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中 文 摘 要 ： 磁振造影是實證醫學非常重要的工具，廣泛應用在臨床醫療

評估與結構性、功能性腦科學研究上。磁振造影除了可提供

放射科醫師審視評估，也可由以體素為基礎之群間比較來得

到結構差異上的量化統計。為了進行腦科學結構上之變異量

化分析，我們必須由腦樣板影像來建構出一個標準定位空

間，以作為腦結構型態計算與統計之比較基準。在此研究計

畫中，我們從 200 位正常受試者的磁振造影影像，經由擷取

腦區組織、修正亮度不均勻性、腦結構空間正規化、與無偏

頗空間計算，建構出一套完整的 T1/GM/WM/CSF/DTI 的腦樣板

影像。並於此套自動化建構腦樣板系統，改善先前對位方法

且套用本團隊新提出的對稱與微分同構演算法，以同時提供

正逆形變場，維持腦樣板對位之一致性。除了研發更新目前

國內外的演算技術來增快此特製化腦樣板建構系統的執行效

率外，同時也採用不同的標準測量方法來評估此系統建構出

的腦樣板影像，驗證本團隊研究成果確實可提高腦樣板影像

與 Talairach 座標系統之對位精確度。 

中文關鍵詞： 磁振造影、腦樣板影像、腦結構分析 

英 文 摘 要 ： Magnetic resonance imaging (MRI) has been widely used 

for evaluation of clinical trials as well as 

structural and functional brain studies.  One unique 

characteristic of MR studies is its statistical power 

in inferring structural discrepancy between subject 

groups in a voxel-wise manner, as compared to the 

qualitative evaluation based on visual inspection.  

Toward this goal, a standard stereotactic coordinate 

system defined by a brain template is indispensable 

to providing a common space for brain morphometrics 

and statistics.  In this work we have constructed 

brain templates for inter-/intra-subject comparison 

and diagnostics of abnormal anatomical variations as 

well as the coordinate mapping method from the 

constructed template to the Talairach coordinate 

system.  The structural templates were constructed 

from more than 200 T1/GM/WM/CSF/DTI MR images of 

normal subjects and were evaluated according to the 

average of structural deformation. 

英文關鍵詞： Magnetic  resonance  imaging, brain template, 

structural analysis 
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Quantitative structural analysis and template construction 
for brain magnetic resonance images 

 
Abstract—Magnetic resonance imaging (MRI) has been 
widely used for evaluation of clinical trials as well as 
structural and functional brain studies.  One unique 
characteristic of MR studies is its statistical power in 
inferring structural discrepancy between subject groups in 
a voxel-wise manner, as compared to the qualitative 
evaluation based on visual inspection.  Toward this goal, a 
standard stereotactic coordinate system defined by a brain 
template is indispensable to providing a common space for 
brain morphometrics and statistics.  In this work we have 
constructed brain templates for inter-/intra-subject 
comparison and diagnostics of abnormal anatomical 
variations as well as the coordinate mapping method from 
the constructed template to the Talairach coordinate 
system.  The structural templates were constructed from 
more than 200 T1/GM/WM/CSF/DTI MR images of 
normal subjects and were evaluated according to the 
average of structural deformation. 

Keywords- magnetic  resonance  imaging, brain template, 
structural analysis  

 

I. INTRODUCTION 

Magnetic resonance imaging (MRI) is a medical imaging 
technique which can visualize the inside structure of organisms 
without physical intrusion and commonly used for studying 
variation in human brain structures and brain tissues. It works 
with the effect of the interaction between static magnetic field 
and dynamic electromagnetic field on protons to display the 
inner structure of human body. The different pulse sequences 
generated distinct images. For instance, T1-weighted images 
provide appreciable contrasts  between different soft tissues, 
such as gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) in brains. It performs well at defining 
anatomy. T2-weighted scans are suited to the diagnosis of 
edema, since they are susceptible to water. Diffusion-weighted 
images (DWIs) are based on the diffusion effect of water 
molecules in biological tissues, and manifest the difference 
between molecular mobility in different gradient directions. 

Diffusion tensor magnetic resonance imaging can be 
derived from DWIs under the assumption that molecular 
diffusion in tissues acts in Brown motion. Moreover, in DT 
image, different voxels have different diffusion tensors, which 
contain the information of fiber directions. A 3×3 symmetric 
and positive-definite matrix D, called diffusion tensor (DT), 
can describe the main diffusivities λ1, λ2 , λ3 (with λ1 > λ2 
> λ3 ) and the corresponding directions V1, V2, V3 of water 
diffusion. Eigen-values ( λ1, λ2 , λ3 ) can be used to 
calculate several scalar indices, such as relative anisotropy 
(RA), fractional anisotropy (FA), and volume ratio (VR). FA is 
the most commonly used index to characterize diffusion 
anisotropy.  The FA is defined as the following equation.  

FA 
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Figure 1: One slice of Diffusion tensor image (right) generated by 
diffusion-weighted images (left) 

The structure of human brain is inherently different for 
each individual subjects. Different variables also affect the 
individual structure variability, such as age, gender, disease and 
ethnicity. To study the structure differences between each 
individual subjects from MRI, defining a standard information 
of human brain template space should be provided. 
Researchers can then normalize each subject images to this 
space for further analysis or comparison. 

MRI data of different subjects should be aligned to the 
same template space representing for this study group. A 
proper template space can facilitate the reduction of distortion 
in the spatial normalization procedure. Since large distortion 
may bias the analysis results, construction of an unbiased brain 
template space for the study group is an important issue.  

This study aims at two major goals: 1) Construction of a 
customized brain template representing the subject group; 2) A 
reliable registration process to construct a customized brain 
template. 

 
II. RELATED WORKS 

In 1988, Talairach atlas [1] was manually labeled based on 
a 60-year-old French female’s brain, transformed from the 
Brodmann map. Because the atlas was biased to a specific 
subject, it cannot well represent all the subjects as a brain 
template space. On the other hand, the Talairach atlas assumes 
that the brain structure is symmetric, which is generally not 
true in real cases. In 1992, Montreal Neurological Institute 
(MNI) created an average of 305 subjects mapping to the 
Talairach atlas, as shown in Figure 2. This template created by 
linearly mapping 305 brain images to the Talairach atlas with 9 
parameters and then averaging the transformed images [2][3].  
The template called average305 is obviously with low contrast 
and is blurred in fine structure. To improve this problem, a 
model was constructed with MRI images of an individual 
subject, Colin Holmes, who was scanned 27 times over a 
period of 3 months in 1998 [4]. The average image of these 27 
images normalized to average305 template is shown in Figure 
2(b). Even though Colin27 provides template image with high 
contrast, it is biased to this individual subject.  
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In 2001, The ICBM (International Consortium for Brain 
Mapping) template was accepted as a standard, which was 
created by MNI with T1 images of 152 normal subjects [5]. 
The ICBM template collected the data from three different 
sites.  Therefore, MRI data of the subjects were obtained with 
different scanning parameters. MRI data of each subject was 
linearly registered to average305 and the averaged template 
image was called ICBM152. The advantage of this model is 
that it exhibits better contrast than average305 and also does 
not bias to specific individual subject.  

Recently, some papers have reported that human brain 
structure could vary with different ages and genders [6]. The 
ICBM templates provide high resolution T1 images from 19 to 
90 years old with equal number of males and females. 
Construction of study-specific template is essential to further 
structural analysis. 

Many customized template construction algorithms have 
been proposed recently. The first issue is the selection of initial 
template image. ICBM template [7] or representative image [8] 
was adopted by several research groups. In the procedure of 
spatial normalization, iterative registration can reduce the bias 
between subject images [9]. Although the affine registration 
was widely used, but nonlinear registration can largely improve 
the image contrast of the constructed template. 

