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Joint Source/Relay Precoders Design in Amplify-and-Forward MIMO Relay
Systems
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Abstract—In this paper, we propose a robust transceiver design
for an amplify-and-forward (AF) multiple-input multiple output
(MIMO) relay systems where a Tomlinson-Harashima source
precoder (THSP), a linear relay precoder, and a minimum-mean-
squared-error (MMSE) receiver are taken into design. Since two
precoders and imperfect channel state information (CSI) are
involved, the transceiver design is much difficult. To overcome
the difficulty, we first propose cascading an additional unitary
precoder after THSP. The unitary precoder cannot only simplify
the optimization but also improve the performance of MMSE
receiver. We then adopt the primal decomposition transferring
the original two-precoder optimization into a single relay
precoder optimization. However, the problem is still unsolvable.
By technically proposing a lower bounded objective function, we
can further transfer the problem into a convex optimization. A
closed-form solution can then be obtained by Karush-Kuhn-
Tucker (KKT) conditions. Simulations show that the proposed
transceiver can significantly outperform the existing linear
transceivers with perfect or imperfect CSls.

Index Terms — Amplify-and-forward (AF), multiple-input
multiple-output (MIMO), Tomlinson-Harashima precoding
(THP), minimum-mean-squared-error (MMSE).

I. INTRODUCTION

Current research on amplify-and-forward (AF) multiple-

input multiple-output (MIMO) cooperative networks, namely
MIMO relay system, mainly focuses on linear transceiver
designs, either for boosting capacity [1]-[2], or for improving
link reliability [3]-[5]. Most of these proposals, however, only
consider relay precoders [1]-[4]. Some of them even neglect
the direct (or, source-to-destination) link so as to simplify the
design [1], [3], [4]- Recently, a joint source/relay precoders
design method was proposed in [5] and it is shown that the
system performance can be significantly improved. However,
the precoders considered in previous works are all linear. In
this paper, we consider a nonlinear precoding scheme in which
a Tomlinson-Harashima precoder (THP) is used at the source
and a linear precoder at the relay, and an MMSE received is
used in the destination. THP is a well known precoding
scheme and has been shown to have a better performance than
the linear ones [6], [7].

Since the MMSE is a complicated function of the source
and relay precoders, the design is difficult. In addition, the
problem is non-convex. Using the primal decomposition
method [8], we first decompose the original optimization
problem into a master and a subproblem optimization
problems. We then propose an upper bound for the relay
power constraint. Using the upper bound, the optimal THP
precoder in the subproblem can be derived as a function of the
relay precoder, and the problem can be reduced to the THP
precoding design in the conventional MIMO system [7]. The
solution is readily obtained. The cost function in the master
problem then becomes a function of the relay precoder only.
Due to the nonlinearity in the cost function, the optimum relay
precoder is still difficult to find. We then propose some
approximations, valid in high signal-to-noise (SNR)
environments, to translate the master problem into a scalar-
valued concave optimization problem. As a result, the closed-
form solution of the relay precoder can be obtained by the
KKT conditions. Simulations show that the proposed method
can significantly outperform existing non-precoded and
precoded systems, either in terms of MSE or bit-error-rate
(BER).



II.  SYSTEM MODEL

A. System Model

We consider a three-node AF MIMO relay precoding
system in which N, R, and M antennas are placed at the source,
the relay and the destination, respectively, as shown in Fig. 1.
As we can see from the figure, two precoders are included — a
THP source precoder and a linear relay precoder Fg. Also, a
linear MMSE receiver, G, is applied at the destination. Here,
we consider the general two-phase transmission protocol [1]-
[5]. In the first phase, the source signal s € C"*! is fed into
the nonlinear THP in which a successive cancellation
operation characterized by a backward squared matrix B and a
modulo operation MODp( <+ ). The source signals
s =[s,,--,sy]  are modulated by m-QAM where the real and
image parts of s as the set {#1,---,4(m — 1)} . The feedback
matrix B has a lower triangular structure and the diagonal
elements are all zeros. The modulo operation acts over the real
and image parts of the inputs, respectively, is expressed as
follows:
z+m , (1)

