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1. 中、英文摘要及關鍵詞(keywords) 

關鍵詞：多重輸入多重輸出系統；有限存取；通道容量；功率配置；注水式功率配置；非

同調編碼 

隨著無線通訊產業的蓬勃發展，穩定傳輸、高傳輸率以及高移動性三項特性兼具之通

訊技術已成為用戶端對下世代無線傳輸技術之基本要求。因此，在本計畫的三年研究中我

們分別從兩大方面著手探討適用於快速移動環境之最佳化通訊系統設計，以達到提供高通

訊品質與高傳輸速率的目的。其一為結合通道估測與錯誤更正之時空碼編碼設計與其非同

調解碼設計，其二為新式的有限存取多終端系統分析與傳輸設計，該系統可免除傳統通訊

系統中高速移動載具漫遊於多個基地台所需的多次換手機制，進而提高傳輸速率與通訊品

質。經由三年的研究，對於結合通道估測與錯誤更正碼的部分我們提出一個系統化的演算

法能夠找出效能優異的非同調碼字；對於解碼部分我們也提供了一個循序解碼演算法能大

幅降低所需之解碼複雜度。對於新式的有限存取多終端系統之研究，我們已確立了此系統

在任意通道下之通道容量與相對應的最佳功率配置機制，而對於通道考量為“相加雜訊家

族”時，其最佳功率配置可由“二階段注水式配置準則”而得，此配置準則可視為消息理論

中註明的注水式功率配置之推廣與延伸。此外，藉由“二階段注水式配置準則”我們亦找出

任意通道雜訊程度之定義並探討了該定義在總功率趨近於零與趨近於無限大時的分析。 

Keywords: multiple-input multiple-output, limited-access, channel capacity, power allocation, 

water-filling, non-coherent codes 

As the developments of wireless communication, stability in quality, high data rates and 

high mobility have become basic requirements in next generation communication technologies. 

In order to satisfy the three requirements simultaneously, we focus on two research topics in this 

three-years project. One is the design of combining channel estimation and error correcting 

space-time code, as well as its non-coherent decoder. The other highlights the analysis and 

design of a multiple-terminal system with limited access, which is a situation that may 

encounter in a highly mobile environment. In these three years, we have proposed a systematic 

algorithm to generate codewords instead of doing computer searching in the research of the first 

topic, and we also provided its maximum-likelihood-decoding algorithm with low complexity. 

For the analysis of the novel system with limited access, we have derived the channel capacity 

for general channel models and found the optimal power allocation to achieve the capacity. 

Moreover, when the channel model is reduced to additive noises of the same family, we found 

that the optimal power allocation can be obtained by a simple two-phase water-filling process. 

Finally, following the interpretation of two-phase water-filling, we can further characterize the 

degree of “noisiness” for general channels and analyze the degree of noisiness when total power 

is sufficiently small and large, respectively. 
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2. 計畫回顧 

2.1 Reviews of the work in the first year: 

In the first year, we compared our non-coherent code design under several scenarios with 

Xu's code, which is specifically designed for a frequency-nonselective OFDM system (while our 

systematic code construction scheme can also be applied in a frequency selective environment). 

Our simulation results indicate that a blind-detectable noncohrent code can really be made robust 

for channels whose taps vary more often than a coding block. A side advantage of our code 

construction scheme is that its systematic structure makes it maximum-likelihoodly decodable by 

the priority-first search algorithm. Thus, when being compared with the operation-intensive 

exhaustive decoder, the decoding complexity is greatly reduced especially when codes of longer 

code length is adopted. 

2.1.1 The system model: 

Suppose that a codeword  is transmitted over a block fading channel of 

memory order PP , of which channel coefficients vary in every QQ symbols, where  

and Q>PQ>P . By letting  and , the system can be modelled by:  

 y =Bh+n; 

where  is zero-mean white Gaussian distributed,  with 

, and 

 B , B1 ©B2 ©¢ ¢ ¢ ©BM 

with . Here,  represents a  all-zero matrix, 

 is a  identity matrix,  is a portion of the 

transmitted codeword ,  

 

 

 

 

equates the logical left-shift operator, and  is the direct sum operator of two matrices. Also, 

for notational convenience, we let  for , and  for  and . Under 

such system setting,  is an  received vector with  for . 

It can be derived that the joint maximum-likelihood decoder upon the reception of yy is given 

by:  
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 b̂ = argmax
2C

MX

k=1

°
°yky

H
k ¡PBk

°
°2
; (1) 

where  is the output portion affected by , and 

. In the above derivation, we assume that the receiver, although it knows 

nothing about , has perfect knowledge about the values (or the upper bounds) of PP  and QQ. 

2.1.2 Code construction: 

Based on years of research efforts, we already have some knowledge in the construction of 

non-coherent codes for P =0P =0 (frequency nonselective) and P =1P =1 (frequency selective). For 

completeness of this report, we list the code generating algorithm below. 

In the above coding design, the -th codeword must be of the form    

where  is a maximum-length shift-register sequence. When our code is compared with the 

three-times-repetitive (12, 6) code proposed by Xu et al, we found that when the channel 

coefficients remain constant over the entire coding block, the proposed (36, 6) code performs 0.7 

dB better than Xu's code as shown in Figure 1. More details can be found in [3]. 
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Figure 1: Word error rates (WERs) for the constructed (36, 6) code and the 

three-times-repetitive (12,6) code proposed by Xu et al over flat fading channel with channel 

coefficients unchanged during the transmission of a codeword. 

