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Energy-Constrained Decentralized
Best-Linear-Unbiased Estimation via Partial
Sensor Noise Variance Knowledge

Jwo-Yuh Wu, Qian-Zhi Huang, and Ta-Sung Lee

Abstract—This letter studies the energy-constrained MMSE de-
centralized estimation problem with the best-linear-unbiased-esti-
mator fusion rule, under the assumptions that 1) each sensor can
only send a quantized version of its raw measurement to the fusion
center (FC), and 2) exact knowledge of the sensor noise variance is
unknown at the FC but only an associated statistical description is
available. The problem setup relies on maximizing the reciprocal
of the MSE averaged with respect to the prescribed noise variance
distribution. While the considered design metric is shown to be
highly nonlinear in the local sensor bit loads, we leverage several
analytic approximation relations to derive an associated tractable
lower bound; through maximizing this bound, a closed-form so-
lution is then obtained. Our analytical results reveal that sensors
with bad link quality are shut off to conserve energy, whereas the
energy allocated to those active nodes is proportional to the indi-
vidual channel gain. Simulation results are used to illustrate the
performance of the proposed scheme.

Index Terms—Convex optimization, decentralized estimation,
energy efficiency, quantization, sensor networks.

I. INTRODUCTION

OW energy/power cost is a critical concern for various ap-

plication-specific designs of sensor networks [17], [18]. In
the decentralized estimation scenario, wherein each sensor can
transmit only a compressed version of its raw measurement to the
fusion center (FC) owing to bandwidth and power limitations,
several energy-efficient estimation schemes have been reported
inthe literature [ 1], [9], [13]-[16] . Since the transmission energy
is proportional to the message length [2], [11], all these works are
formulated within a quantization bit assignment setup, with the
optimal bit load determined via the knowledge of instantaneous
local sensor noise characteristics, e.g., the noise variance if the
fusion rule follows the best-linear-unbiased-estimator (BLUE)
principle [7, Ch. 6]. To maintain the estimation performance
against the variation of sensing conditions, repeated update
of the noise profile is therefore needed: this inevitably incurs
more training overhead and hence extra energy consumption.
The design of distributed estimation algorithms independent of
the instantaneous noise parameters remains an open problem
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[15, p. 419]. Relying on partial noise variance knowledge in the
form of the statistical distribution, the problem of minimizing
total transmission energy under an allowable average distortion
level [measured in terms of a mean-square-error (MSE)-based
criterion averaged with respect to the prescribed distribution]
is recently considered in [14].

This letter complements the study of [14] by addressing the
counterpart problem: how to find the optimal bit load which
minimizes the average distortion under a fixed total energy
budget. The main contribution of this letter can be summarized
as follows: 1) while the design metric, in the form of the
reciprocal of the MSE averaged with respect to the distribution,
is shown in [14] to be highly nonlinear in the sensor bit load,
we leverage several analytic approximation relations to derive
an associated tractable lower bound; 2) by maximizing this
lower bound, the problem can be further formulated in the form
of convex optimization which yields a closed-form solution.
Our analytic results reveal that, toward utmost estimation
accuracy under a limited energy budget, sensors with bad
link quality should be shut off, and energy allocated to those
active nodes should be proportional to the individual channel
gain; a similar energy conservation policy is also found in the
previous works [9], [14], [15]. Numerical simulation evidences
the effectiveness of the proposed scheme: it outperforms the
uniform allocation strategy in an energy-limited environment.