2Vm
It is clear that the transmitted signal X is bounded between
—vm and m . With B and the operation in (1), the
elements of X can be recursively expressed as [7]

k=1
x, =s, — > BkD)x;, +e, 2)
1=1
where x;, is the kth elements of vector x and B(k, 1) is the (k,I)
element of matrix B; e =[e,,---,ey]" denotes the errors of
the modulo operation (the difference of the input and the
output). From (2), we can reformulate the transmitted signal X
after THP with the following matrix form
x=Clv, (3)
where C =B +1I is a lower triangular with ones in its
diagonal, and v = s + e. The THP precoded X is then passed
through a prefiltering matrix Fg and subsequently sent to the
relay and the destination simultaneously. The prefilter can
provide an additional performance boost as described in
conventional MIMO systems [7].

In the second phase, the received signal at the relay is
multiplied the relay precoder and then is transmitted to the
destination. Therefore, the signal received at the destination in
the two consecutive phases can be expressed as a vector form
as

MOD,, (z) = = — 2v/m -

Hg) P Dpy @
_ x4
Yo H,pFpHg, | ° HppFpng +np,
=H =W

where H and w denote the equivalent channel matrix and the
equivalent noise vector, respectively. In (4), x € CcM s the
THP precoded signal vector (3); yp € C* s the received
signal vector at the destination; Hg, € CV | Hy,, € MV
and Hp, € C"" are the channel matrices of the source-to-

relay, the source-to-destination, and the relay-to-destination
links, respectively; mnp; € c™ . npec™ | and
np, € C"™ are the received noise vectors at the destination
and at the relay in the first-phase, and at the destination in the
second-phase. Here, we assume that N <min{R M} to
provide sufficient degree of freedom for signal transmission.

Note that if v can be estimated at the destination, S can
then be recovered by the modulo operation in (1). Thus, the
optimum G € C***V can be found by minimizing the MSE
defined as

J = B{lGy, -}, ©)

To solve the problem in (5), we assume that the precoded
signal x,; ’s are statistically independent and they have the
zero-mean and the same variance. Let the variance of each
clement in s be denoted as o> . We then have
E[xxH] = o’Ty and E[va = 02CC" . It is noted that the
assumption is valid when the QAM size is large (m > 16) [7].
Then, the optimum solution of (5) can be obtained as [9]

G, = ’CE/H" (*HEF/H" +R,) ., (6

opt —

where G, is the optimum G, R, :E[WWH ] is the

covariance matrix of the equivalent noise vector w. Note here
that w is not white. Denote the variance of the noise
components at the destination as ai{d, and that at the relay as
air . Substituting (6) in (5), we can have the MSE matrix

E = C(o, Iy + F/HR,'HE; ) C

o (7
= C(o,%1y + FYHVER,) ' C"
and
Jmin =1tr {E}’ (8)
where
H=R,"H
O'r:,dHSD )

~1/2
) HppFrHgp

(Ui,y-HRDFRFgHgD +on Ly
is defined as the equivalent channel matrix after noise
whitening. Note that the MSE is contributed by both the direct
and relay links. By ignoring the direct link and adopting a
single precoder at the relay, the problem is reduced those
considered in [3] and [4]. Here, we incorporate the THP as the
source precoder and take the direct link into consideration. A
significant performance enhancement can then be expected.

B. Problem Formulation

From the MMSE criterion in (7)-(8), we now can formulate
our joint design problem as:



P |
min {r C(O’S_QIN +F§IHHHFS) c s.t

CJFq Fp

=E
ﬂHﬂ = OTZdH.IS—VIDHSD +

n,r

HgRFgHgD (‘72 HRDFRFgHgD + JZ,dIM )_1 HppFrHgp.
tr{B[Fpoc "B |} = o2r {BsFY } < Py,

tr{By (02, 1 + 0 By RSB, VB < Py

n,r

(10)
where the inequalities in (10) indicate the transmitted power
constraints at source and relay (the maximal available power is
Py r and Py p, respectively). Taking a close look at (10), we
can observe that the cost function and the power constraints are
nonlinear functions of Fg and Fj, . Moreover, (10) is not a
convex optimization problem. As a result, it is difficult to solve
the problem, directly. In the next section, we propose a new
approach to seek for a suboptimal solution.

