(=) #R2peh
FELEI ARG RETRRIB R F G EERFS ER R KA RNE R P

RERMBEI AP RTORRASFFILFRELD FRFS SFLr ERFLIF ZRALT
FoOPRERFS FPRIF TR RRMEFFIP AR RFAF 2B ENEF NHFL LR
ERECRRS FRIENFD - HEFLRAFIA TR 2L FTBIHS %i%@ﬁ%ﬂﬁﬁn;iy; i€ o
Pob DR g R Bk B Y HAE o B ORT G LB E o ey SR E TR
15 AR R AE[4,8,10,34] - FIB T B S I A Y g Apinen® i HiRA S R R ARG §

- B3Awm S I A FY S ApininR i e & #3N3REd Darcy law £ transport equation #7i
+[5,6,7,9,12,13,14,15] » % F 5 1> 423' A 2 F S PeF R 3 > & F R S A F
ARSI R AIDY FA c HOER - BARSI R AN T - BE B9
PFRIES  cBHLATOI BRIEIFRTRIANEE[L, 2,3, 24,28, 30, 31, 35, 37, 38, 42, 43,
44,45] > Fl A G EE S 3 2 k0 f22830 5 ]G AN E 20 Peb A 250 g
o

TE- B E#PantR] o ATF ZEFEMFE0 WG BN S B0 Fep R gt 2
2P E O ALY R o BRR e A - B akF oY E- BURBE P S LT 1/2
ks Di =Y e(Y,+ ), jeZ" » D{ =R"-D; > Q% =QND; » Q7 =QND; - Denote absolute
permeability by Kgin Q7 and Kk, in Q;, phase pressure by P, in Qfand p, in Q,
and external source by Q,,F, in Qfand q,,f, in Q.3 F# ¥ ¥ &R > 258 5 [11, 16,
21, 22]

-V-(K,VP_+Q,)=F, in Qf,
-&V-(k,eVp, +q,) =T, in Qp

(K VP, +Q.)-n=2s¢k (¢6Vp. +4q.)-n on 0Q:
P, = p, on 0Q;

MARa F et B E PRt g2 mg cwm i o) eanFTh > FEBLNEE
FANP G B RO A PF Y R Pl A A2 3

atpé‘ _v'(Ké‘VPé‘ +Q£) = FE in Q‘i X(O’T)’
0,p, —&eV-(k,eVp, +q,)=f, in Qf x(0,T)
(K VP, +Q.)-n=c¢k (¢6Vp, +9q.)-n on 6Q° x(0,T),

P, = p,. on 0Q: x(0,T)



P, = P, in Qf
pg = pO ln ng

P> AP BH D F e B e B Poehd iz o

PR B e e wamt gl > AP fR- BRI AN S AT e
B 8 TR O G0 PR T R AR iR a0 BT AL B R T

e el o

(Z)PE 3 ~BFHBEAFTER -
A A 353 R A0 E;&::q#t,f%fﬂ'-% Nty e 35‘_4‘&‘.1312‘11 ~ALlELHEHZ
g % [18,19, 20, 23, 25, 26, 27, 29, 32, 34, 36, 39, 40, 41, 46] - T ir ehiwih § L+ 7 {74 ?‘l
R o A2 HFBL L TH O FREE RIS FF e ;;gw azting e
SRS FRIES L R L L Ty CREL IS o SEE I
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Many elliptic equations defined in heterogeneous media are non-uniform elliptic equa-
tions with discontinuous coefficients. The heterogeneous media considered are periodic
and consist of a connected high permeability sub-region and a disconnected matrix block
sub-region with low permeability. Let € denote the size ratio of matrix blocks to the whole
domain and assume the permeability ratio of the matrix block sub-region to the con-
nected high permeability sub-region is of the order €2. Elliptic equations with diffusion
depending on the permeability of the media have fast diffusion in high permeability
sub-region and slow diffusion in low permeability sub-region, and they are non-uniform
elliptic equations. It is proved that the LP norm of the gradient of the elliptic solutions
in the high permeability sub-region are bounded uniformly in €. One example also shows
that the LP norm of the second order derivatives of the elliptic solutions in the high
permeability sub-region in general are not bounded uniformly in e.