 

 
Figure 2: Template images created from 1992 to 2009 at Montreal 
Neurological Institute. 

 
 

III. METHODS 
 

1) Preprocessing of MRI  

In our study, we used mri_watershed tool [10] developed 
by FreeSufer, which provided automated tool by Athinoula A. 
Martinos Center for Biomedical Imaging, to obtain the brain-
only area. The MRI brain image should extract the brain-only 
area because the non-brain parts may bias the registration 
results. 

This study used the technique of Non-parametric Non-
uniform intensity Normalization (N3) [11] provided by Dr. A. 
C. Evans at the Montreal Neurological Institute to reduce the 
problem of intensity inhomogeneity. Figure 3 shows the results 
of applying mri_watershed and N3. 

The constructed template images can be the whole brain 
template image, brain-only template image, or brain tissue 
template image. All images should be in the same stereotactic 

space. This study used the tool FAST [12] (FMRIB's 
Automated Segmentation Tool) version 4.1 developed by 
University of Oxford to obtain the brain tissue. FAST can be 
used to segment three brain tissues, as shown in Figure 3. 
Different types of template image could provide more 
information. 

 

 
Figure 3: (From left to right) Raw image, brain-only image, brain-only 
image with intensity correction, gray matter, white matter and CSF 
(Cerebrospinal fluid) images. 

 
1-2)     Preprocessing of DTI  

Preprocessing of MRI includes brain extraction and 
intensity inhomogeneity correction. We used Brain Extraction 
Tool (BET) version 2.1 [28, 32] and Bias Field Corrector (BFC) 
[33] to process the MRI data. DTI preprocessing includes DTI 
estimation and brain extraction.  

 Fillard et al., [23] proposed a maximum likelihood 
strategy with Rician noise model to estimate diffusion tensor.  
In order to further reduce the influence of the noise, they 
combined estimation and regularization that results in a 
maximum a posteriori estimation. In regularization, we use the 
Log-Euclidean metrics [17] to cancel the swelling effect. 
Besides, they developed a tool called Medical Image 
Navigation and Research Tool by INRIA (MedINRIA). We 
apply it to estimate the diffusion tensor because it can 
overcome the low signal-to-noise ratio (SNR) in clinical MRI 
and ensure the positive definiteness of all tensors which are 
estimated from noise-sensitive DWIs. 

Most of the brain extraction methods, such as BET, are 
designed for the MR images. However, the brain extraction 
methods based on DWIs/DTI have not been well developed 
and implemented. To improve of geometrical accuracy of 
DWIs/DTI, our approach was to extract the brain mask from 
the MR images and apply the extracted one on DTI instead of 
extracting brain mask directly from DWIs/DTI.  

The features extracted from both MR and DT images 
were organized to an attribute vector shown in Figure 4. The 
first attribute is the intensity of T1-weighted image (Figure 
4(a)).  The second one is fractional anisotropy (Figure 4(b)), 
which is commonly used in DTI non- rigid registration. The 
last one is first eigenvector V1 (Figure 4(c)) extracted from 
DTI, it represents the principal direction of water diffusion in 
brain fibers. The attribute vector of each voxel can be written 
as follows: 

        
A(v)  aT1

intensity (v), aDTI
FA (v), aDTI

V1 (v)   
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Figure 4: One slice in (a) MRI, (b) FA image (c) V1 image (where the 
colors red, green, and blue represent diffusion in the x, y, and z axes 
respectively). 
 
2) Registration of MRI 

  The image registration based on each voxel of subject 
images. The registration process includes two major parts: 
global affine normalization TA and nonlinear transformation 
TN. The effect of different registration method shows in Figure 
5. For each voxel transformation T: p→q, the following 
equation present the relation: 
 

q = TA(p) + TN (TA (p))      (1) 
 

Affine normalization aligns the global shape between the 
source image and target image, including rotation, scaling, 
shifting and shearing. The transformation could use a transform 
matrix M to present the mapping relation. The relation is 
shown in (2). Each voxel p of source image maps to the 
corresponding q in target image. In this study, FSL developed 
FMRIB’s Linear Image Registration Tool (FLIRT) [13] which 
be used in the procedure. 

 
q = TA(p) = M × p       (2) 

 

  Nonlinear registration solves the problem in inter-brain 
tissue alignment after we align the global shape of image. The 
spatial mapping is based on a set of Wendland’s radial basis 
functions (RBFs) with different levels of support extents [14]. 
The RBFs model the deformation field D of the brain image 
from source image to target image. The following equation (3) 
shows the relation of mapping. 
 

q = TN (TA(p)) = p + D(p)  (3) 
 

 
Figure 5: Registration result between two images: (a) Source image (b) 
Target image (c) Affine registration from source to target. (d) Affine 

and nonlinear registration from source to target. 
 

2-2)     Registration of DTI  

                Affine transformation is a preliminary registration. It 

aligns the global shape from source image to target image. We 
used FMRIB’s Linear Image Registration Tool (FLIRT).  

Non-rigid registration provides further alignment in local 
structure. Liu J.X et al., [14] proposed Brain Image 
Registration Tools (BIRT) is used. Besides, We modified the 
similarity criterion in BIRT and used a symmetric and 
diffeomorpic non-rigid registration algorithm to efficiently 
utilize the features selected from DTI and MRI. The new 
similarity evaluation function (eq-2.1) between the voxel u in 
the target image It and the voxel v in the source image Is can 
be expressed as: 
 

S It u , Is v    wi  simi At u , As (v) 
i

    (2.1) 

simi At u , As (v)  
SCR at

i, as
i 

at
i u as

i v 
, i  intensity, FA

, i V1

(2.2) 

        At(u) and As(v) are the attribute vectors at voxel u in 
target image and at voxel v in source image, respectively. 
When the attribute index (i) equals intensity or FA, we 
calculated a correlation ratio between target image and source 
image; else if  equals V1, we considered the modulus of inner 
product between two principal direction of voxel u and v.  

        The weight wi controls the influence of each attribute and 
decided by the number of each attribute. In addition, DTI 
features (FA and V1) are calculated only in white matter 
region(FA >= 0:3) so that we can improve the accuracy for 
MRI non-rigid registration in white matter and maintain the 
accuracy in other tissues. The similarity functions of each 
attribute in eq-2.2 have been normalized to the range of zero to 
one. Which means the larger value indicates higher image 
similarity.  

The correlation ratio (Figure 6) is an efficiency and 
accuracy measurement for image registration. It is robust to 
different intensity contrast, inhomogeneity and noise [13, 32]. 
We calculated the correlation ratio of image similarity in the 
following equation: 

              	, 1 ∑  

 

The range of attribute (intensity or FA) in target image 
was divided into NB bins. Voxels in the same bin was gathered 
into a set Xj , which contains Nj voxels. We collected their 
corresponding voxels in source image at set Xj , and calculated 
the variance from attributes of these voxels. Let N be the 
number of voxels in the overlapping region Ω between source  
and target image. If the variance ratio of each set Xj to total 
volume  is small, the source image and target image are well 
aligned. 
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Figure 6: Correlation ratio 

 
3) Procedure of creating template 

Figure 7 shows the brief procedure of creating customized 
template. This study uses T1 images as input images. All 
images had been preprocessed by the step described in the 
preprocessing method in this chapter.  

This study aims to construct a customized template space 
and template image. A representative image which provides the 
template space information is our purpose. In the beginning, 
initial reference image R is randomly selected from the subject 
group. Without using averaging subject group images as initial 
image, the individual MRI scan image provide better 
contrasting information and clearer brain anatomical local 
structures. This could make registration parameters and cost 
functions more precise. Using automatic registration method, 
this reference image could optimize to become a representative 
image. 