III.  JOINT SOURCE/RELAY PRECODER DESIGN

A. Proposed Approach

We resort to the primal decomposition method [8]
translating (10) into a subproblem and a master problem. The
subproblem is first optimized for the source precoder, and
subsequently the master problem is optimized for the relay
precoder. To proceed, we reformulate (10) as

Cfg%{ tr{E} = Hfl‘;n Iélgl tr {E}
s.t.

E = C(o, Iy + FYHYAF) "
H'H in (10),

aftr {FSFg} < Psr

n,r

tr{Bg (02,1 + o B FRS B B L < Py
(11)

In the subproblem, the relay precoder Fj is assumed to be
given. Then, the optimum C and Fg can first be derived as a
function of Fj . Therefore, the joint precoders design is
reduced to the master optimization problem in which the
optimum relay precoder remains to be determined.

B. Proposed Subproblem Optimization

As we can see from (11), both the power constraints are
functions of the source prefiltering Fy . To facilitate the

subproblem optimization, we first propose the following upper
bound for the relay power constraint.

tr{Bg (02, 1 + o2 Hg BRI B, By |

= oy tr {FFF L+ o2tr (B BRI HE Y |

< s [Balf + o [FaHse B (12)
<oy, "FR”§ + Psp ”FRHSR "; < Ppr, (13)
where the inequality in (12) follows from the sub-

multiplicative property of the matrix norm [10], and the
inequality (13) follows from o7tr {FgFg' } = o [Fg[; < Pyy
in(11).

Using the upper bound in (13), we see that the transmission
power at the relay is not function of Fg. Thus, it is not

necessary to consider the relay power constraint in the
derivation of Fyq. As a result, we can write the subproblem

problem as

min _ tr(E)
C(Fg).Fs (Fp)

s.t.

E=C(o; Iy + F/HYAF,)  C¥ (14)
HYH in (10),

aftr {FSFS?} <FPsr

It is simple to show that (14) can be seen as the THP design in
a conventional MIMO system. The solution of (14) has been
considered in [7]. It has been shown that the solutions can be
expressed as [7]:

C,, =DL"; (15)
FS,opt = VﬁGUS 2 (16)

where
LY = (0,21, + FYHYHE,) (17)

is the Cholesky factorization of (o, *I)y + FZ H” HF, o ;Dis
a diagonal matrix that scales the elements on the diagonal of C
to unity; Ve € CYY is the left singular matrices of
H;0¢ RNX}}V is a diagonal matrix with the ith diagonal
element #, and Ug € C™ is an unitary matrix. Both
0 € R and Ug € C"V needs to be further specified.
Substituting (16) into (17), we have

L = U¥ (0,1, +6%10) U, (18)

=D

where A = daig {)‘ﬁ,p"'v)‘ﬁ_N} is the eigenvalues of H'H.
It is simple to see that that D is diagonal matrix here.
Applying geometric mean decomposition (GMD) on D, we

can express D as

DY/? = QrPY (19)



where Q, P are unitary matrix and R is upper triangular matrix
with equal diagonal elements. Letting Us=P and substituting
(15), (16) in (8), we then have the result MSE as

1/N
§N2 =N H e (20)
Jmin = —
h=1 k=1 Mg 9;3 +0,7?

Now, the problem becomes the minimization of (20).

By taking In operation to (20) and neglecting N and (&)!/

the subproblem optimization is then reformulated as

1
Ao pop +0.°
H i s,k B

N
min »  In
Psk k=1
s.t.

H"H in (10) 1)
2 H 9 N
US tT (FSFS ) = US Z pS,k S PS‘T
k=1
Dsr = 0,3, Py >0, k=1--- N,
The problem is then a scalar-valued optimization problem and

Dsi » k=1---,N can be solved with a standard convex
optimization method. The optimal solutions for pg; ,

k=1---,N, derived from the KKT conditions [8], are given
by
4
1
bgp =|V——3 ’ (22)
TN
where [y]" = max(0,y) and v is the water-level chosen to

satisfy the power constraint in (21). Observing (22), we can
find that the source prefilter is a function of )\H wo k=1 N,
which is the eigenvalues of H . From (9), we see that H is a
function of the relay precoder. Substituting (22) into (21), the
cost function of the subproblem becomes that of the master
problem from which we can derive the relay precoder. This
will be described in the next subsection.