2.1.3 Optimal Priority-First Search Decoding: 

In this year, we derived two decoding metrics that can be used by the priority first search 

algorithm [1][2]. Both metrics will lead to the optimal maximum-likelihood decoding. The 

difference is that the first metric  can be computed on-the-fly, and will therefore cause much 

less delay in the decoding. For the evaluation of the second metric , however, one needs to 

know all received symbols, but its computational complexity is much less than that of . 

Continuing the derivation from (1) based on  for , we establish that: 

 b̂ = argmin
2C

1

2

MX

k=1

Q+PX

m=1

Q+PX

n=1

¡
¡wm;n;kb(k¡1)Q¡P+mb(k¡1)Q¡P+n

¢
 

where for , 

 wm;n;k =

PX

i=0

PX

j=0

±i;j;kRef~ym+i;k~y
¤
n+j;kg; 

 ~yk , [01£P yHk 01£P ]
H = [~y1;k ¢ ¢ ¢ ~yQ+2P;k]

T ; 

and  is the (i,j)-th entry of matrix . By adding a constant 

 to the decoding criterion, the on-the-fly metric  that suits for 

the recursive computation of the priority-first search is given by: 

f1(b1; : : : ; b`) = f1(b1; : : : ; b`¡1) +

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

®s;k ¡ b`

PX

i=0

PX

j=0

±i;j;kRef~ys+i;k ¢ uj;k(b1; : : : ; b`)g;

for P < s · Q;

®r;k ¡ b`

PX

i=0

PX

j=0

±i;j;kRef~yr+i;k ¢ uj;k(b1; : : : ; b`)g

+®s;k+1

¡b`

PX

i=0

PX

j=0

±i;j;k+1Ref~ys+i;k+1 ¢ uj;k+1(b1; : : : ; b`)g;

otherwise,

 

where , , , 

 ®s;k ,

s¡1X

n=1

jws;n;kj+ jws;s;kj=2; 

and 

 uj;k(b1; : : : ; b`+1) = uj;k(b1; : : : ; b`)+
¡
b`~y

¤
s+j;k+ b`+1~y

¤
s+j+1;k

¢
=2 
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with initial values  for , and  for 

 and . The low-complexity decoding metric  is given by 

 f2(b1; : : : ; b`) = f1(b1; : : : ; b`) + h(b1; : : : ; b`); 

where 

 h(b1; : : : ; b`) ,

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Q+PX

m=s+1

®m;k ¡

Q+PX

m=s+1

jvm;k(b1; : : : ; b`)j¡ ¯s;k

for P < s · Q;

Q+PX

m=s+1

®m;k+1 ¡

Q+PX

m=s+1

jvm;k+1(b1; : : : ; b`)j¡ ¯s;k+1

+

Q+PX

m=r+1

®m;k ¡

Q+PX

m=r+1

jvm;k(b1; : : : ; b`)j¡ ¯r;k

otherwise;

 

where s, r and k are defined the same as for , 

 vm;k(b1; : : : ; b`) = vm;k(b1; : : : ; b`¡1) + ws;m;kb`; 

and 

 ¯s;k = ¯s¡1;k ¡

Q+PX

n=s+1

jws;n;kj¡
1

2
jws;s;kj 

with initial values  and . 

2.1.4 Achievement: 

The channel parameters  in simulations is zero-mean complex-Gaussian distributed with 

. Note again that  is assumed an unknown constant vector at the 

system design stage; hence, the system designer does not know whether  is zero-mean 

complex-Gaussian distributed. Figure 2 then simulates three half-rate codes over frequency 

selective channels of memory order 1, in which the channel coefficients vary independently in 

every 15 symbols. The three codes are identified by (28, 14)(Q = 29)(Q = 29), (28, 14)(Q = 15)(Q = 15) and 

CS(14, 7), which respectively represent the constructed (28, 14) code with design parameter 

Q= 29Q= 29 (i.e., assuming at the design stage, the channel coefficients remain constant at least 

during the entire decoding block L=N+P =28+1=29L=N+P =28+1=29), the constructed (28, 14) code with 

design parameter Q = 15Q = 15 (i.e., assuming the channel coefficients vary in every 15 symbols at 

the design stage), and the computer-searched (hence, structureless) (14, 7) code that minimizes 

the union bound derived based on the assumption that the channel taps remain constant during the 

decoding block (i.e., Q=L=N +P = 14+1 = 15Q=L=N +P = 14+1 = 15, which is exactly the simulated channel). 
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Figure 2: Word error rates (WERs) for the (28, 14)(Q=29) code, the (28, 14)(Q=15) code and 

the CS(14, 7) code over channels of memory order 1, whose coefficients varying 

independently in every 15 symbols. 

As anticipated, (28, 14) (Q = 29)(Q = 29)  code seriously degrades in performance since its 

corresponding assumption at the design stage does not match the characteristic of the true 

simulated channel. This suggests that the assumption that the channel coefficients remain 

constant in a coding block is very critical in the code design, and should be made with caution. A 

striking result from Figure 2 is that the constructed (28, 14)(Q = 15)(Q = 15) code performs markedly 

better than the CS(14, 7) code at medium-to-high signal-to-noise ratios, despite that the CS(14, 7) 

code is the computer-optimized code specifically for the simulated channel. This suggests that 

when the channel memory order and varying characteristic are prior known (i.e., PP  and QQ), 

performance gain can be obtained by enhancing the inter-Q-block correlation, and the system 

favors a longer code design. In Table 1, we summarize the decoding complexity for the (28, 14) 

(Q = 15)(Q = 15) code simulated in Figure 2, measured by the average number of node expansions per 

information bit. It shows, as previously mentioned, that the decoding metric  requires less 

decoding efforts than the on-the-fly decoding metric . 