The creating procedure of registration divides into affine 
registration part and nonlinear registration part. At first, the 
reference image maps to each subject images in affine 
registration, which solves the problem of global shape 
difference. The registration procedure will obtain n transform 
matrices Mji where j from 1 to n which including the 
difference information between reference image and each n 
subjects. As we want to optimize the reference image as a 
representative image of subject group, this purpose could 
implement by applying the average transform matrix M on the 
reference image to update the reference image RA 
(representative image). This concept is shown in Figure 8 in 
iterative steps and also could be used in nonlinear registration. 

The updating representative image from the affine 
iterative registration could be the initial as the non-rigid 
registration. The non-rigid registration deformation field, Di 
handles the inter-brain alignment. The nonlinear iterative 
registration procedure is similar to affine registration. The final 
representative image RD will be obtained after apply two 
iterative registration procedure shown in Figure 7. 

 

 
Figure 7: The brief procedure of creating customized brain template. 
   

Finally, all the group images register to the reference 
images following affine and non-rigid registration. The 
template will be done by the averaging register images. 

Although the template will bias to the chosen one, 
iterative registration to construct the template should reduce 
the influence of the initial reference image. Fig. 2 shows the 
concept of iterative registration. Equation (4) and (5) present 
the affine and non-rigid registration in iterations. Ri represents 
the i time created representative reference image. Since the 
information from the individual image is better than averaging 
image, the method should optimize the reference image rather 
than the averaging image. The iterative time could be defined 
under a threshold. 

nMM
n

j

i
j

i /)(
1



              (4) 

i
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A RMR 1                 (5) 
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j
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1



                   (6) 










1)(

1)(1

iifRDR

iifRDR
R

i
D

ii
D

A
i

Ai
D

   (7) 

 
Figure 8: This figure shows the concept of iterative registration. T 
represents affine matrix if the procedure using affine registration. 
Otherwise, T represents deformation field when the registration is 
nonlinear registration. (a) Initial registration. In affine registration, R0 
represents randomly select image from subject group. In nonlinear 
registration, R0 represent the representative image obtain from affine 
iterative registration. (b) Update the representative image to Ri after i 
iterations. (c) The i-th time representative image Ri+1 is updated by 
Ti+1, average from T1

i to Tn
i.  
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3-2)     Procedure of creating DTI template  

We modified the procedure of MRI template construction 
proposed by Lee [15] to construct new MRI and DTI 
templates. Figure 9 and 10 illustrates our procedures for 
MR/DT template construction. The construction of DTI 
template is similar to MRI and we utilized the affine matrix 
from MRI to co-register the initial DTI template into the same 
template space. Subsequently, preprocessed images and affine 
templates of MRI/DTI were organized to an attribute vector, 
which is a new similarity function for non-rigid registration.  
 

 
Figure 9: Brief flowchart of the proposed methods for MR/DT 
template construction 

 
Figure 10: Detailed flowchart of the proposed methods for MR/DT 
template construction. 

 
         However, diffusion tensor contains direction of water 
diffusion in tissues. In affine transformation, we only change 
position of voxels in DTI. Therefore, we have to apply DTI 
reorientation to maintain the consistency of anatomical 
structure. Alexander etal.,[16] developed a preservation of 
principal direction (PPD) method to estimate local rotation 
matrices from affine transformation or higher order 
transformations(non-rigid transformation). The aim of PPD is 
to preserve the principal direction and a plane spanned by the 
principal and second direction of a tensor after transformation. 
The following is the algorithm of PPD: 
 

  Step 1: Find the first eigenvector e1 and the second  
               eigenvector e2 of a diffusion tensor. 
  Step 2: Compute the unit vectors n1 and n2 from transformed  
              e1 and e2, which were applied by transformation  
              matrix, F, respectively. 
  Step 3: Rotate e1 to n1 with rotation matrix, R1, and rotate e2  
              with R1 as well. 
  Step 4: Find a projection, P(n2), of n2 onto a plane. The plane  
              is spanned by n1 and n2, and it is perpendicular to n1.  
              Besides, R1e2 (rotate e2 with R1) already lies in this  
              plane. 
  Step 5: Calculate the rotation matrix, R2, which maps R1e2     
              to P(n2). 
  Step 6: Set the local rotation matrix R = R2R1 and reorient a  
              tensor D by: D’=RDRT. 
 
        Constructing average template of DTI is calculated in 
Log-Euclidean space [17], which can avoid the defects of 
Euclidean calculus, such as tensor swelling effect and non-
positive eigenvalues. Moreover, tensors can be thought as 
vectors in this space. So the operations of vector can be used 
directly on tensors in Log-Euclidean space. In other words, 
calculating the logarithm of a tensor matrix means changing a 
tensor into Log-Euclidean space. We can efficiently obtain the 
logarithm of a tensor matrix from eq3-1 to eq3-3 and approach 
eq3-4 to construct the Average Template of DTI. 

        Where M is a diagonal matrix with eigenvalues and R 
represents the rotation matrix with eigenvectors. They were 
factored from spectral decomposition of tensor D. In contrast, 
changing a tensor back into Euclidean space, that is, 
calculating the matrix exponential of a tensor also can be 
obtained efficiently by using exponential substituted for 
logarithm at step 2. Besides, let N be the number of registered 
subjects and x be a voxel of tensor D in eq3-4. 
 

																																	 	 																																																					 3_1  
 

0 0
0 0
0 0

		 			
log 0 0
0 log 0
0 0 log

3_2    

 

																											log 																																									 3_3 			 
 

												
∑ log

																											 3_4 		 
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4) Interpolation 

As the averaged deformation field D is obtained, we will 
apply D on the representative image and get the new 
representative image. The deformation filed is not a grid point 
to grid point mapping. In other words, each grid point of source 
image may not map to a grid point in the target image as in 
Figure 11 step 1. Because of demand in creating the new 
representative image, using method of interpolation is needed. 
The following paragraphs will introduce our interpolation 
method. 

  The interpolation steps are shown in Figure 11. To 
obtain the value of each grid point in target image, the concept 
of our interpolation method is used intensity and distance value 
of eight nearest neighbors. How to find eight neighbors in a 
fast way becomes an issue to study. 

  Consider a grid point X in target image and find a close 
location C deforms from a grid point C’ of source image. Let 
the grid point C’ as center, find a cube include more than eight 
grid point. The size of the cube depends on the number of grid 
points in this region. After found a set G of grid points, G’ 
record the coordinate location form the deformation field in 
target image.  

From set G’, select eight nearest neighbors and calculate 
the distance as weighted in equation (8). 

   (8) 

               v(X,Y,Z): value of location (X,Y,Z) 

              d(xi,yi,zi): distance between (xi,yi,zi) and (X,Y,Z) 

 
 

 
Figure 11: This figure shows the procedure of creating image by 
deformation field in interpolation. Yellow point is grid point in source 
image. Green point is mapping location in target image from the 
source image of grid point. Red point is grid point in target image. ( 

 
 
 

 
 
4-2)      Interpolation of DTI  

        Interpolation of tensors is also calculated in Log-
Euclidean space. The properties of tensors can be adequately 
maintained in Log-Euclidean space compared to in Euclidean 
space [17]. The interpolation with Log-Euclidean framework 
can be expressed as the following equation, where wi is the 
trilinear weights. 

log 								 

 
 
5) Removing outlier 

  The construction procedure input all needed subject 
images to create the template space and template image. If one 
of the input image with great deform form representative image 
to this one, the result template may affect by this outlier 
especially when the subject numbers are not large enough. To 
ensure the template could not only represent the subject group 
but also be in a standard coordinate system, the procedure 
should add criteria to remove the outlier of subject image. 