C. Proposed MasterProblem Optimization

Observing (15)-(17) and (22), we see that C and Fg are
functions of Fj, . Also, these functions involve matrix inversion
and eigen-decomposition; they are highly nonlinear. To solve
such a problem is still difficult. In what follows, we propose
some approximations such that a feasible solution for F;, can
be solved in the master problem.

Firstly, we assume that the channel quality is good enough
such that (22) can be approximated as

1
2
O'S)\I:Lk

Dy =V— (23)

Thus, the water-level can be derived by the power constraint in
(21) given as

N1

PsﬁT"'ZT

k=1""Hk
V= 24
Iy (24)

S

Substituting (24) into (22), and then the cost function in (21),
we then have the following upper bound

In H ! lnH

k=1 Ny kpbk+‘7 f=1 A ¥
2 N N . 25
In o, N I 1 < J(,’,N 1 (25)
L1 oy Por ici Mg
PS,T + ZT = K A =1L THE
k=1"H k

The upper bound in (25) can be achieved if Ay, — oo, for all
k. We can further consider the following equivalence in the
upper bound of (25):

2 N B
min In Z o,V II L max det(HHH) , (26)
Fp S, T k=1 /\Hk Fr

where the equality is obtained form the property that
I N
det (H"H) = [] Ay, -
k=1

With (26) and the power constraint (13), we can now
formulate the master optimization problem as
max det (ﬂH ﬂ)
Fr
s.t.

27
H'H in (10) @D

op |Fx "; + Py |[FrHgp ||§ < Py

To solve (27), we use the Hardamard inequality, described in
the following Lemma.

Lemma 1 [10]: Let M e CY" be a positive definite
matrix, then

det(M) < 1]‘V[ M, » (28)

where M, ;) denotes the ith diagonal element of M. The
equallty 1n (28) holds when M is a diagonal matrix. If we let
M = HH , it turns out that when M is diagonalized, the cost
function in (27) is maximized. Unfortunately, from (10) we can
see that H” H is a summation of two separated matrices and
one of them dose not depend on Fj, and the diagonalization
cannot be directly conducted. The following lemma suggests a
feasible way to overcome the problem.

Lemma 2 [10]: Let A € CM" be a positive matrix and
B € CM¥ | then

det(A + B) = det (A)det (I + A™/’BA™Y/?). (29)



Form  (29), we let B = HELFIHE, x
-1
(U?L,THRDFRFgHgD +0721,dIM) HppFpHg, and A =

o, 7HI Hg), , we have the following equivalence

arg max det (ﬁHfI)
Fp
= arg max det (IN + aideg%FgHgD (30)
Fp

-1
(03,THRDFRF1§H§1D + U?z,dIM) HRDFRH/SR)v
1

where H§p, = Hgp (HgDHSDt) 2 and det(A) are ignored
since they are not functions of Fy. Equation (30) provides a
feasible way to diagonalize the cost function. The optimization
problem in (27) can now be reformulated as
max det(M')

Fp
s.t.

M’ = (IN + oy H Fy Hyp

2 HyyH 2 -1
(Un,'rHRDFRFR Hpp + U7L,dlM> HHDFRHgR)
M’ is diagonal

2 2 2
o [Brlly + Psr [FaHsgl, < Prr-
€1y
There exists certain structure for the relay precoder such that
the diagonalization can be achieved. Consider following
singular value decomposition (SVD):

Hyp = Urdzrdvfdj 5 (32)

T

Hi, = U, V)T, (33)

where U,,; € C"¥ and U/ e C™® are left singular
matrices of Hy, and Hfy , respectively; ¥, € R and
x e R are the diagonal singular value matrices of Hyp
and Hjj , respectively; V2 e C% and V! ¢ ¢V are
the right singular matrices of Hy;, and H, , respectively. We
found that if the optimal F, have the following structure, a full
diagonalization of M’ can be achieved:

Froopt = V02, U (34)

sro 2

where 3 is a diagonal matrix with sth diagonal element o, ;,
yet to be determined. Let o,,, and o/, ; be the ith diagonal
element of ¥, and %, respectively. Substituting (32), (33)
and (34) into (31) and taking the In operation to the cost

function, we can then rewrite (31) as

2 2 2

N pr,ian,dgrd,iasr,i

max » In|l+ 55 3
Pris 1<ISN LD PriOnr0rd i + Ond

sd. (35)

N

Z;pr,i (PS,TG;E,zD;r (M) + UZ,T-) < PR,Tvpr,i >0,

=
where p,, =02, and D[ =V/ (HngHSD) v/ with
D!, (4,i) being the ith diagonal element of D/ . The cost
function now is simplified to a function of scalar parameters.
Since the cost function and the inequalities are all concave for
p.; = 0 [8], (35) is a standard concave optimization problem.
As a result, the optimal solutions p,,, ¢ =1,---,N , can be
solved by means of KKT conditions given by

m
Pri = I2 oD (ii 2 2 2 2 1+
er,i S,Tgsr,i sr (Za Z) + Jn,r o—n,ran,dasr,i +
4 2 2 *
£ /
1 Un,d 1 U7z,dasr,i
- R
40 2 o
n,r n,r
2 2 ?
2
g 2 Onr 12
4 n,r )
Orgil—5—5+1 Ordi| 2 T O
rdi| "2 72 o
rd,iasr,i n,d
(36)

where p is chosen to satisfy the power constraint in (35).
Substituting (36) into (34), we can finally obtain the optimum
relay precoder. With the relay precoder, H in (9) can be
obtained. Subsequently, the source prefilter can be derived by
substituting (22) into (16) and C can be obtained by (15).

IV. SMULATIONS

We consider an AF MIMO relay system with N=R=M =
4. The elements of each channel matrix are assumed to be i.i.d.
complex Gaussian random variables with zero-mean and unity
variance. Let SNR,,., SNR,;, and SNR,; denote, respectively,
the SNR per receive antenna of the source-to-relay, the relay-
to-destination, and the source-to-destination links. Here, we let
SNR,, =15 dB, SNR,; =10 dB and vary SNR,; . Also, we
use 16-QAM for each transmitted symbols. Fig. 2 and Fig. 3
show the MSE and BER performances comparison,
respectively, for (a) an un-precoded system with the MMSE
receiver, (b) an MIMO relay system with the optimum relay
precoder in [3], (¢) an MIMO relay system with the
source/relay precoders in [5], and (d) an MIMO relay system
with the proposed source/relay precoders. Note that optimum
relay precoder in [3] only considers the relay link. For better
performance, we further include the direct link when
implementing the MMSE receiver. As we can see, the
proposed method significantly outperforms other methods.
Although two precoders are used in [5], the performance is
limited. This is because both precoders are linear.



V. CONCLUSIONS

In this paper, we consider a precoding scheme in AF
MIMO relay systems. In this scheme, a THP source precoder is
used at the source, a linear relay precoder at the relay, and an
MMSE receiver is used the destination. Since MSE is a
complicated function of the source and relay precoders, a direct
minimization is difficult. To solve the problem we propose to
design the precoders using the primal decomposition method.
Using this approach, the original problem can be formulated as
a relay precoder design problem called the master problem, and
a source precoder design problem called the subproblem. With
some approximations and manipulations, both problems can be
translated into standard scalar-valued convex optimization
problems. Finally, using the KKT conditions, we obtain the
closed-form solutions of the precoders. Simulations show the
proposed method significantly outperforms the existing un-
precoded and precoded systems.
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Figure 1. Three node AF MIMO relay system with THP source precoder and
linear relay precoder.
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Figure 2. MSE performance comparison of the proposed precoders method
and the other schemes.
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Figure 3. BER performance comparison of the proposed precoders method
and the other schemes.
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