II. SYSTEM SCENARIO

Consider a wireless sensor network, in which NV spatially de-
ployed sensors cooperate with an FC for estimating an unknown
deterministic parameter . The local observation at the ith node is

1<i<N @2.1)

where n; is a zero-mean measurement noise with variance o?.
Due to bandwidth and power limitations, each sensor quan-
tizes its observation into a b;-bit message, and then transmits
this locally processed data to the FC to generate a final esti-
mate of 6. In this letter, the uniform quantization scheme with
nearest-rounding [11], [12] is adopted; the quantized message
at the +th sensor can thus be modeled as

1<2<N

‘L1:9+nl/

(2.2)

where ¢; is the quantization error uniformly distributed with zero
mean and variance a,i_ = RZ%/(12 - 4%) [11], [12], where
[-R/2, R/2] is the available signal amplitude range common to
all sensors. The adopted quantizer model (2.2) and the uniform
quantization error assumption, though being valid only when the
number of quantization bits is sufficiently large [11], are widely
used in the literature due to analytical tractability. Assume that

m; = T; + qi,
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the channel link between the 7th sensor and the FC is corrupted by
azero-mean additive noise v; with variance o2, The received data
from all sensor outputs can thus be expressed in a vector form as!

[yl"'yN]T = [1"‘1]T9+1n1'-'nN]T+lql"'QN]7:
~n i~
+[vr---on]t (2.3)

=V

where (-)T denotes the transpose. This letter focuses on linear
fusion rules for parameter recovery. More specifically, by as-
suming that the noise components {n, q, v} in (2.3) are mutu-
ally independent and the respective samples 7;’s, ¢;’s, and v;’s
are also independent across sensors, the parameter 6 is retrieved
via the BLUE [7, p. 138] scheme via

5 N " N 1 -t
2.4
and the incurred MSE is thus [7, p. 138]

N —1
A 1
2 E D2
=1 ? v
2.5)

A commonly used statistical description for sensing noise vari-
ance is [9], [15]

ol =64+az, 1<i<N (2.6)

where 6 models the network-wide noise variance threshold, o
controls the underlying variation from the nominal minimum,
and z; ~ X7 are i.i.d. central Chi-Square distributed random
variables each with degrees-of-freedom equal to one [8, p.
24]. The proposed energy-constrained BLUE-based estimation
scheme is based on the noise variance model (2.6) and is
discussed next.

III. MAIN RESULTS

A. Problem Setup

We assume that the ith sensor sends the b;-bit message m; by
using QAM with a constellation size 2% . The consumed energy
is thus [2], [15]

E;, = wi(2bi —1), forsome w;, 1 <i < N 3.1
and the energy density w; is defined as [2]
w; = pd;" - In(2/P) (3.2)

in which p is a constant depending on the noise profile, d; is the
distance between the ith node and the FC, &; is the 7th path loss
exponent, and P, is the target bit error rate assumed common
to all sensor-to-FC links. With (3.1), the energy allocated to the
sth sensor is thus determined by the number of quantization bits
b;. For a fixed set of sensing noise variances o?’s, the problem

TAsin [1], [9], and [15], we assume orthogonal channel access among all the
sensor-to-fusion links, which can be realized via, e.g., TDMA or CDMA with
orthogonal spreading.
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of decentralized BLUE, under an allowable total energy budget
Er, can be formulated as

N 1 -1
N
subject to Zwi(2b - 1)< Er
=1
andb; € Z3, 1<i< N (3.3)
or equivalently
N 1
Maximize ; W
N
subject to Zwi(Zb - 1)< Er
i=1
andb; € ZF, 1<i< N (3.4)

where Z7 denotes the set of all nonnegative integers. To obtain
a universal solution irrespective of instantaneous noise condi-
tions, we will consider the following optimization problem, in
which the equivalent distortion cost function in (3.4) is instead
averaged with respect to the noise variance statistic character-
ized in (2.6):

Maximize /Zmp(Z)dZ

subject to Zwi(2b -1 <Er
=1

bi€Zf, 1<i<N (3.5)

where § := §+o02 andz := [z, - - - zy]" with p(z) denoting the
associated distribution. To solve (3.5), the first step is to find an
analytic expression of the equivalent mean MSE metric. Since
zi ~ xFisiid. and p,2(z) = (1/v2mz) exp(—z/2)u(z) [8, p.
24], where u(z) denotes the unit step function, it is straightfor-
ward to verify

— d
/Zé+az7+ﬂ4” p(z)dz
7Zi/2

1
S dz;.
\/ZWZX;O/(azl—f—&—}—[M b))\ /zi i

Equation (3.6) allows us to derive a closed-form expression for
cost function in (3.5); this is done with the aid of the next lemma
(see [14] and for a proof).