  In this study, the outliers consider transformation effect 
from scaling and shearing in affine transform. Translation and 
rotation align two images to the same coordinate space. 
Deformation of nonlinear registration reduces the brain tissue 
structure difference. The last two effects are not stand as outlier 
generally. Both scaling and shearing include 3 directions: Scale 
with x-axis, y-axis and z-axis, shear parallel to the x-axis by 
variable of y and z and shear parallel to the y-axis by variable 
of z (Figure 12(a) from left to right).  

There are total six variables considered as outlier factors. 
Each registration between subject and representative image 
will obtain those six variables. Compute average and standard 
deviation for six outlier factors in each iteration time of affine 
registration. If any factors of the six variables out of range: 
average ± five times standard deviation in second and third 
iteration time, the subject will set as outlier. If any factors out 
of range: average ± four times standard deviation in fourth and 
fifth iteration time, the subject will also set as outlier. Finally, 
the criteria will set outlier which variable of factor is out of 
range: average ± three times standard deviation above sixth 
iteration time. The range setting also shows in Figure 12(b).  

 

 

 
 
Figure 12: (a) Considering an identity cube in 3-d coordinate. Scale in 
3 different directions (left 3 images for x-axis, y-axis and z-axis). 
Shear in x-axis by y, shear in x-axis by z and shear in y-axis by z. 
(b) The outlier criteria. avg: average variable from outlier factors. sd: 
standard deviation of variable from outlier factors. 
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6) Evaluation 

The template evaluation could be based on image 
intensity and the deform vector magnitude which is obtained 
from registration process. 

Considering the image intensity value, if the brain 
template is well-represent for the whole subject group, the 
close voxel coordinate between subject image in template 
space and representative image should have similar intensity 
value. This study uses standard deviation and correlation to 
evaluation the performance of our template.  

At first, the whole subject images transform into our 
creating template. For measure of standard deviation, compute 
standard deviation of intensity at location x in template space 
for all subject mapping to template space (As equation (9)). 
Small standard deviation represent all image transform to this 
template space in small difference. For measure of correlation, 
compute correlation between subject image in template space 
and template image (As equation (10), A and B are two images, 
k is the voxel number of image). If the correlation closer to 
one, the difference between this two images are smaller. In 
other words, the template image is representative as the subject 
image. 
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Study of the displacement information stored in the 
deformation field is also another evaluation method. The 
deformation field was obtained by nonlinear registration from 
subject image to the template image. We could compute the 
average deform vector’s magnitude to observe the difference 
between subject image and template image. Lower value stands 
for well-present template. 

 
6-2) Evaluation Method of DTI  

        Basser and Pajevic [19] developed a measure of tensor 
overlap based on eigenvalue-eigenvector pairs. If two different 
tensors are perfect match, the value of OVL is close to one. 
Otherwise, the value is close to zero. The volume R in the 
average overlap equation (eq6-2) represents the region of white 
matter or brain region, and usually used to evaluate the 
accuracy of DTI registration [25, 29]. The OVL and averaged 
OVL are given by: 
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          Sanchez Castro et al., [20] utilized diffusion tensor 
images to evaluate MRI registration. They co-registered DTI 
with the transformation of MRI, and used the standard 
deviation, called error, to check the consistency of tensor after 
registration. They also performed operations on tensor in Log-
Euclidean framework. The error can be computed as followed: 

 

 

1
 

log	  

1
 

        In our study, the error is computed for both MRI and DTI.  
 means the Average Template of DTI. Similarly, the 

registered subjects from MRI averaged on Euclidean 
framework create the Average Template of MRI. To sum up, 
the error not only represents the discrepancy between our 
Average Template and registered subjects, but also evaluates 
the registration method we proposed. 

 
IV. RESULTS 

 
1) Constructed template of MRI only 

The MRI scans are obtained from Integrated Brain 
Research Unit (IBRU) of Taipei Veterans General Hospital. 
The subject group includes 78 males and 138 females in total 
216 normal subjects of T1 images. Age range is 14 to 69. The 
whole procedure is created based on the T1 images from these 
data base. Figure 14 and 15 show representative image and 
template image in different brain tissues and different views. 

 
Figure 13: Representative image: Brain-only, grey matter, white 
matter and CSF (from left to right) in horizontal, coronal and sagittal 
view (up to down). 

 
Figure 14: Template image: Brain-only, grey matter, white matter and 
CSF (from left to right) in horizontal, coronal and sagittal view (up to 
down). 

Representative image is also the constructed template 
space. All subject images without outliers map to this template 
space and average to obtain the template image. Both images 
provide information for the subject groups. 
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The representative image converge to a stable statement 
can represent the whole subject group images. As the image is 
stable, the intensity variable per voxel will not change a lot. We 
perform the average intensity difference from representative 
image between this time of iteration in Figure 15. The curve 
will be steady as increasing the iteration time, unless disturbed 
by outlier removing.  

 
Figure 15: Average intensity difference per voxel time after time of 
iteration for representative image (left) Affine iterative registration. 
(right) Nonlinear iterative registration.  

 
2) Constructed template of DTI and MRI 

        Figure 16 and 17 show the Representative and Average 
Template constructed by the new procedure in our study. The 
DTI template is a six volumes image. For visualization, we 
used FSLView [27]. Although Representative Template may 
bias to the random initial subject, it supply a clearly detail 
structure to represent the group. 

 
Figure 16: Representative Template of (a) MRI (b) DTI.  
The first eigenvector (V1) is modulated by FA to represent the 
principal diffusion direction and its magnitude. The red, green, blue 
color represents the diffusion in x, y, and z axis respectively. 

 
Figure 17: Average Template of (a) MRI (b) Affine DTI (c) DTI. 
The first eigenvector (V1) is modulated by FA to represent the 
principal diffusion direction and its magnitude.  

3) Outliers from subject group 

In sixth iteration time of affine registration, our study 
found four outliers of subject image and one in seventh 
iterations. Two outlier images are shown in Figure 18. All 
outlier remove cause of a transform coefficient from affine 
matrix is out of the range for three times of standard deviation, 
which criteria stated in III.(5) .  

   
Figure 18: (Left) Removed by outlier factor of shear in x-axis by y 
variable. (Right) Removed by outlier factor of scale in y-axis. 
 
4) Evaluate the template performance of MRI only 

  By the intensity based of image, Table 1 and Figure 19 
show the result of average correlation between template image 
and warped image of subjects. The template image was chosen 
by the representative image, average template image and 
ICBM template image. The result shows that template image 
have the highest correlation with the subjects. 

 
Figure 19: First column: Reference representative image. Second 
column: Reference average template image. Third column: Reference 
ICBM template. 
 

Figure 20 shoes the intensity standard deviation per voxel 
for the warped image of subjects. Our study compares the 
result of warping to ICBM template space and our constructed 
template space. The boundary of the brain image had more 
variation than the center of brain area. This result also shows 
that our template is better as being a transformation template. 

 
Figure 20: The constructed template (left) compared with ICBM 
template (right) in intensity standard deviation for each voxel. 
 

Considering deformation filed in nonlinear registration, 
Table 2 shows the average deformed magnitude and the 
standard deviation in millimeter. It also compares ICBM 
template and our template space. The subjects have lower 
average deformed magnitude to our template than ICBM 
template. 

Our template ICBM template 

Table 1
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Table 2: The average in deformation vector field (mean ± SD) in X, Y 
and Z dimension compare with different template. 