Keywords: permeability, perforated domain, fractured media, heterogeneous media

AMS Subject Classification: 35J15, 35J25, 35J67

1. Introduction

A priori LP estimate for the gradient of the solutions of non-uniform elliptic equa-
tions with discontinuous coefficients is presented. Let Y(= [0,1]",n > 3) be a
unit cube, Bl/24(%) denote a ball centered at % = (%, e ,%) with radius 1/24,
Y, C B1/24(g) be a smooth domain, Yy = Y \ Y, € € (0,1), Q, = {z[]z €
€(Yim — j) for j € Z"} be a disconnected subset of R™, Q5 (= R™ \ ©f) denote a
connected subset of R™, and 0fX¢, represent the boundary of Qf,. The equations
that we considered are

—V- (KU, +G) =V, in Q5

—€eV - (K Vihe + ge) = ve in Q° )
(K.VU, + Ge) -0 = e(eK Vipe + go) -1 on 90F,

W, = 1 on 09X,

where 1€ is the unit normal vector on 92, and K., G, g., Ve, ve are given func-
tions. System (1.1) has applications in flows in highly heterogeneous media, the
stress in composite materials, and so on (see [3, 10, 15] and references therein).
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Since € € (0,1), they are non-uniform elliptic equations with discontinuous coeffi-
cients. If K, is positive and smooth as well as if G, g, Ve, ve are smooth and have
compact supports, the regular solution of (1.1) in Hilbert space H* (k > 1) exists
uniquely for each e [14]. By energy method, it is easy to see that the H! norm
of the solutions of (1.1) in the connected region 2§ are bounded uniformly in e
if G, ge, Ve, ve are bounded uniformly in € in L%(R"). There are some literatures
related to this problem. Lipschitz estimate and W?2? estimate for uniform elliptic
equations with discontinuous coefficients could be found in [15, 18]. Uniform Hoélder,
LP, and Lipschitz estimates in € for uniform elliptic equations in periodic domains
were proved in [4, 5]. Uniform L? estimate in e for Laplace equation in perforated
domains was considered in [17] and the same problem in Lipschitz estimate was
considered in [23]. For non-uniform elliptic equations with smooth coefficients, exis-
tence of C*“ solution was studied in [11]. Uniform Hélder and Lipschitz estimates
in € for non-uniform elliptic equations with discontinuous coefficients were shown in
[26]. Here we shall consider the non-uniform elliptic equations with discontinuous
coefficients in L? space case. It is proved that LP estimate for the gradient of the
solutions of (1.1) in the connected sub-region Q2% are bounded uniformly in € but
the LP gradient estimate in the disconnected sub-region (2, may not be. This is
different from uniform elliptic equation case, in which uniform bound holds in the
whole domain [4, 5, 11, 15, 18]. We also note that the LP estimate of the second
derivatives of the solutions of (1.1) may not be bounded uniformly in € [26]. In
[26], Lipschitz estimate for the solutions of (1.1) was derived under some regularity
requirements on G, g, Ve, v, and under smallness of v.. In this work, no regularity
requirements and no smallness of v, are needed. The assumption that the diameter
of Yy, is less than 1/12 is only for convenience of presentation. Indeed the results
still hold if the diameter of Y;,, is less than 1.