Lemma 3.1: The following result holds:

(3.6)

(e}

—21/2
/ = dZ,
J (azi + 6+ PB47b)/z;
2 - e((~3+ﬂ4_b’)/2fy -Q < (S + /34—bi)/a>

- ~ (3.7

a(é + p4-b)
where Q(z) := [>(e=*/?/\/2m)dt is the Gaussian tail
function. ]
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Based on (3.6) and (3.7), problem (3.5) can be equivalently
rewritten as

N GHBT e ( G+ ﬂ4—b,)/a>
Maximize V27 - Z

a(g + B47b4)

1) < Er, and b; €F, Vi. (3.8)

under E w; (2

The optimization problem (3.8) appears rather formidable to
tackle because the cost function is highly nonlinear in b;. In
what follows, we will propose an alternative formulation which
is more tractable and can yield an analytic solution.

B. Alternative Formulation
The proposed approach is grounded on the following approx-
imation to Q(-) function [10, p. 115]:

e—m2/2

[(1 —r Dz +r 122+ 2r

Based on (3.9) and the following inequality:

Q(z) ~ 3.9

\/ (6 + B471)2 4 2w (8 + f44) < (64 47" + T
(3.10)

we can reach after some manipulations the key lower bound of
the cost function, shown at the bottom of the page. Note that,
since equality in (3.10) is attained when o = 0, the lower bound
(3.11) tends to be tight for small «; through simulation, it is
found that, with the proposed solution [cf. (3.17)], the relative
error incurred by (3.11) is at most 3.54% for a < 0.5. We will
instead focus on maximizing the lower bound in (3.11), i.e.,
N 4;,1.
Maximize -
B+ (a+ 5)
subject to Zw,;(Zbi -1)<Er
i=1

andb; € Z§, 1 <i < N. (3.12)
To facilitate analysis, we first observe that, since b; € Z(J{, it
follows ZZL w;(2% —1) < Zf\;l w; (4% —1): this implies we
can replace the total energy constraint in (3.12) by the following
one without violating the overall energy budget requirement:

zwl

) < Er. (3.13)

With the aid of (3.13) and by performing a change of variable
with B; := 4% — 1, the optimization problem becomes

B;+1
Maximize Z + -
(a+ 08+ 6 + (a4 6)B
]\T
subject to Z w; B; < Er
=1

and B; >0, 1 << N. (3.14)

In (3.14), the intermediate variable B; is relaxed to be a nonneg-
ative real number so as to render the problem tractable; once the
optimal real-valued B; (and hence b;) is computed, the associ-
ated bit loads can be obtained through upper integer rounding,
as in [9], [14], and [15]. The major advantage of the alternative
problem formulation (3.14) is that it admits the form of convex
optimization and can moreover lead to a closed-form solution,
as is shown next.

C. Optimal Solution

By leveraging the standard Lagrange technique, the optimal
solution to (3.14) can be obtained as follows. First of all, let us
assume wy > wg > --- > wy without loss of generality, and
define the function

— N
g
Er (1 + a'—_i_g) + Z wj
j=K

~ , 1<K<N.

VWK ‘ZK,/U)J'
J:

(3.15)

Let1 < K; < N be the unique integer such that f(K;—1) < 1
and f(K;) > 1;if f(K) > 1forall 1 < K < N, then simply
set Ky 1 (the existence and uniqueness of such K; when
otherwise is shown in the supplementary materials).2 Then the

optimal solution pair (A\°*, B{**) is given by
N
3
,/)\opt — L Z \/1,U_J
a+d i
-1
4 N
x| Er+(1+ = w; 3.16
() ) e
J=4H1
and
0, 1<i<K —1
B’{’Pt :{ L 5 5 .
O/—-i—’{;wlep—t“"i_(l—i_(!—-i—S)? KlSZSN
(3.17)
With B; = 4% — 1 and § = 6§ + o2, the optimal bit load b7"*

can be directly obtained from (3. 17)

2Available through the website http://www.cm.nctu.edu.tw/people/bio.
php?PID=1446#personal_writing.

