ ):' Eq(Gn(y)), . /}n(,V):Bn(ya/ y,n)1
G,=Gi+A, and G, (y »)=0. Then

-1y .#Gn (y)I2 is the profile score estimating
function for y when Y; is jointly normally
distributed. Thus y', is the maximum
likelihood estimator of y when Y; is jointly
normally distributed. Therefore, y ,is more
efficient than y~, when Y} is approximately
jointly normally distributed.

Case 2 For each n N, set Afy)
= ([Yir M 1S5 W) Ay AL Ve ML,y
[Yor MmO 1S Oyl Y D), Ga
=G#A, and G, (y )=0. Then G,=-2G,.
Thus y =y, is the classica iteratively
reweighted generalized |east-squares
estimator y,of y.

For the genera finite-dimensional
nuisance parameter case, it is similar to the
above one-dimensional case.

In this paper, we propose a modified
estimating function for the parameter vector
y of interest to reduce the asymptotic mean
square error of the origina estimator of y.
It is found from the example that the classical
iteratively reweighted generalized
least-squares estimator of y can be derived
from the heuristic inconsistent classical
non-iteratively  reweighted  generalized
least-squares estimator of y. Moreover,
when the data is jointly normally distributed,
the maximum likelihood estimator of y can

aso be derived from the heuristic
inconsistent classicd non-iteratively
reweighted generalized |east-squares

estimator of y.  Thus, more efficient
estimators of y than the original estimator of
¥ may be obtained by utilizing our proposed
method to modify the origina estimating
function for y. Hence, this paper can be
treated as a supplement to the theory of
estimating functions, Consequently, it
deserves reading when studying and/or doing

the research in estimation of the parameter
vector of interest in the presence of nuisance
parameter vector.
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