2. Notation and main result

L? (resp. H®,W*P) denotes a Sobolev space with norm | - ||z» (resp. || - ||ms, || -
lwer), CF* denotes a Holder space with norm || - ||cka, [¢Jcoe is the Holder
semi-norm of ¢, W (D) = {¢|¢ € W*?(D) for any compact subset D in D}, and
H} (D) = VVllof(D), where s > —1,p € [1,00],k > 0,a € (0,1). H},,.(Y) contains
functions in H!(Y') satisfying periodic boundary conditions on 9Y’, C(R") is a space
of continuous functions in R”, and C§°(D) is a space of infinitely differentiable
functions with compact support in D. Define ||(1, -+, CkllB = |Gl + -+ + [|¢k]B
for any Banach space B, B(x) is a ball centered at x, and B, (x) is a ball centered
at  with radius » > 0. For any set D, |D| is the volume of D, D is the closure of
D, Xp is the characteristic function on D, dist(x, D) is the distance from = to D,
D/r = {z|rz € D} for r > 0, and

_L i 1
} o= [ cornn e o).



May 29, 2011

LP gradient estimate 3

If ¢ € LY(R™), () E][ ¢(y)dy. Define Q,,, = {z|z € Y, — j for j € Z"} and

B, (x)
Qp =R\ Q. So Oy, = O, /€ and €y = Q% /e. For any €,w >0 and j € Z",
B = 1 in Qy, Fed = 1 inR"\ (Y —7),
€2 in Qn, e inY, —j,
x ~. ~e i T
E¢ (z) = E¢(— ES?(z) = E97(=).
=Y, By =B

Define |||<1||cova(Dn97) = ||ﬂ||00~<x(D/wn97/w) and [|{Jlco.« (pnas) = [nllcoe(p/wnas, /o)
where n(x) = ((wz), w > 0, and « € (0, 1). Define the left and the right limits of ¢
(denoted by ¢ — and ¢ +) on 9Y;, as

(—(z)= lim ((z+2), (4(x)= lim ((z+a') forzedVy,.
ot e Vim efeiey;
Denote by x;(i = 1,---,n) the i-th component of x € R", R} = {x|z,, > 0}, and
OR" = {z|r, = 0}. Let B = [0,M]" for some M € N, By, = {z[z € (Y, +j) C
B for j € Z"}, and By = B\ By,. For any function ¢ on B, I13(() and I1%(() defined
in R™ are extensions of ¢, are periodic with period [0,2M]", and satisfy

{H%(C)(Z‘l, Ty Li—15 Ly Tit1y "y Z‘n) = H%(C)(ﬂ?l, yLi—1y gy Tit1,y xn);

H%(C)(xlv y Li—15Liy Ti41,y xn) = _H%(C)(xlv yLi—1, — X4y Ti41, "7xn)a

forall i = 1,--- ,n. II({) (resp. II%(C)) is symmetric (resp. antisymmetric) with
respect to all coordinate planes (that is, z; = 0,4 = 1,---,n) and is called even
(resp. odd) extension of ¢ in R™. For any function ¢ on B, IIj5*(¢) (resp. II3*(¢)) in
R™ is extensions of ¢, is periodic with period [0,2M]", is symmetric (resp. antisym-
metric) in x; = 0 plane, and is antisymmetric (resp. symmetric) in other coordinate
planes, that is,

{HeBﬂ:(C)(xlv T Li—1, L5 L4l s xn) = 5f,jngi(6)(x1a L1, =Ly L4107 xn)a
ﬁo

H%7(C)('xla 5 Lj—1,L5, Tj41, "7'7:77,) = 57?,] 87 (C)(xlv 5 Tj—1, — L5, Tj4+1, "73377,))

~ )1 iti=g, o -1 ifi=y, S
where 67 ; = 07 = and i, = 1,--- ,n. For any
’ —1 ifi#£j, " 1 ifi#j,

vector function ¢ = ({1, -+, (), we define ﬁgc = (ﬁ%’lgl, e ,ﬁ%’"(n) and define
H%C = (HOBJClv U aHOB’nCn)-
The following statements are assumed throughout this work:

Al. K. € [dy,dy] for some dy,dy > 0 and ||Kc[|go.a(rn) for some a € (0,1) is
bounded independent of €(< 1),
A2. Y, C B1/24(%) is a smooth domain, where

).