The performance of our constructed code can be further (slightly) improved if the codewords 

are selected uniformly from all feasible code design parameters . 

For example, select only half (i.e., ) of the codewords according to  and  for 

the (28, 14)(Q = 15)(Q = 15) code, and pick the remaining half of the codewords from those binary 

sequences satisfying 
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8
>>>>>><

>>>>>>:

BT
1 B1 =

·
Q c1
c1 Q¡ 1

¸

BT
kBk =

·
Q ck
ck Q

¸

for 2 · k ·M ¡ 1

BT
MBM =

·
N ¡ (M ¡ 1)Q cM

cM N ¡ [(M ¡ 1)Q¡ 1]+

¸
 

with  and . This however will slightly increase the decoding complexity. The 

trade-off between selecting codewords from fixed  or multiple 's is thus 

evident. 

SNR 3dB 4dB 5dB 6dB 7dB 8dB 9dB 10dB 11dB 12dB 13dB 14dB 15dB 

 1658  1367  1074  899  701  593  488  448  356  309  277  244  232 

 766  625  482  392  321  254  219  177  149  133  121  104  92 

/  2.2 2.2 2.2 2.3 2.2 2.3 2.5 2.4 2.4 2.3 2.3 2.3 2.5 

Table 1: Average number of node expansions per information bit for the (28, 14)(Q=15) code simulated 

in Figure 1. 

2.2 Reviews of the work in the second year: 

As the number of mobile users as well as the requirement for data rate is rapidly increasing in 

modern communication systems, the base stations are gradually evolved from macro-cell-based 

to micro-cell-based. In particular, the service range of a macro-cell base station may be 

partitioned into several small ones, which are in turn served by several micro-cell base stations[4]. 

As such, in order to maintain the seamless data transmission, signals from multiple base stations 

are required to provide softer handover functionality. On the other hand, the demand for mobility 

is also increased recently, resulting in a more frequent softer handover. Thus, in order to provide 

high mobility and high data transmission rate simultaneously, we consider in this project a novel 

system, in which the data is encoded and distributed over N base stations such that the receiver 

can decode data successfully as long as a certain portion of signals (at least K) from N base 

stations are received. Since the channel model only requires at least K among N signals are 

received, it is named the (N,K)-limited access channel. In the second year of this project, we 

analyzed the channel capacity of (N,K)-limited access channel with arbitrary channel models and 

proposed an fast algorithm to evaluate the optimal power allocation which achieves the channel 

capacity. 

2.2.1 The system model: 

As shown in Figure 3, we consider a system that consists of N parallel channels, in which 
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only a certain portion of channel outputs are guaranteed to be successfully received at the 

receiver end. The receiver however does not a priori know which outputs will be nullified or 

blocked, nor does the receiver have the knowledge of the statistics of these blockages. We can 

realize this assumption by introducing a set of auxiliary multiplicative constants s1; s2; : : : ; sN 

to the channel outputs, where the ith channel output is nullified when being multiplied by si = 0, 

and remains when the multiplicative constant si is equal to 1. It is assumed that by monitoring 

the channel activities, the receiver can perfectly tell the value of s = [s1; s2; : : : ; sN]
T : 

Furthermore, s will remain constant within a codeword transmission period but may vary for 

different codeword blocks. The receiver will then decode the information based on the receptions  

[s ± Y 1; s ± Y 2; : : : ; s ± Y n] if at least K out of N components of vector s are equal to one, 

where Y i , [Y1;i; Y2;i; : : : ; YN;i]
T  are the channel symbols received at time instance i, n is the 

codeword length, and operator \ ± " denotes the matrix Hadamard product[5]. Conversely, the 

receiver will give up the decoding if 
PN

i=1 si <K. We thus refer to this channel model as an 

(N,K)-limited access channel. 

In this setting, we are interested in the optimal power allocation p¤ = [p¤1; p
¤
2; : : : ; p

¤
N]

T  such 

that the minimum input-output mutual information subject to 
PN

i=1 si ¸K is maximized. This 

quantity is generally regarded as the achievable rate under which the decoding error can be made 

arbitrarily small. 

Figure 3: System model for an (N;K)-limited access channel. 

Under the system model, the input-output mutual information can be in principle represented 

by 

 I(
p

p ±X ; s ± Y ) 
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where I(¢; ¢) is the mutual information function and 
p

p , [
p
p1;
p
p2; : : : ;

p
pN]

T . Here, we 

overload the notation by denoting the channel output vector corresponding to one channel usage 

by Y = [Y1; Y2; : : : ; YN]
T , and likewisely denote by X = [X1;X2; : : : ;XN]

T  the channel input 

vector for a single channel usage. The achievable rate that guarantees a vanishing decoding error 

subject to 
PN

i=1 si ¸K is therefore optimistically 

 max max
f 2<N

+ : N
i=1 pi·P

min
f 2f0;1gN : N

i=1 si¸Kg
I(
p

p ±X; s ± Y ) (2) 

Where <+ is the set of nonnegative real numbers. If the parallel channels are independent in the 

sense that  

 Pr(Y j
p

p ±X) =

NY

i=1

Pr(Yij
p
piXi) (3) 

then the independence bound for mutual information gives that 

 I(
p

p ±X;s ±Y ) ·

NX

i=1

I(
p
piXi; siYi) =

NX

i=1

siI(
p
piXi;Yi) 

where the last equality follows from that si is either 1 or 0. We can therefore focus on the 

optimal power allocation for independent input distributions, if the channel transition probability 

satisfies (3). 

We next denote for convenience fi(p) , I(
p
piXi;Yi)  for 1· i·N , and make the 

following assumption on these mutual information functions. 