 
5) Evaluate the template performance of DTI and MRI 

In order to confirm the performance for our attribute 
vector, we considered the mean error of MRI feature (T1), DTI 
feature (FA) and the attribute vector (T1+FA) within the whole 
brain and white matter. 

In the whole brain region, the best reductions of DTI error 
(Table 3.1) is given by T1+FA feature with 6.65%_2.48%. The 
second one is FA feature and the worst case is T1 feature.  
Furthermore, Table 3.3 shows that T1+FA feature also obtains 
the best reduction of MRI error by 11.19%_12.9%,  and the 
second one is T1 feature by 10.62%_11.25% .  

 
Table 3.1: Mean DTI error in whole brain 

 
Table 3.2: Mean DTI error in white matter 

 
Table 3.3: Mean MRI error in whole brain 

 
Table 3.4: Mean MRI error in white matter 

 

Let us examine OVL and errors in detail shown in Figure 
21 and Figure 22. These evaluation methods were partitioned 
into ten part using FA image, which was derived from DTI 
Average Template. Figure 22(a) shows that FA feature provides 
the best error reduction in major divisions. However, T1+FA 
feature is better than FA feature when FA being the range of 
0~0.1 and 0.1~0.2. Figure 22(b) illustrates that T1 feature 
supplies the lowest MRI error in most partitions. Nevertheless, 
T1+FA feature offered lesser error than T1 feature when 
FA=0.1~0.2, 0.3~0.4, 0.5~0.6 and 0.6~0.7. Although T1+FA 

feature was not perfect in each detail segment, it provided an 
acceptable result. 

The results demonstrate that T1 and FA can give a 
excellent remedy for each other when they are simultaneously 
employed in non-rigid registration. Accordingly to this, we 
found out T1+FA feature supplies the best alignment for both 
MRI and DTI non-rigid registration. 

 
Figure 21: Mean OVL with different features 

 
Figure 22: (a) Mean DTI error (b) Mean MRI error 

 
 

V. DISCUSSIONS 
 

1) The Midterm Project Part 

The construction procedure includes two major parts of 
iterative registration: affine registration and nonlinear 
registration. Both iterations transform all subject images to a 
representative image and optimized this representative image 
rather than an average template image. The representative 
image provides higher contrast and local area information. This 
could let the transform value more accurate and also update the 
representative image precisely. But when researchers attempt 
to use the template space as a comparative standard coordinate, 
a representative image may not be the best choice rather than 
an average template image. An average template image 
includes more subject information than a representative image 
without bias to a specific brain image structure. In our result of 
Table 1, the subjects mapping to the representative image have 
higher average correlation. In our study, we have created both 
representative template space image and average template 
image just in case.  

In addition, the procedure provides outlier criteria in order 
to construct an unbiased template. As the creating template 
procedure is suitable for any given subject groups, the 
representative template image is easy being bias by an extreme 

Mean average in deformation vector field (mean ± SD)(mm) 

 Subject in group Subject out of group 

Our Constructed 
template 

X: 0.06 ± 1.71 
Y: -0.24 ± 1.73 
Z: 0.48 ± 2.28 

X: 0.60 ± 9.26 
  Y: -1.20 ± 10.96 

Z: 2.90 ± 8.70 

ICBM X: 37.42 ± 2.33 
Y: 14.28 ± 5.53 
Z: 21.09 ± 8.70 

X: 24.04 ± 9.44 
Y: 8.08 ± 5.63 
Z: 15.21 ± 7.66 
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outlier if the subject number is not quite enough. Figure 23 
shows more effects in affine registration steps. The upper row 
of subject has large skew (larger than three times of standard 
deviation) in x-direction following by the value of y variable. 
The middle row shows the subject with large x-direction skew 
followed by z variable. The subject in the bottom row deform 
in large y-direction. All of these subjects are normal subjects, 
but the large deforms could affect the average deform used in 
creating representative image. Removing these subject could 
be more precise is shown in Table 4. The correlation is larger 
when the template without outlier. 

 

 
Figure 23: (a) Three different outliers in raw image space. (b) After 
transform into template space by affine matrix. (c) Overlay image of 
(b) onto image of (a). 
 

 
Table 4 

 

From the result of evaluation, the template space construct 
in this study is more appropriate than ICBM template. As 
compare with image intensity, the subject wrap to our template 
space in smaller deforms and all warped subject images are in 
closer image space.  

Our template creating procedure is based on subject 
group. Generally, ICBM template was constructed from 
Caucasian and some studies had also provided some automatic 
creating method of Chinese brain template. But the registration 
method with only 12 parameters and the subject number was 
not large enough. The procedure in this study also does not rely 
on any general template space as initial. A random initial 
reference image set as the representative template space and 
there are no large differences for different initial reference 
(Figure 24). More descriptions in effects of different initial 
reference should be evaluated. 

 

 
Figure 24: A and B are two different initial reference image. 

Rightest column shows the average deform in 3-direction in 
millimeter.  
 
2) The Final Project Part  

         Table 5 lists the comparison between our procedure and 
other DTI template constructions [36] [30] [35] [24]. Although 
the concept of Log-Euclidean metrics has been published in 
2006 [17], it did not commonly used in DTI template 
construction. One explanation for that is many theories of 
estimation methods are based on high SNR and large number 
of gradient directions. However, in clinical, the number of 
gradient directions is limited and noise-sensitive DWIs is low 
SNR. These properties of DWIs may cause zero or negative  
eigenvalues when estimating tensors by those methods. Non-
positive eigenvalues cannot be explained in biological tissues 
and accepted by logarithmic transformation, an essential step to   
transform a tensor onto Log-Euclidean space. In this study, we 
used Med-INRIA [23] to confirm the positive definiteness of 
all tensors. 

           However, the good property of tensors cannot always 
maintain in tensor calculus. When we calculate tensors in 
Euclidean space, it may create non-positive eigenvalues and 
occur tensor swelling effect, which means the determinant of a 
calculated tensor in Euclidean space will be larger than its 
original determinant. In order to avoid that problem, we used 
Log-Euclidean framework to calculate the average and the 
interpolation of tensors. Besides, we executed the DTI 
reorientation in Euclidean framework because the PPD 
algorithm only affects the direction of tensor rather than its 
magnitude.  

 
 Table 5: Comparison with different DTI template construction 
 
 

(a) (b) (c) 
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VI. FUTURE WORKS 

  As the constructed template has defined in accurate 
procedure, studying on different subject groups in size or 
specific character will be the future work should be done. For 
example, males and females template, specific level of age 
templates are also could be constructed in our procedure. 
Comparison of different group of template may find some 
conclusions for the brain structure difference. 

The comparison between general template space and our 
constructed template space need to be evaluated more. Rather 
than intensity based and replacement base method, use more 
methods to evaluate our template space. 
 

