(I1)

NSC89 - 2213 - EO009 - 069
88/08/01 -- 89/07/31
priority monitor monitor
Java queue :
deadlock monitor entry queue waiting queue
signaller queue condition
queues queue condition
Java-based queue
Java-based monitor (EMonitor) gueue
Java
monitor monitor queue
monitor lock ready queues
overhead condition queue class
entry queue
- starvation
condition queue entrv queue sionaller
EMonitor ueue \gvai?in ueue monigt]or
Software — Practice & Experience q walting g .
o first no-priority monitor priority
. bap monitor Java monitor nested
revision . .
mutually exclusive lock monitor
(Keywords: distributed shared mem- - monitor lOCk.
. lock waiting queue monitor
ory, multi-thread, concurrency control, Java, -
. model entry queue waiting queue
deadl ock, monitor) .
Java lock wait-
The focus of our project during this year is on 'ng qu:rl:[? Leue [G‘\]stﬁ]n Leue
refining the Java-based thread synchronization y 4 g queu
. . . Java monitor
mechanism (EMonitor) that proposed by us in no-priorit monitor
the last year. The syntax of original EMonitor is P Y
not well-integrated with the Java programming . .
. No-priority monitor
language.Hence, we try to smoothly integrate the) - .
i ’ wait postcondition signa pre-
syntax of EMonitor with the syntax of Java. Be- -
sides, for reducing the running overhead, we aso condition
refine the implementation of the monitor lock of [OWS7][BFCI5][And91] sonal
EMonitor. In addition, we also redesign the con- . . 9 ,
. o monitor signal precondi-
dition queue classes for better fitting the re- . . .
. - tion No-Priority Monitor
quirements of concurrent applications. We have :
sumitted the result of the refined EMonitor [BFCOS][gceuzzl]l“[nAgn do1]
mechanism to the internationad — Software —
Practice & Experience. Currently, our paper is -]
undergone the first revision and resubmitted for COI’ldItIOI’]- _Queue. Java
ublication N condition queue
P ' condition queue thread
condition queue thread
Java notify()
notify()
No-priority monitor: [BFC9I5]
Java monitor no- notify() condi-

tion queue
wait()
notify()
context switch
Scheduling sched-
uling regquest
scheduler
request global informa-
tion monitor
prioritized condition queue
scheduling [YH97][OH96][OH95]
[SCH95][ANnd91] Prioritized condition queue
pending thread
static sched-
uling
thread
dynamic scheduling
thread
prioritized condition queue
Java

random condition queue [GJS96]
scheduling global information
Java scheduling

global information

Inter-Monitor Nested Call Deadlock
: Java nested mutually exclusive lock
synchronized method
[GJIS96] Java intra-
monitor nested call inter-monitor nested call
(method invocation mechanism)

deadlock deadlock
mutual -dependent deadl ock A
B A M,
synchronized method B
M, synchronized method
A M,
monitor lock B
M, monitor lock
A M, synchronized
method B M,

synchronized method
mutual -dependent deadl ock
[Bro9g][VA98][OW9I7]

inter-monitor nested call

deadlock condition-wait dead-
lock C M,
Mz M3 fes MN
N synchronized method
C My wait()

My monitor lock

D
My, notify() C
Ml MN—l
condition-wait
deadlock
EMonitor
Java monitor
monitor (
EMonitor) :
1 priority monitor
| monitor

signal semantic:

n Blocking signal
n Non-blocking signal

1 EMonitor
condition queue
condition queue:

n FIFO conditon queue: Java
condition queue
n Prioritized condition queue:
monitor pri-

oritized condition queue static
priority scheduling

n Customizable condition queue:
dynamic priority scheduling

1 open call [And91][Kot87]
closed cdl inter-monitor
nested call semantic

EM onitor Java monitor

contention
bench-
mark

bounded buffer
Java monitor
condition queue
(Java monitor bounded
condition queue