Assumption 1: For 1· i·N; fi(p) is continuous and strictly increasing for p ¸ 0, and its first 

derivative, i.e.,  

 f 0i(p) ,
@fi(p)

@p
 

exists and is continuous and strictly decreasing in p ¸ 0, where we define f 0i(0) , limp#0 f
0
i(p). 

This assumption will be adopted as a premise in the following analysis. Under Assumption 1, 

it is clear that fi(p) is a strictly concave function of p with initial value fi(0) = I(0; Yi) = 0. 

Together with the fact that fi(p) ¸ 0 for p 2 <+, we can replace the two inequality constraints 

in (2) by their equality counterparts as 

 max
f 2<N

+ : N
i=1 pi·P

min
f 2f0;1gN : N

i=1 si¸Kg

PN

i=1 si ¢ fi(pi) 

 = max
f 2<N

+ : N
i=1 pi=P

min
f 2f0;1gN : N

i=1 si=Kg

PN

i=1 si ¢ fi(pi) (4) 

for a given   that validates Assumption 1. 

In the next section, we will show that under Assumption 1, the maximization-minimization 



 9 

problem in (3) becomes algorithmically tractable (cf. Theorem 2). 

2.2.2 Analysis of The optimal power allocation 

In this section, the analysis for the optimization problem in (4) is presented. 

For 𝐾 = 1, (4) can be simplified to 

 max
f 2<N

+ : N
i=1 pi=Pg

minff1(p1); f2(p2); : : : ; fN(PN )g: 

It is thus straightforward that the optimal power allocation p¤ satisfies 

 f1(p
¤
1) = f2(p

¤
2) = ¢ ¢ ¢ = fN (p

¤
N ) 

For K=N, the maximization-minimization power allocation problem reduces to one that 

only requires a maximization computation because s1 = s2 = : : : = sN = 1. Therefore, one can 

apply the Lagrange multipliers technique and Karush-Kuhn-Tucker (KKT) condition to find the 

optimal power allocation [6]. However, for 1<K<N, there does not exist a straight technique 

for this maximization-minimization problem. Nevertheless, we can find a necessary condition for 

the optimal power allocation such that the labor of examining all possible 
¡
N

K

¢
 combinations of 

s satisfying 
PN

i=1 si ¸K can be reduced as indicated in the next lemma. 

Lemma 1: The optimal power allocation p¤ for an (N,K)-limited access channel satisfies 

 fa1
(p¤a1

) · fa2
(p¤a2

) · ¢ ¢ ¢ · faK
(p¤aK

) = faK+1
(p¤aK+1

) = ¢ ¢ ¢ = faN
(p¤aN

) 

for some permutation a1;a2; : : : ;aN of sequence 1;2; : : : ;N. 

An immediate implication of Lemma 1 is that we can distinguish the optimal power allocation 

for an (N,K)-limited access channel into K disjoint cases. In other words, the condition 

 max
1·i·`¡1

fai
(p¤ai

) < fa`
(p¤a`

) = fa`+1
(p¤a`+1

) = ¢ ¢ ¢ = faN
(p¤aN

) (5) 

is valid exactly for one value of ` in f1; 2; : : : ;Kg. As a result, if the index set 

 A , fa`; a`+1; ¢ ¢ ¢ ; aNg 

in which their respective mutual information function values are equal to max1·i·N fi(p
¤
i ) is 

identified in advance, the maximization-minimization power allocation problem is simplified to a 

maximization problem as 

 max
2P(A)

(
X

i=2A

fi(pi) + (K ¡N + jAj) max
1·j·N

fj(pj)

)

 (6) 

where 
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 P(A) ,

8
<

:
p 2 <N+ :

(i)
PN

i=1 pi = P

(ii)fi(pi) <max1·j·N fj(pj) for i =2 A

(iii)fi(pi) = max1·j·N fj(pj) for i 2 A

9
=

;
: (7) 

However, the direct identification of A  without knowing p¤  in advance is in general a 

challenged. The opposite, i.e., identifying A after determining p¤, is more straightforward. In 

order to resolve the optimization problem, we propose in the following subsections to first 

determine the best power allocation p¦ corresponding to a conjectured 

maximal-mutual-information index set, denoted by B. Then, we will examine afterwards whether 

this conjecture is the optimal one or not based on some condition we will establish later. In case 

the conjectured B only achieves a suboptimal power allocation, a new round of maximization 

computation and follow-up examination will be launched based on a newly generated B. Since 

the established condition will help identifying one index that is not in A at each round, the 

process can hopefully stop after N ¡ jAj+ 1 iterations after which p¤ is obtained. 

A. Determination of the best power allocation p¦ corresponding to a given index set B 

Based on a given index set B, we transform the maximization-minimization problem into 

 sup
2P(B)

f
P

i=2B fi(pi) + (K ¡N + jBj)max1·j·N fj(pj)g (8) 

where P(B) is defined the same as (7) except that A is replaced with B. Since the given B 

may not be the optimal index set A, the solution p¦ of the optimization problem defined in (8) 

could be at the boundary of P(B) in the sense that 

 fi(p
¦
i ) = max

1·j·N
fj(p

¦
j) for some i =2 B: 

For this reason, we use supremum instead of maximum in (8). 

We next show that this inequality constraint can be relaxed by means of the incorporation of 

the aggregate mutual information function that transforms the N-dimensional power allocation 

problem into an equivalent N ¡ jBj + 1-dimensional one. 