VII. CONCLUSIONS 

  Constructing a proper template would be helpful in 
MRI brain images analysis. The human brain structure will be 
changed in different factors including disease. An accurate and 
precise creating procedure can help the brain template well-
representative. Researchers and doctors could simply compare 
the different in brain structure by the brain template image. The 
construct procedure algorithm in this study could be used on 
different specific subject groups creating customized template. 
The well-represent template space can be used for precise 
analysis on brain image variation.  In this study, we present a 
procedure to construct MRI and DTI template. Moreover, we 
improved the accuracy of non-rigid registration by using T1 
and DTI features simultaneously. 
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國科會補助專題研究計畫項下出席國際學術會議心得報告 

                                  日期： 2012 年 7 月 28 日 

一、參加會議經過 

Computational Neuroscience (CNS) 是由國際計算神經科學組織所籌辦的年度會議，為該研究

領域最重要的學術會議之一，每年均吸引許多研究學者參與。今年會議地點在美國喬治亞州亞特

蘭大市郊的 Decatur，借用 Agnes Scott College 的會議廳來舉辦。我們在會議前一天抵達亞特蘭大，

隔天開始全程參與會議，並發表了研究論文：“Dysfunction of cross-frequency phase-phase coupling in 

primary dysmenorrhea: a resting magnetoencephalographic study”。這篇論文的重點在如何利用腦磁圖

來研究原發性痛經病患在休息狀態時，其腦部活動之跨頻率相位耦合的不正常現象。在會議中我

們與許多研究學者分享研究心得，針對多重頻率之間的訊號分析技術與臨床應用多所討論，收穫

十分豐盛。 

 

二、與會心得 

第一天正式會議之前，我們參加了幾個 Tutorials，包括由明尼蘇達大學的 Duane Nykamp 教授

所安排的 Complex networks and graph theoretical concepts，讓我們對於如何將社交網路拓樸裡的小

世界（small world）與 scale-free 模型應用在腦神經網路模型上有更深一層的認識，從模型理論、

估算、分析、應用一氣呵成，介紹精闢，十分完整詳盡。另外，我們也參加了內華達州立大學 Brain 

Computation 實驗室的 Laurence Jayet Bray、Roger Hoang、與 Frederick Harris 等教授所主辦的

Real-time simulation of large-scale neural models using the NeoCortical Simulator (NCS)，對於如何應
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用 NCS 模擬器來進行大範圍神經網路的模擬與分析有初步的認識，課程內容十分精彩。整體來說，

這些 Tutorials 由淺入深、包羅廣泛，十分精彩。Tutorials 過後接著便是一連五天的主會議與

Workshops，本次會議的重點圍繞在計算神經行為學（Computational Neuroethology）的探討，Keynote 

speech 是由英國愛丁堡大學的 Barbara Webb 教授進行有關神經元與行為的研究發表，對於昆蟲感

覺運動控制的計算與機器模型有很精闢的探討。另一場 Keynote Speech 則是由美國喬治亞州立大

學的 Donald Edwards 教授所進行有關神經機械模擬與混合系統的研究發表，對於姿勢與反覆運動

的再內導（reafference）有詳盡的說明。最後一場 Keynote speech 是由美國西北大學的 Malcolm 

Maciver 教授主講，內容是有關運動與體感之間的能量資訊平衡。整體來說本次會議議程非常豐

富、深入、與多元，收穫良多。 

 

圖：壁報論文發表 

 

三、建議 

本會議每次均包含豐富的教育訓練課程，精彩的 Keynote Speech，以及涵蓋 oscillation、感覺

系統、麻醉與睡眠、記憶、模型等等廣泛計算神經科學相關主題，非常值得國內相關領域研究人

員參與此會議。 

 

四、攜回資料名稱及內容 

攜回包含會議議程、論文列表、論文檔案之 USB Drive。 
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To whom it may concern,

 Yong-Sheng Chen has been invited to present a scientific paper at the 21st
Annual Meeting for Computational Neuroscience CNS 2012 to present
research done at . The CNS 2012 meeting will be held from July 21 to July 26
in Decatur, Georgia, USA.  The paper is titled "Dysfunction of cross-frequency
phase-phase coupling in primary dysmenorrhea: a resting
magnetoencephalographic study".

Detailed information about the annual meeting is available at www.cnsorg.org.

You can contact me for further information.

Sincerely,

 

Prof. E. De Schutter

OCNS President

e-mail president@cnsorg.org   phone: +81-98-966-8727   fax: +81-98-966-
8718

From: OCNS President <president@cnsorg.org>
Subject: Invitation Letter CNS 2012

Date: July 17, 2012 4:21:58 PM GMT+08:00
To: yschen@cs.nctu.edu.tw

Reply-To: president@cnsorg.org
 



Dysfunction of cross-frequency phase-phase coupling in primary 
dysmenorrhea: a resting magnetoencephalographic study 

Pin-Shiuan Lee1, Yong-Sheng Chen2, Jen-Chuen Hsieh3,4, Li-Fen Chen3,4 
1Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan 
2Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, 
3Institute of Brain Science, National Yang-Ming University, Taipei 112, Taiwan 
4Integrated Brain Research Laboratory, Department of Medical Research and Education, Taipei Veterans General 
Hospital, Taipei 112, Taiwan 
E-mail: pshiuan@gmail.com 

 
Cross-frequency synchronization between local or large-scale networks has been proposed recently, which is related 
to phase coupling between neuronal oscillations of different frequency content [1]. This study aimed at investigation 
of how cross-frequency coupling of local network during rest is modulated by pain experience. Ten primary 
dysmenorrhea (PDM) women, who suffer from lower abdominal pain during menstrual phase, and ten age-matched 
healthy subjects during menstrual phase were enrolled. Three-minute eye-open resting magnetoencephalographic 
(MEG) signals of each individual were recorded using a 306-channel magnetoencephalography system. For each 
channel, synchronization value of cross-frequency coupling was estimated by calculating phase-locking statistics of 
phase differences between two frequency bands, including 2, 4, 8, 12, 16, 24, 32, and 40 Hz, respectively. The 
results showed that the PDM group displayed oscillatory hyperconnectivity of low alpha-beta (8-16 Hz) coupling in 
the medial superior parietal area (Figure 1(a)) and hypoconnectivity of high alpha-beta (12-24 Hz) coupling in the 
frontal area (Figure 1(b)), where were functionally and structurally connected in previously reports of resting 
networks [2]. Two-way ANOVA results showed interaction between group and cross-frequency synchronization 
values at these regions.  
 

 

Conclusions 
Our findings implicate that pain 
experience may modulate phase-
phase coupling of alpha-beta 
oscillation, which might disrupt 
integration between nearby neural 
population in the human neocortex.  
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identification using electroencephalographic signals evoked by visual stimuli＂。 論文的研究主旨在利
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試者腦波資料，系統可高達 96.4% 正確辨識率，顯示本研究成果可實際應用的可行性。論文海報

內容如後附件。 
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題，非常值得國內相關領域研究人員參與此會議。 
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Person Identification using
Electroencephalographic Signals Evoked by

Visual Stimuli?

Jia-Ping Lin1, Yong-Sheng Chen1,2??, and Li-Fen Chen3

1 Inst. of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan
2 Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

3 Inst. of Brain Science, National Yang-Ming University, Taipei, Taiwan

Abstract. In this work we utilize the inter-subject differences in the
electroencephalographic (EEG) signals evoked by visual stimuli for per-
son identification. The identification procedure is divided into classifica-
tion and verification phases. During the classification phase, we extract
the representative information from the EEG signals of each subject
and construct a many-to-one classifier. The best-matching candidate is
further confirmed in the verification phase by using a binary classifier
specialized to the targeted candidate. According to our experiments in
which 18 subjects were recruited, the proposed method can achieve 96.4%
accuracy of person identification.

1 Introduction

Conventional person identification methods include passwords, smart cards, and
a variety of biometric techniques. Passwords and smart cards are widely-used
because of the advantage of convenience. However, smart cards might be stolen,
simple passwords might be deciphered, and complicated passwords might be for-
gotten. Current biometric features such as iris, fingerprints, face, voice, palm, and
gait do not suffer the above-mentioned disadvantages, but they can be stolen,
duplicated, or even provided under violent threats. Brainwave is an emerging bio-
metric feature for person identification because of its uniqueness and consistency.
Moreover, brainwave is difficult to steal or duplicate and the characteristics em-
bedded in the brainwave when the subject is under threat are hardly the same
as those in normal situation. These advantages promote brainwaves as new keys
to safer person identification systems.