benchmark
Bounded buffer

buffer

EMonitor bounded buffer
Bounded Buffer ~ FIFO Semaphore Elevator Disk SSF Disk
Scheduler Scheduler
5msinv. 6msinv. 2msOp. 4msOp. 2msOp. 4msOp. 2msOp. 4 msOp.
IM-EMNB 19880 1005% -47% -06% 167% 111% 134% 11%
EMNB
EMB —EMNB 02% 0.3% 55% 15% 4% 1.2% 1.6 % 0.5%
EMNB
condition queue) no-priority monitor perform-
bencgmark scheduling ance priority monitor performance
program FIFO semaphore FIFO semaphore
FIFO condition queue Java monitor
concurrent object Elevator disk scheduler performance EMonitor perform-
prioritized condition queue ance
static scheduling problem SSF disk EMonitor EMoni-
scheduler customized tor Java monitor
condition queue dynamic sche- overhead EMonitor
diling problem priority monitor performance gain
reguest pool scheduling
Java monitor
request pool monitor lock Java monitor
scheduler request EMonitor perform-
scheduler ance Java monitor
2 ms 4 ms operation scheduling
operation scheduler Java monitor EMonitor
thread contention
lock ()
scheduler
condition queue
condition queue concurrent object
EMonitor programming
Release the Request the Style performance
scheduler scheduler The test thread pool concurrent object (Java moni-
<\I: tor) EMonitor
performance
Test thread Perform scheduled Test thread no-priority monitor
terminated operation issued EMonitor
Java monitor concurrent ob-
scheduling program ject
Java monitor (no-priority EMonitor non-
non-blocking signal) EMonitor ~ blocking signal blocking signal
(priority blocking signal) FIFO semaphore (2ms
bounded buffer Java sScheduled operation)
monitor condition queue signal semantic performance
4%
Java monitor blocking signal con-
bounded buffer contention tention level
overhead blocking signal

programming style

- EMonitor
Java monitor
Software — Practice &
Experience reviewer
revise

EMonitor
EMonitor

Java monitor

condition
condition queue con-
EMonitor

performance
Java monitor
concurrent object EMonitor
performance

no-priority monitor

queue
current object
programming style

EMonitor
Java monitor concurrent

object

[And91] G. Andrews, Concurrent Programming
- Principles and Practice, The Benja
min/Cummings Publishing Company,
Inc., 1991.

[BFC95] P. Buhr, M. Fortier, and M. Coffin,
“Monitor Classification,” ACM Cormr
puting Surveys, vol. 27, no. 1, pp. 63-
107, March 1995.

[Bro98] B. Brosgol, “A Comparison of the Con-
currency Features of Ada 95 and Java,”
Proc. of ACM SGAda Annual Int'!
Conf. on Ada Technology, pp. 175-192,
1998.

[GJS96] J. Godling, B. Joy, and G. Steele, The
Java Language Specification, Addison-
Wesley, 1996.

[Geh93] N. Gehani, “Capsules: A Shared Memo-
ry Access Mechanism for Concurrent
CIC++,” IEEE Transactions on Parallel
and Distributed Systems, vol. 4, no. 7,

pp. 795-811, July 1993.

[Hoa74] C. Hoare, “Monitor: An Operating
System Constructing Concept,” CACM,
vol. 17, no. 10, pp. 549-557, 1974.

[Kot87] L. Kotulski, “About the Semantic Nest-
ed Monitor Calls,” SGPLAN Notices,
vol. 22, no. 4, pp. 80-82, 1987.

[LR80] B. Lampson and D. Redell, “Experience
with Processes and Monitors in Mesa,”
CACM, vol. 23, no. 2, pp. 105-117, Feb.
1980.

[OH95] R. Olsson and C. McNamee, “Tools for
Teaching CCRs, Monitors, and CSP
Concurrent Programming Concepts,”
S GCSE Bulletin, vol. 27, no. 2, pp. 31-
40, June 1995.

[OH96] R. Olsson and C. McNamee, “Experi-
ence Using the C Preprocessor to Im-
plement CCR, Monitor, and CSP Pre-
processors for SR,” Software - Practice
and Experience, vol. 26, no. 2, pp.125-
134. Feb. 1996.

[OW97] S. Oaks and H. Wong, Java Threads,
O'Reilly & Associates, Inc., 1997.

[SCH95] S. Stubbs, D. Carver, and A. Hoppe,
“IPCC++: A Concurrent C++ Based on
a Shared-Memory Model,” Journal of
Object-Oriented Programming, vol. 8,
no.2, pp. 45-50, 66, May 1995.

[SLS82] K. Shin, Y. Lee, and J. Sasidhar, “Des-
ign of HM?p - A Hierarchica Multi-
processor for General-Purpose Appli-
cation,” /EEE Trans. on Computers, vol.
C-31, no. 11, pp. 1045-1053, Nov.
1982.

[YH97] S. Yuan and Y. Hsu, “Design and Im-
plementation of a Distributed Monitor
Facility,” Computer Systems Science
and Engineering, vol. 12, no. 1, pp.
43-51, Jan. 1997.

[VA98] C. Varelaand G. Agha, “What after Java?
From Objects to Actors” Computer
Networks and 1SDN Systems vol. 30,
no. 1-7, pp.573-577, 1998.

	page1
	page2
	page3
	page4