Definition 1: The aggregate mutual information function FB with respect to a sequence of 

mutual information functions ffigi2B is defined through its inverse function as 

 F
(inv)

B (y) ,
X

i2B

f
(inv)

i (y) for y ¸ 0 (9) 

provided that all the inverse functions exist (which is guaranteed by Assumption 1). 
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A graphical illustration of the aggregate mutual information function for B = f1; 2; 3g is 

given in Figure 4. In this figure, it is clear that 

 F
(inv)

B = f
(inv)

1 (y)+f
(inv)

2 (y)+f
(inv)

3 (y) = p1 +p2 +p3 

 

 

 

 

 

 

 

Figure 4: Graphical illustration of the aggregate mutual information function when

fi(p) = log(1+p=¾2
i ) and ¾2

i = i for i 2 B = f1;2;3g. 

As a specific example, if fi(p) = log(1 + p=¾2
i ) for some ¾2

i > 0 and 1 · i · 3, then 

 FB(p) = log

µ

1+
p

¾2
1 + ¾2

2 + ¾2
3

¶

: 

In terms of the aggregate mutual information function, we can simplify the constraints in P(B) 

in the following lemma. 

Lemma 2: Fix an index set B. The solution p¦ of the optimization problem in (8) satisfies 

 p¦i =

(
q¦i for i =2 B

f
(inv)

i (FB(q
¦
B)) for i 2 B

 (10) 

where the N ¡ jBj + 1-dimensional vector q¦  is the solution of the optimization problem 

below: 

 sup
2Q(B)

f
P

i=2B fi(qi) + (K ¡N + jBj)FB(qB)g (11) 

where 

 Q(B) ,

½

q = (list of qi8i =2 B; qB) 2 <
N¡jBj+1
+ :

(i)
P

i=2B qi + qB = P

(ii)fi(qi) < FB(qB) for i =2 B

¾

: 

In addition, q¦ 2 Q(B) if, and only if, p¦ 2 P(B). 
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By the reduction of constraints down to two in Q(B) in Lemma 2, we can further proceed to 

show that the inequality constraint in Q(B) is redundant in case q¦ 2 Q(B) as summarized in 

Theorem 1. 

Theorem 1: Given that q¦ 2 Q(B), the maximize q¦ for (11) is equal to the maximize ~q of the 

problem below: 

 max
2 ~Q(B)

f
P

i=2B fi(qi) + (K ¡N + jBj)FB(qB)g (12) 

where 

 ~Q(B) , fq 2<
N¡jBj+1
+ :

P
i=2B qi+ qB =Pg 

We conclude this subsection by pointing out that the maximization computation in (12) is 

now performed over the usual single power-sum constraint, and hence can be solved by the 

Lagrange multipliers technique and KKT condition by treating (K ¡N + jBj)FB(qB) as the 

mutual information function of an auxiliary aggregate channel. Based on the result in Theorem 1, 

we are ready to present the algorithmic approach that helps identifying the optimal 

maximal-mutual-information index set A and the optimal power allocation p¤. 

B. Determination of the Optimal Maximal-Mutual-Information Index Set 𝔸  and the 

Optimal Power Allocation 𝒑∗ 

For an (N,K)-limited access channel, there are possibly 
PK

`=1

¡
N

`¡1

¢
 candidate index sets for 

the choices of B in Theorem 1, and it may be time-consuming to perform the optimization 

computation for (12) for each of them. The next theorem then shows that this time-consuming 

maximization labor can be reduced to only N ¡ jAj+ 1. 

Theorem 2: The optimal maximal-mutual-information index set A as well as the optimal power 

allocation p¤ can be obtained through the following algorithmic procedure: 

Step 1. Initialize M =1 and B1 = f1; 2; : : : ; Ng. 

Step 2. Obtain the maximize ~qM for (12) by setting B=BM, and calculate 

 ~pM = [~pM;1; ~pM;2; ¢ ¢ ¢ ; ~pM;N]
T  

corresponding to the obtained ~qM and the given BM through an assignment similar to (10). 

Step 3. Assign BM+1 = BM n fjMg where jM  is an index in BM that satisfies 

 f 0jM(~pM;jM) = min
i2BM

f 0i(~pM;i) (13) 

(If there are more than one indices satisfying (13), just pick up any one of them as jM .) 

Step 4. If 
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 (K¡M)F 0
BM+1

(
P

i2BM+1
~pM;i) · f 0jM(~pM;jM) (14) 

then set A = BM and p¤ = ~pM and stop the algorithm; otherwise, set M =M+1 and go 

to Step 2. 

We would like to point out that the algorithm in Theorem 2 will stop when (usually before) 

M reaches K because (14) trivially holds when M=K. This coincides with the definition of 

A in (5) that at most K¡1 indices are outside A. 

Theorem 2 indicates that given the first derivative of the marginal mutual information 

function fi(p) = I(
p
pXi;Yi) being positive, strictly decreasing and continuous in p for every 

1· i·N (i.e., Assumption 1), we can determine the optimal power allocation p¤ for a spatially 

independent (N,K)-limited access channel with input 
p

p ±Xby performing N ¡ jAj+ 1 

maximizations in the sense of (12). 

2.2.3 Achievement: 

For (N;K)-limited access channels with arbitrary inputs, the capacity formula is derived as a 

maximization-minimization problem. We then analyze the maximization-minimization problem 

to get two properties as shown in Lemma 1 and Lemma 2. According to these two properties and 

the definition of aggregate mutual information, we then simplify the maximization-minimization 

problem to a simple maximization problem with only one single power-sum constraint. Based on 

the simple maximization problem with single power-sum constraint, we propose an algorithm to 

find the optimal power allocation p¤ by N ¡ jAj+ 1 time-consuming maximization labor.  