Among all the non-invasive brainwave acquisition modalities, electroencepha-
lography (EEG) has the advantages of portability, easy operation, high tempo-
ral resolution, and low costs. To evaluate the uniqueness and consistency of the

? This work was supported in part by the MOE ATU program, Taiwan National
Science Council under Grant Numbers: NSC-99-2628-E-009-088 and NSC-100-2220-
E-009-059, and the UST-UCSD International Center of Excellence in Advanced Bio-
engineering sponsored by the Taiwan National Science Council I-RiCE Program
under Grant Number: NSC-99-2911-I-009-101.

?? Corresponding author.
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characteristics in EEG signal, the work in [6] confirmed that the inter-subject
variation of EEG spectra where different subjects administered the same task
was larger than the intra-subject variation where the EEG signals of the same
subject were repeatedly acquired for several times. At first resting data was used
for person recognition and the identification rate ranged from 72 to 85% [10].
In 2003, Palaniappan and Ravi investigated the task-related EEG signals. By
extracting features from visual evoked potentials (VEPs), the identification ac-
curacy was improved to be larger than 90% [9]. The features in EEG signals
include autoregressive (AR) coefficients, coherence, and cross-correlation [7]. In
[1] the event-related potentials (ERPs) were utilized for person identification.
This work used the images of self-relevant objects as the visual stimuli and se-
lected prominent channels related to this experiment. Temporal domain features
such as P100, N170, and N250 were used in the signal analysis [4]. For simplicity
and practicability, the work [5] classified subjects simply by thresholding the
EEG power spectrum.

In this paper we present a person identification system using EEG signals.
Because resting state is prone to be more fluctuating, we adopt task-related
EEG signals evoked by visual stimuli in this work. Representative information is
extracted from the EEG signals of subjects and are used to train a many-to-one
classifier for person classification. The best-matching candidate of each classifi-
cation is further verified by using a binary classifier to exclude the intruder.

2 Materials

2.1 Participants and paradigm

Eighteen subjects participated in this study (age ranges from 21 to 33 years
with mean 24 years, twelve males). All the subjects have normal or corrected-
to-normal visions. For five participants among all the subjects, EEG data were
acquired two times with an interval of more than one week.

The paradigm of data acquisition in this study is shown in Fig. 1. The subject
was seated comfortably in a silent room and was asked to watch a monitor
screen. The visual stimulus, an image containing either a small disk or a large
one (five times larger than the small one), was presented for one second followed
by another second of fixation image of a cross. The frequency ratio between the
stimulus images is one (large disk) to three (small disk). Around 250 trials were
acquired for each participant.

2.2 EEG recording and preprocessing

Thirty-two standard scalp electrodes were placed according to the International
10-20 System of Electrode Placement. We picked the channels related to the
visual stimuli and P300 component in the frontal, frontal-central, parietal, and
occipital regions [3]. The ten channels we selected were Fz, FCz, Cz, CPz, P3, Pz,
P4, O1, Oz, and O2. This process will reduce the quantity of data and eliminate
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Fig. 1: Paradigm for data acquisition in this study. A trial consists of one-second
stimulus, an image containing either a small disk or a large one, and one-second
fixation.

the activities which are not induced by the events. The EEG data were recorded
with Scan 4.3 software and the sampling rate for data acquisition was 500Hz.
The earlobe electrodes A1 and A2 provided the reference. Signals were digitally
filtered within the 5-30 Hz band.

We used EEGLAB 9.0 [2] to perform the following signal preprocessing pro-
cedure. The EEG data were first segmented into epochs starting from one second
before the stimulus onset to one second after stimulus onset. The baseline cor-
rection was applied to remove the DC drift. Epochs with burst activities during
the post-stimulus period were rejected (with the threshold values -50µV and
50µV). The trials evoked by the large disk events were used in the following
person identification analysis.

3 Methods

3.1 Feature Extraction

For each of the EEG channels, we applied a series techniques to extract features.
These techniques, described in the following, include dimension reduction, mor-
phological operation, power spectrum, and stochastic modeling.

Dimension reduction Principal component analysis (PCA) is a method for
reducing feature dimension. Its main idea is to find a set of basis, usually with
a much smaller dimension, to represent the original data set while preserving
as much as information measured by the variance of data distribution. If there
is an embedded non-linear manifold lying in a high-dimensional space and the
dimension of the manifold is relatively low, this manifold can be well represented
in a low-dimensional space [8]. Therefore, we also applied the locally linear em-
bedding (LLE) method to transform the data to a low-dimensional space while
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maintaining the manifold structure manifested in the original high-dimensional
space. Firstly, we find a set of nearest neighbors for each data point Xi in D-
dimensional Euclidean space. Then we reconstruct, or represent, each data point
by a linear combination of its neighbors Xij with weightings Wij as the contri-
bution of the neighbor Xij to this linear combination for Xi. The reconstruction
error is:

E(W ) =
∑
i

|Xi −
∑
j

WijXij |2 , (1)

where the sum of the weightings for each data point Xi equals one. The data
point Xi can be mapped to the corresponding point Yi in a low-dimensional
space as:

Yi =
∑
j

WijYij , (2)

where the point Yij is the point in low-dimensional space corresponding to Xij

in the original high-dimensional space.

Morphological features The latency and amplitude of each EEG epoch were
computed as the morphologic features which contain VEPs (with the time inter-
val from 50 ms to 150 ms after stimulus onset) and ERPs (with the time interval
from 250 ms to 400 ms after stimulus onset).

Frequency features The discrete Fourier transform (DFT) were used to com-
pute the power spectrum for each epoch. In this work we focus on the frequency
band from 5 Hz to 30 Hz.

Stochastic modeling Considering the EEG signal as an autoregressive (AR)
process, we used the Yule-Walker equations to estimate the AR coefficients as
the features. To fit a p th-order AR model to the EEG data X(t), we minimize
the following prediction error by using the least squares regression:

X(t) =

P∑
i=1

a(i)X(t− i) + e(t) , (3)

where a(i) are the auto regression coefficients, e(t) represents the white noise,
and the time series can be estimated by a linear differential equation.

Time-frequency model The wavelet transform uses a set of time-scale basis
to represent the original signal. Here we applied the Daubechies wavelets to
transform the time-domain EEG signals and obtained 250 coefficients as the
time-frequency features.
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3.2 Classification

For classification, we employed the support vector machine (SVM) and the k-
nearest neighbor (kNN) search method (k=9) as the classifier. To fairly evaluate
the accuracy of classification, we apply the 8-fold cross validation that separate
EEG data into training and testing data to obtain the average classification
accuracy for person identification.

3.3 Verification

The purpose of the verification procedure is to reconfirm the best-matching re-
sult of classification. For each of the eighteen subjects, we trained a SVM binary
classifier by using two groups of training data including EEG data of the targeted
subject and those of all others. We evaluate the binary classifier for verification
in terms of the true acceptance rate (TAR) and the false acceptance rate (FAR).
The best-matching subject from the classification procedure is verified by the
corresponding binary classifier. In addition, we modified the false classified data
in classification phase through iterative verification. The probability estimate,
which is a confidence level of classification, determines an ordered list of can-
didates having confidence levels larger than 80% of that of the best-matching
candidate.

4 Results

4.1 Temporal characteristics in the acquired signals

We first verified whether the resting EEG or ERP is better for distinguishing
subjects’ identities. By applying the SVM classifier to categorize the pre-stimulus
(500 ms before onset) EEG signals among the eighteen subjects, the classification
accuracy was 12.2%. When the post-stimulus (500 ms after onset) ERP signals
were used for person identification, the classification accuracy achieved 25.3%.
Therefore the ERP contains more information for person identification than
resting EEG does.

