行政院國家科學委員會補助專題研究計畫成果報告

多軸式觸覺感測器之研究三

A Study of Multi-Axial Tactile Sensors

計畫類別:個別型計畫

計畫編號: NSC 89-2215-E-009-035-

執行期間:88年8月1日至89年7月31日

計畫主持人:黃宇中

中華民國 八十九 年 八 月 一 日

行政院國家科學委員會專題研究計畫成果報告 多軸式觸覺感測器之研究三

A Study of Multi-Axial Tactile Sensors

計畫編號:NSC 89-2215-E-009-035-

執行期限:1999.08.01 至 2000.07.31

主持人:黃宇中 國立交通大學電子研究所

一、 中文摘要

為了在矽晶片上製作微機電系統元件,則製作各種形狀的微結構是必要的。本論文運用非等向濕式蝕刻製程,發展晶向對準技術、蝕刻停止技術,以及角落補償技術,來製作:(1)精確地對準晶格方向的高解析度前置蝕刻圖案,(2)高深寬比的超長懸臂樑,(3)利用雷射控制蝕刻停止所製作的矽薄膜,(4)凸直角結構,以及(5)半圓柱結構。在研究中,我們為各種微結構設計特殊的光罩圖案,經由微影以及蝕刻製程將光罩圖案轉移到矽晶片上,最後利用 KOH 溶液蝕刻出所設計的微結構。在本實驗中,我們發展出解析度為 0.00625°的晶向對準技術,並製作出深寬比 12.5 且 1cm 長的懸臂樑、厚度 50 μm 的矽薄膜、凸直角結構,以及近似半圓柱的結構。

Abstract

In order to implement the MEMS devices on the silicon wafers, it's necessary to fabricate various microstructures. In this thesis, we employ the anisotropic wet-etching process to develop the crystallographic-orientation alignment technology, the etch-stop technology, and the corner compensation technology. We use photolithography and etch processes to transfer the various designed photomask patterns onto {100} silicon wafers, which would be etched in

the aqueous KOH until the desired microstructures have been achieved. In this experiment, we had fabricated: (1) the preetching patterns determinate to crystallographic orientation with resolution 0.00625°, (2) the cantilever beams with aspect ratio 12.5 and length 1cm, (3) the 50 µ m thick silicon membrane using laser-controlled etch-stop technology, (4) the convex-corner structures, (5) the approximate semi-cylindrical structures.

二、緣由與目的

在感測器元件中,一種使用半圓柱結構的 微力感測器已經被設計且利用金屬加工製作完 成[1]。本研究之目的即利用非等向濕式蝕刻在 (100)Si 晶片上,製作半圓柱的結構,以期應 用在微力感測器上。

使用等向性濕式蝕刻,若有理想的蝕刻幕 罩及溶液,則理論上可以在晶片表面蝕刻出圓 形結構,但無法蝕刻出圓柱狀結構,且目前尚 未找到理想的蝕刻幕罩。所以我們針對非等向 性蝕刻作探討。

微機電系統元件廣泛地利用塊狀微細加工 對單晶矽基材作非等向濕式蝕刻。KOH溶液對 於單晶矽是一種非等向性蝕刻溶液,且各晶向 的蝕刻速度與溶液濃度與溫度等狀態相關 [2][3]。

利用 KOH 溶液蝕刻(100)晶片,可以製作 V 型凹槽,此技術可以應用在蝕刻停止的技術

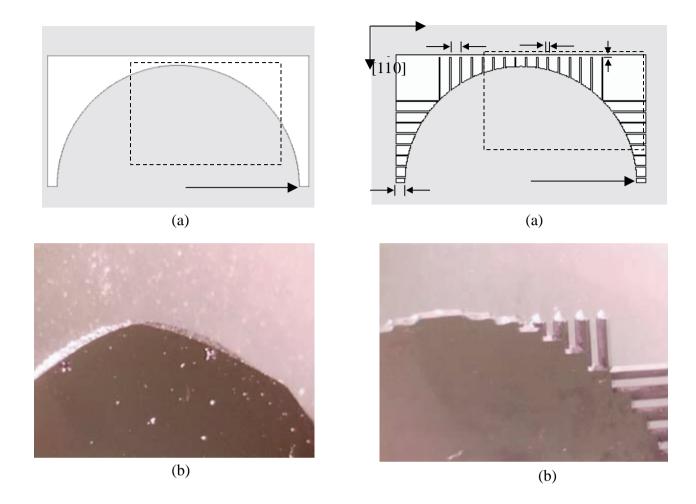
上,且可以很容易地在{100}面上製作方形凹槽 圖案,及懸臂樑等結構[4]。另外,也可以用來 決定晶格的方向[5]。將元件精確地對準晶格方 向,才能嚴格控制元件的形狀。

Peter 已經發展出蝕刻凸直角形狀的邊角補償(corner compensation)製程[6]。但是若要蝕刻出圓形的結構則尚在研究中,且目前的邊角補償製程乃利用時間控制蝕刻停止,以致於要嚴格的監控裝置。

三、 蝕刻結果與討論

我們使用濃度 34.0wt.%、溫度 70.9°C的 KOH 溶液蝕刻 Si 基材,探討兩種不同結構光罩 圖案蝕刻後的差異,如圖一與圖二所示。

由實驗結果得知,我們所定義的半圓形圖案,其蝕刻的結果會偏離半圓很多,如圖一(b)所示。而我們利用{111}晶面蝕刻最慢的特性,所定義的半圓形結合多條指向[110]晶向之細長樑的圖案,其蝕刻結果近似半圓柱結構。


因此,如果我們將懸臂樑設計為相同的長度,則預期可以得到近似半圓柱的結構。但是由於要蝕刻穿透晶片,使得半圓柱的半徑及解析度受限制。當半徑為 5000 µm時,大約僅有 32 根旋臂樑,而若要將元件縮小,則旋臂樑的數目將更少,如此,解析度將更難提升。所以,我們必須利用其他方法,用以增加旋臂樑的數目,縮小懸臂樑的寬度,以使元件的面積縮小,且圓柱面的解析度提高。

四、計畫成果自評

在本次研究中,我們運用 KOH 溶液於晶片上蝕刻出近似半圓柱結構。實驗中,我們比較兩種光罩圖案,其中半圓形結合多條指向[110]晶向之細長樑的光罩圖案,的確如預期般地製作出半圓柱結構,此結構對於不同軸的施力,有良好的反應,希望未來能應用在其他微機電元件中。

五、參考文獻

- [1] Y. H. Chang, et al., A Novel Structural Design for Force/Torque Fingertip Sensors, Meas. Sci. Technol. 9 (1998) 1196-1203.
- [2] H. Seidel, et al., Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: I. Orientation Dependence and Passivation Layers, J. Electrochem. Soc. 137(1990) 3612-3626.
- [3] K. Sato, et al., Anisotropic Etching Properties of Silicon in KOH and TMAH Solution, International Symposium on Micromechatronics and Human Science, 1998, pp. 65-70.
- [4] Marc Madou, Fundamentals of Microfabrication, CRC Press LLC, 1997.
- [5] G. Ensell, Alignment of Mask Patterns to Crystal Orientation, Sensors and Actuators A, 53 (1996) 345-348.
- [6] Peter Enoksson, New Structure for Corner Compensation in Anisotropic KOH Etching, J. Micromech. Microeng., 7 (1997) 141-144.