3. 報告內容(第三年) 

3.1 Introduction: 

In the second year of this project, we have proposed an algorithm of finding the optimal 

power allocation for general channels with limited access constraint. Following the proposed 

algorithm, in this year we further establish that when channel disturbances, in addition to 

independence, are reduced to being additive with distributions scaled from a common random 

variable, the optimal power allocation can be directly obtained from a two-phase water-filling 

process if the arbitrary inputs are given by the respective component variables in an independent 

and identical distributed (i.i.d.) random vector, multiplying by the square root of the allocated 

power. The two-phase water-filling interpretation then hints that the degree of “noisiness” for a 

general (possibly, non-additive and non-Gaussian) limited access channel might be identified by 

composing the derivative of the mutual information function with its inverse. 
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3.2 The system model: 

Although Gaussians are generally appropriate noise models for physical additive channels, 

experimental measurement indicates that the noises in certain environments are by no means 

Gaussian distributed [7][8][9]. As such, in the third year of this project, we consider additive 

noise of the same family in (N;K)-limited access channels. 

By additive noises of the same family, we mean that the relationship between channel inputs 

and outputs can be characterized by 

 Yi =
p
piXi +¾iZi for 1 · i ·N  (15) 

where fXig
N
i=1 and fZig

N
i=1 are both i.i.d. complex random variables with unit second moments, 

and they are independent from each other; the system model is shown as Figure 5. 

 

 

 

 

 

 

 

 

 

 

Figure 5: System model for an (N;K)-limited access channel with additive noise of the same family, where 

E[jXij
2] =E[jZij

2] = 1, si 2 f0;1g for 1 · i · N , 
PN

i=1 si ¸ K  and 
PN

i=1 pi · P . 

We then restrict our attention only to the case that Zi is a continuous random variable 

because Assumption 1(at page 8) may fail when both Xi and Zi are discrete. Notably, Xi often 

takes values in a finite alphabet (e.g., f§1g) in practice. Specifically, when the intersection of 

two sets 
©p

pix+¾iz : PZi
(z)> 0

ª
 and 

©p
pi~x+¾iz : PZi

(z)> 0
ª

 is empty for every x 6= ~x 

with PXi
(x) > 0 and PXi

(~x) > 0, we have 

 fi(pi) = I(
p
piXi; Yi) = H(

p
piXi) = H(Xi) 

where H(Xi) is the entropy of the channel input Xi [10]. This implies that in a discrete system, 

fi(pi) can be equal to its maximum value H(Xi) almost everywhere in pi, in which case 

Assumption 1 is unquestionably violated. 

Observe that for continuous additive noises, 
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 I(
p
piXi;Yi) = h(Yi)¡ h(Yij

p
piXi) 

                      = h(Yi)¡ h(
p
piXi + ¾iZij

p
piXi) 

          = h(¾i ~Yi)¡ h(¾iZi) (16) 

       = h( ~Yi)¡ h(Zi) 

        = I

µp
pi

¾i
Xi; ~Yi

¶

 

where h(¢) is the differential entropy function [10], and (16) follows from the independence 

between Xi andZi, and ~Yi , (
p
pi=¾i)Xi+Zi. This immediately yields 

 fi(pi) = g

µ
pi

¾2
i

¶

for every 1 · i ·N  (17) 

with 

 g(½) , I(
p
½Xi;

p
½Xi +Zi): (18) 

Assumption 1 thus reduces to the single condition that function g is continuous and strictly 

increasing, and its first derivative exists and is continuous and strictly decreasing. 

3.3 The optimal power allocation for additive noise of the same family: 

Based on this system setting, we show in the next theorem that the optimal power allocation 

p¤ follows a two-phase water-filling scheme} Specifically, in the first phase (which we refer to 

as the noise-power re-distribution phase), the least N¡K noise powers among f¾2
i g

N
i=1 will 

be first poured as noise water into a tank consisting of K interconnected vessels with solid base 

heights equal to the remaining K noise powers and with widths of unit length as shown in 

Figure 6(b). Afterwards those W  vessels either with water inside or with solid base height equal 

to the water surface level will be subdivided into N¡K+W vessels of rectangular shape with 

the same heights (as the water surface level) and with widths in proportion to their noise powers 

(but the total volume remaining unchanged). As such, a tank with N  vessels of proper heights 

and widths (corresponding to N  channels) is ready for the second phase as exemplified in 

Figure 6(c). It is worth mentioning that after the first phase, the optimal 

maximal-mutual-information index set A has already been identified and consists of the channel 

indices corresponding to the aforementioned W  vessels and the least N¡K noise powers 

(hence, jAj = W + N ¡K). 

In the second phase (which we refer to as the signal-power allocation phase), the heights of 

vessel bases will be first either lifted or possibly lowered according to total signal power P  and 

function g as well as their current heights as shown in Figure 6(e). What follows, as exemplified 

in Figure 6(f), is the usual water-filling power allocation scheme. The pre-adjustment of base 

heights before water filling can be viewed as preparation for these vessels to be “capable” of 
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supporting the water that is going to be poured in with amount P . As a result, the volume of 

water ended up in each vessel is exactly the power that should be allocated. Notably, for the 

special case that the noises fZig
N
i=1 are complex Gaussian distributed, the heights of vessel bases 

can never be lowered in the pre-adjustment step; hence, a mercury-filling scheme before water 

pouring has been proposed to materialize the lifting of heights of vessel bases [11]. However, 

since the adjustment of heights of vessel bases generally can be in both up and down directions, 

the use of the name mercury/water filling may induce that the vessel bases should be lifted under 

general non-Gaussian additive noises; hence, we simply use the conventional name of 

water-filling in this work. 