4.2 Accuracy in the classification phase

Table 1 shows the classification accuracy comparison among seven features
extracted from the 1000ms post-stimulus EEG signals with respect to single trial,
average of two trials, SVM, and kNN. The average of two trials can achieve higher
classification accuracy compared to single trial data because of higher signal-to-
noise ratio. Regarding the classifier, SVM outperforms kNN with respect to
various features.

Among the seven kinds of features, power spectrum achieves the best clas-
sification accuracy while the latency and amplitude generally lead to poor re-
sults. Fig. 2 shows the power spectrum of different subjects with the frequency
band ranging from 5 Hz to 30 Hz. We can see that within-subject variation of
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Table 1: Results of classification with different features and different classifiers.
The data of each subject acquired in the same experiment.

SVM kNN

Feature Single trial Avg (2 trials) Single trial Avg (2 trials)

Raw data 29.31% 80.86% 23.47% 76.38%
LLE 30.81% 86.69% 28.13% 83.44%
PCA 27.74% 83.48% 25.32% 81.28%
Latency 11.59% 35.23% 10.21% 33.56%
Amplitude 38.53% 50.82% 36.23% 45.19%
Power spectrum 72.03% 91.61% 60.01% 85.92%
AR 53.52% 62.54% 50.96% 60.57%
Wavelet 27.27% 85.41% 22.92% 77.26%

Table 2: TAR in the verification phase, which is the percentage of the best-
matching candidates in the classification phase that are accepted in the verifica-
tion phase.

Subject 1 2 3 4 5 6 7 8 9

TAR (%) 97.14 98.70 98.81 100 100 96.43 97.62 100 96.30

Subject 10 11 12 13 14 15 16 17 18

TAR (%) 97.96 100 100 98.57 100 100 100 100 100

the spectra of different trials is smaller than inter-subject variation. In order
to accommodate different information of the best two features, we combined
the power spectrum and LLE features after normalization and achieve 97.1% of
classification accuracy.

4.3 Accuracy in the verification phase

The true acceptance rate (TAR) measures the percentage of the best-matching
candidates in classification that are accepted by the binary classifier of verifica-
tion. Table 2 shows the TARs of eighteen subjects and their average is 97.9%.
The false acceptance rate (FAR) is zero, that means all the false classified data
were successfully rejected in the verification phase. After iterative verification
the overall accuracy of our system is 96.4%.

4.4 Classification accuracy over time

For five participants among all the eighteen subjects, EEG data were acquired
two times with an interval of more than one week. The goal is to verify whether
the EEG data of the same subject is sufficiently stable for person identification
over a period of time. The average accuracy of the classification phase is 93.2%.
Table 3 shows the TAR, FAR and results of iterative verification. After iterative
verification, the overall identification accuracy of our system is 85.7%, indicating
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Fig. 2: The power spectrum of ten trials of two subjects (thick black lines rep-
resent the averages of ten trials). Each trial shows the average results of ten
channels.

Table 3: TAR, FAR, and results of iterative verification of data acquired from
different days.

Subject 3 5 8 12 13

TAR (%) 78.57 100 97.92 83.33 100

Accepted/False classified 0/1 4/6 0/0 0/0 11/12

FAR (%) 0 66.67 - - 91.67

that the the performance of our system slightly degrades over time. One possible
remedy is to retrain the classifier by adding the data acquired over time so that
the classifier can be adapted to each subject. By using the two sets of EEG
data acquired at different times, the average accuracy of the classification phase
is improved from 93.2% to 98.4%, TAR is increased from 90.6% to 97.7%, and
FAR is decreased from 79.0% to 0%. After iterative verification, the overall
identification accuracy of our system is improved from 85.7% to 96.8%.

5 Discussion and Conclusions

The major causes affecting the accuracy of person identification using EEG sig-
nals include both external and internal interferences. The external interferences
deteriorate the quality of acquired signal whereas the internal interferences re-
sult in signal instability over time. From the calculated correlation between EEG
trials of different subjects, the EEG data of subjects having high correlation to
those of other subjects have more classification errors. Compared with the inter-
subject correlation, the intra-subject correlation between EEG trials acquired
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at different times is higher. Therefore, the brainwave signals are suitable for
biometric measures for person identification.

We have proposed a person identification system using visual-evoked EEG
signals. According to our experiments, we concluded that the combination of
power spectrum and LLE can extract informative features for distinguishing
subjects. The identification system contains the classification and verification
phases. In the classification phase, we use a multi-class classifier to perform
a one-to-many comparison for each acquired data. In the iterative verification
phase, the best-matching candidates are furthered verified sequentially by binary
classifiers according to their matching levels. The overall person identification
accuracy of the proposed system can achieve 96.4%.
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碩士生 2 2 100%  

博士生 2 2 100%  

博士後研究員 0 0 100%  

國內 

參與計畫人力 

（本國籍） 

專任助理 0 0 100% 

人次 

 

期刊論文 0 0 100%  

研究報告/技術報告 0 0 100%  

研討會論文 0 0 100% 

篇 

 
論文著作 

專書 0 0 100% 章/本  

申請中件數 0 0 100%  
專利 

已獲得件數 0 0 100% 
件 

 

件數 0 0 100% 件  
技術移轉 

權利金 0 0 100% 千元  

碩士生 0 0 100%  

博士生 0 0 100%  

博士後研究員 0 0 100%  

國外 

參與計畫人力 

（外國籍） 

專任助理 0 0 100% 

人次 

 



其他成果 

(無法以量化表達之成

果如辦理學術活動、獲
得獎項、重要國際合
作、研究成果國際影響
力及其他協助產業技
術發展之具體效益事
項等，請以文字敘述填
列。) 

無。 

 成果項目 量化 名稱或內容性質簡述 

測驗工具(含質性與量性) 0  

課程/模組 0  

電腦及網路系統或工具 0  

教材 0  

舉辦之活動/競賽 0  

研討會/工作坊 0  

電子報、網站 0  

科 
教 
處 
計 
畫 
加 
填 
項 
目 計畫成果推廣之參與（閱聽）人數 0  

 



國科會補助專題研究計畫成果報告自評表 

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估 

■達成目標 

□未達成目標（請說明，以 100字為限） 

□實驗失敗 

□因故實驗中斷 

□其他原因 

說明： 

2. 研究成果在學術期刊發表或申請專利等情形： 

論文：■已發表 □未發表之文稿 □撰寫中 □無 

專利：□已獲得 □申請中 ■無 

技轉：□已技轉 □洽談中 ■無 

其他：（以 100字為限） 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價
值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500字為限） 

磁振造影是實證醫學非常重要的工具，廣泛應用在臨床醫療評估與結構性、功能性腦科學

研究上。磁振造影除了可提供放射科醫師審視評估，也可由以體素為基礎之群間比較來得

到結構差異上的量化統計。為了進行腦科學結構上之變異量化分析，我們必須由腦樣板影

像來建構出一個標準定位空間，以作為腦結構型態計算與統計之比較基準。在此研究計畫

中，我們從 200 位正常受試者的磁振造影影像，經由擷取腦區組織、修正亮度不均勻性、

腦結構空間正規化、與無偏頗空間計算，建構出一套完整的 T1/GM/WM/CSF/DTI 的腦樣板

影像。並於此套自動化建構腦樣板系統，改善先前對位方法且套用本團隊新提出的對稱與

微分同構演算法，以同時提供正逆形變場，維持腦樣板對位之一致性。除了研發更新目前

國內外的演算技術來增快此特製化腦樣板建構系統的執行效率外，同時也採用不同的標準

測量方法來評估此系統建構出的腦樣板影像，驗證本團隊研究成果確實可提高腦樣板影像

與 Talairach 座標系統之對位精確度。 
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