N (AT )20, Q

( (8 + B4=ti) /a>

N

V-
; a(b 4 p4-b)

-

1=1
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1=1

@3.11)

6+ﬂ4” B+ ( a+5
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1)

MS B =|Ne(**7)/2Q(\/(6507) Ja ), |-

2)

3)

4)

IV. DISCUSSIONS AND SIMULATION

We note that the minimal achievable average MSE is at-
tained whenever all the raw sensor measurements with in-
finite-precision are available to the FC (i.e., the case when
b; = oo, 1 < 7 < N). Hence, by setting b; = oo in
the mean MSE formula specified in (3.8), we have the fol-
lowing performance bound:
-1
27
E+a?)
4.1

Formula (4.1) reveals the impacts of the noise model
parameters « and § on the estimation performance.
Specifically, it is easy to see from (4.1) that the minimal
MSE increases with «: this implies the estimation accu-
racy degrades as the sensing environment becomes more
and more inhomogeneous. Furthermore, it can be checked
that M S E,;,, also increases with the minimal noise power
threshold 6. This is reasonable since a large § implies poor
measurement quality of all sensor data, and hence a less
accurate parameter estimate.
Recall from (3.2) that the energy density factor w; is
proportional to the path loss gain df (assuming x; = K
throughout all links). Large values of wj;, therefore,
correspond to sensors deployed far away from the FC
(with large d;), usually with poor background channel
gains. In light of this point, the proposed optimal solution
(3.17) is intuitively attractive: sensors associated with the
(K1 — 1)th largest w;’s are turned off to conserve energy.
We note that a similar energy conservation strategy via
shutting off sensors alone poor channel links is also found
in [9], [14], and [15]. Also, we further note from (3.17)
that, for those active nodes, the assigned message length
is inversely proportional to ,/w;. This is intuitively rea-
sonable since sensors with better link conditions should
be allocated with more bits (energy) to improve the esti-
mation accuracy.
We compare the simulated performance of the proposed so-
lution (3.17) against the uniform energy allocation scheme
with bit load determined through
w;(2"% —1)=Bp/N, 1<i<N 4.2)
In each run, we simply choose w; = df with x = 3, and
d;’s are uniformly drawn from the interval [1, 10] as in
[15]. In the following experiments, we set the number of
sensors to be N = 200, link noise 03 = 0.05, and consider
three different levels of total energy: Ep = ~ Zf\il w;
with v = 0.25, 1, 3, which, respectively, correspond to the
low, medium, and high energy regimes. With fixed 6 = 2,
Fig. 1(a) shows the computed mean MSE as « varies from
0 to 8, whereas Fig. 1(b) depicts the MSE for fixed o = 2
and 0.5 < § < 8. The results show that, as expected,
the estimation accuracy improves as Er increases. Also,
the proposed solution (3.17) outperforms (4.2), especially
when FErp is small; it is thus more effective in an energy-
limited environment.
The proposed energy allocation technique via minimizing
the average distortion level can also be applied to the
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Fig. 1. Performance comparison of (3.18) with the uniform allocation scheme
(4.2) at different energy levels.

scenario considered in [3] and [4], where all sensors
“amplify-and-forward” the local measurements for data
fusion via BLUE. The resultant problem formulation and
performance comparison with the proposed digital solu-
tion (3.17) is referred to the supplementary materials. We
also note that other amplify-and-forward schemes include,
e.g., [5] and [6], which instead assume the parameter of
interest to be statistically Gaussian and follow a joint
source-channel coding approach.
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