Theorem 3: Suppose that the information transmitted over an (N;K)-limited access channel is 

corrupted by additive noises of the same family characterized by (15) and the mutual information 

function g(½) defined in (18) satisfies Assumption 1. Assume without loss of generality that 

 ¾2
1 ¸ ¾2

2 ¸ ¢ ¢ ¢ ¸ ¾2
N: 

Then, the optimal maximal-mutual-information index set A is given by 

 A = f`; ` + 1; ¢ ¢ ¢ ; Ng (19) 

where 

 ` , min

½

i 2 f1; 2; ¢ ¢ ¢ ;Kg

¯
¯
¯
¯¾

2
i · ~¾2

K for every 1 · i ·K

¾

 (20) 

and ~¾2
i , ¾2

i +[¸¡¾2
i ]

+  for 1· i·K  with ¸  chosen to satisfy 
PK

i=1 [¸¡¾2
i ]

+
=
PN

i=K+1 ¾
2
i , and [y]+ ,maxf0; yg. The optimal power allocation p¤ can 

therefore be obtained from q¤ through an assignment similar to (10), where q¤ is the maximizer 

for (12) with B equal to the above A. In other words, 

 p¤i =

(
q¤i for 1 · i < `

¾2
i

N
j=` ¾

2
j

¢ q¤A for ` · i · N
 (21) 

with 

 q¤i =

½
¾2
i ¢ g

0(inv)
¡
º ¾2

i

¢
if g0(1) < º¾2

i < g0(0)

0 if º¾2
i ¸ g0(0)

¾

for 1 · i < ` (22) 

and 

 q¤A =

Ã
NX

j=`

¾2
j

!

¢ g 0(inv)

Ã

º

PN

j=` ¾
2
j

K ¡ `+1

!

 (23) 

where g 0(inv) is the inverse function of the first derivative g 0 of function g, and º is chosen 

such that 
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P`¡1

i=1 q
¤
i + q¤A = P: (24) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The graphical interpretation of the optimal two-phase water-filling power allocation for an (8;5)

-limited access channel with independent additive noises characterized by (15). In this figure, 

[¾2
1;¾

2
2; ¢ ¢ ¢ ;¾

2
8] = [8;7;4;3;3;2;2;1]. Subfigures (a), (b) and (c) correspond to the noise-power redistribution phase, 

while subfigures (d), (e) and (f) illustrate the signal-power allocation phase. 

Several remarks can be made based on Theorem 3. 

 First, it can be extended from Theorem 3 that as long as A  is pre-determined, the 

maximization labor can always be reduced down to one. In the special case that the noises 

are additive and originated from the same family (as considered in this section), we can 

directly determine A in terms of (20). 

 Secondly, when `=1 (equivalently, A = f1; 2; : : : ; Ng), p¤ can be determined without 

any maximization labor since we immediately have q¤A = P  by (24). In such a case, the 

optimal power allocation follows the equal signal-to-noise ratio (SNR) principle as  

 
p¤i
¾2
i

=
P

PN

j=1 ¾
2
j

for every 1 · i ·N: 

 Finally, the validity of Theorem 3 does not need to be restricted to channels with additive 

noises of the same family but can be extended to any (N;K)-limited access channel with 

marginal mutual information functions satisfying (17) for some function g that obeys 
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Assumption 1. A straightforward example is the flat fading channels with known channel 

states at the receiver end, characterized by 

 Yi = (¯iHi)(
p
piXi) + ¾iZi for 1 · i · N  (25) 

where fHig
N
i=1 is i.i.d. with unit second moment, and is independent of the channel input 

and additive noise. We then obtain fi(pi) = g(¯2
i pi=¾

2
i )  with 

g(½) = I(
p
½Xi;

p
½HiXi + ZijHi). Theorem 3 thus can be used to establish the optimal 

power allocation by treating ¾2
i =¯

2
i  as the new noise power level. 

An exemplified illustration of the two-phase water-filling scheme is depicted in Figure 6. Details 

are given below. 

<The noise-power re-distribution phase> 

Fig. 6(a) Set K vessels with widths of unit length and with base height of the ith vessel being 

¾2
i  for 1· i·K. (Note that we assume ¾2

1 ¸ ¾2
2 ¸ ¢ ¢ ¢ ¸ ¾2

N.) 

Fig. 6(b) Pour in the “noise water” of amount 
PN

j=K+1¾
2
j  and set ~¾2

i  as the new water level of 

vessel i for 1· i·K. Let ` be the smallest integer among f1; 2; : : : ;Kg such that 

¾2
i · ~¾2

K (cf. (20)). Assign A = f`; `+ 1; : : : ; Ng and W =K¡ `+1. 

Fig. 6(c) Sub-divide the space of the last W  vessels (i.e., K¡W+1;K¡W+2; : : : ;K) 

into W + (N ¡K) new vessels of rectangular shape with base height the same as the 

water surface level and widths in proportion to ¾2
i  for `· i ·N. 

< The signal-power allocation phase > 

Fig. 6(d) Retain the N  vessels from the previous phase. 

Fig. 6(e) Adjust the base height of the ith vessel to 

 Li(º) ,

(
¾2
i ¢G(º¾2

i ) for 1 · i < `

~¾2
K ¢G(º~¾2

K) for ` · i · N
 (26) 

where º is the parameter chosen in Theorem 3 according to (24), and 

 G(³) ,

(
1
³
¡ g 0(inv)(³) if g0(1) < ³ < g0(0)
1

g0(0)
if ³ ¸ g0(0):

 

Fig. 6(f) Pour in the “signal water” of amount P . Then the volume of water in the ith vessel is 

the optimal power p¤i  to be allocated for channel i. 

3.4 Implications from the optimal power allocation: 

Theorem 2 indicates that the sequence of candidate maximal-mutual-information index sets 

B1;B2;B3; : : : can be identified via the determination of j1; j2; j3; : : :. In a sense, this sequence 
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can be regarded as sorting the channels in their descending degrees of “noisiness,” which can be 

supported by the result from Theorem 3, where the sequence of j1; j2; j3; : : : coincides with 

¾2
j1
¸ ¾2

j2
¸ ¾2

j3
¸ ¢ ¢ ¢ : 

For a general (N;K)-limited access channel in which the noises are not necessarily additive 

or scaled from the same family, can one identify such sequence through their mutual information 

functions? The next theorem may provide a guide along this direction of thinking. 

Theorem 4: For a general (N;K)-limited access channel, if 

 f 0k1

³
f

(inv)

k1
(y)
´
· f 0k2

³
f

(inv)

k2
(y)
´
· ¢ ¢ ¢ · f 0kN

³
f

(inv)

kN
(y)
´

for all y ¸ 0 

then jM = kM for M =1;2;3; : : :. 

Here, regardless of the original goal of the determination of optimal power allocation, 

Theorem 4 (as an extension from Theorem 3) proposes a way to compare the degree of “noisiness” 

of general channels via their mutual information functions. For the additive noise channels of the 

same family, we have 

 f 0i

³
f

(inv)

i (y)
´
=

1

¾2
i

g0
¡
g (inv)(y)

¢
: 

Hence, the proposed ordering coincides with the general impression that the larger the ¾2
i , the 

noisier the ith channel is considered to be. To simplify the notation, we drop the parentheses 

between f 0i  and f
(inv)

i  in the sequel. 

For channels other than additive noise of the same family, there could be no apparent winner 

between any two channels in the sense of ff0if
(inv)

i gNi=1. In other words, it could happen that 

 f0if
(inv)

i (y1)> f0jf
(inv)

j (y1) but f0if
(inv)

i (y2)< f0jf
(inv)

j (y2) 

for two distinct y1 and y2 and two distinct i and j . As such, the sequence of j1; j2; j3; : : : will 

become a function of the total signal power P . However, if a certain condition is satisfied, the 

pre-identification of the degrees of channel noisiness is still possible at two extreme situations:  

P ! 0 and P!1, which we will respectively refer to as the low- and high-power regimes in 

later discussion. 

Lemma 3: 

1. If 

 lim sup
y#0

³
f 0if

(inv)

i (y)¡ f 0jf
(inv)

j (y)
´
· 0 for every 1 · i < j · N  (27) 

then ji = i in the low-power regime, where sign function sgn(½) is equal to either 1, 

0 or ¡1 depending on whether ½ > 0, ½ = 0 or ½ < 0. 
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2. If 

 lim sup
y"minf!i;!jg

sgn
³
f 0if

(inv)

i (y)¡ f 0jf
(inv)

j (y)
´
· 0 for every 1 · i < j · N  (28) 

then ji = i in the high-power regime, provided that limp!1 f 0i(p) = 0 for 1· i·N, 

where !i , limp!1fi(p). 

Since the input alphabet is usually finite for channels of practical interest, we have 

!i , limp!1fi(p)·H(Xi) <1:  This immediately validates the premise, i.e., 

limp!1 f 0i(p) = 0 ,  for condition (28) implying ji = i in the high-power regime. In other 

words, limp!1 f 0i(p) = 0 is true for all finite-input channels. There however exists a certain 

kind of channels where !i =1 while limp!1 f 0i(p) = 0. An example is the Gaussian-input  

AWGN channel for which fi(p) = log (1 + p=¾2
i ). We would like to emphasize that the inference 

regarding (28) still remains valid for channels with unbounded mutual information as long as 

limp!1 f 0i(p) = 0. 

Conditions (27) and (28) in Lemma 3 involve the examination of the limit supremum of 

function differences. The following corollary shows that their validity can be guaranteed by 

comparing the limiting behaviors of individual functions. 

Corollary 1: 

1. The validity of (27) for an (i; j) pair is certain if one of the three conditions below is 

satisfied: 

 

8
><

>:

f 0i(0) < f 0j(0)

f 0i(0) = f 0j(0) and f
(

i 0) < f
(

j0)

(9 ± > 0) f 0i(p) · f 0j(p) for 0 < p < ±

 (29) 

2. The validity of (28) for an (i; j) pair is certain if 

 !i = lim
p!1

fi(p) < !j = lim
p!1

fj(p): (30) 

According to the above discussions, we can identify the degree of noisiness for general 

channel easily by the sufficient conditions provided in Theorem 4, Lemma 3 and Corollary 1. 
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4. 計畫成果自評 

In this three-years project, we have investigated several scenarios of codes designing for  

non-coherent detection system that combines channel estimation and error correction. This design 

can directly construct a code of any desired code length and code rate, of which the performance 

is shown to be comparable to the best computer-searched code for the channels simulated. For the 

designing and analysis of the novel (N;K)-limited access system, we have derived the channel 

capacity and proposed a fast algorithm of finding optimal power allocation to achieve the 

capacity. Following the proposed algorithm, the optimal power allocation can be obtained by a 

two-phase water-filling process when the channel model is additive noise of the same family. 

From the interpretation of two-phase water-filling, we further define the degree of noisiness for 

general channels. The works for the novel (N;K)-limited access system will appear in IEEE 

Transactions on Information Theory and was presented in part at the 2011 International 

Symposium on Information Theory. 