NI

E(%a"'v

N[ =

Our main results are:
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Theorem 2.1. Any solution of (1.1) satisfies
[V¥ecllLos) + €llViello(ae,) < e[ WeXas + edeXa; , GeXas + geXag,
+VeXas + vekog,

Lr(R)

wre@n) + € vellw-re@s,)); (2.1)

where p € (1,00) and ¢ is a constant independent of e(< 1).
Theorem 2.2. (1) In addition to

A3 Y, — T/2 is symmetric with respect to all coordinate planes x; = 0,1 =
1, DR 7n;

the solution of

V- (K VY, +Ge) =V, in B,

—eV - (K Ve + ge) = ve in BE,,

(K VU, + Ge) - 1i° = (e K Ve + gc) - 1€ on 0BS,, (2.2)
U, =1, on 0B¢,,

U.=0 on OB,

satisfies
IVUellLo(ss) + €l Vel o(se,) < c(|Gediss + geXe, |10
T (Ves +veds: ) lw-1o(-Mmam) + € Hlvelw-1ose)),  (2:3)

where p € (1,00), ¢ is independent of €, and 1€ is the unit normal vector on 83;.
(2) In addition to A8 and

A4 [ VeXs; + veXp: dr =0,

the solution of

-V (K VYU +Ge) =V, in B,

—eV - (K Ve + ge) = ve in B,

(K VU, +G.) i€ = e(eK Ve +gc) - i€ on OB, (2.4)
U, =1, on 0B,

(K VY. +Ge)-1c=0 on 0B,

J Ve Xps + YeXpe dz =0,

satisfies
IVUellross) + el VYellLoise,) < c(GeXps + geXpe, 1o(5)
H T (VeXss + veds: Mw-1o(-mampn) + € Hocllw—1ose)),  (25)

m

where p € (1,00), ¢ is independent of €, and 1€ is the unit normal vector on 88;.

Clearly if the right hand side of (2.1) (resp. (2.3) and (2.5)) is bounded, L”
norm for the gradient of the elliptic solutions of (1.1) (resp. (2.2) and (2.4)) in the
connected sub-region is bounded uniformly in e. But this is not the case for the
elliptic solutions in the disconnected sub-region.
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The approximation of the solutions of elliptic equations in highly heterogeneous media is
concerned. The media consist of a connected fractured subregion with high permeability
and a disconnected matrix block subset with low permeability. Let w denote the size
ratio of the matrix blocks to the whole domain and let the permeability ratio of the
matrix block subset to the fractured subregion be of the order w?* for some A > 0.
The solutions of elliptic equations in highly heterogeneous media change smoothly in
the fractured subregion but change rapidly in the disconnected matrix block subset.
Indeed, it is shown that in the fractured subregion, the elliptic solutions can be bounded
uniformly in w in Lipschitz norm; but in the matrix block subset, the elliptic solutions
may be unbounded in w in general. Besides, a numerical method is proposed to find the
approximation of the solutions of elliptic equations in highly heterogeneous media. The
convergence rate of the numerical method in L° norm is also derived.

Keywords: heterogeneous media, fractured region.

AMS Subject Classification: 35J25, 35J67, 35M20

1. Introduction

A numerical method is proposed to find the approximation of the solutions of elliptic
equations in highly heterogeneous media. The media @ C R™ (n = 2, 3) contain two
subsets, a connected subregion with high permeability and a disconnected matrix
block subset with low permeability. Let Y = (0,1)™ be a cell consisting of a sub-
domain Y,, completely surrounded by another connected sub-domain Yy (= Y \
Y.), Xy, be the characteristic function of Y,, and be extended Y-periodically to
R™, and w € (0,1) be the size ratio of the matrix blocks to the whole domain.
If Q(2w) = {x € Q|dist(xz,00Q) > 2w}, the disconnected matrix block subset is
Qv = {zlz € w¥y +j) C Q2w) for some j € Z"}, the connected subregion is

7 =Q0\ Q. and the boundary of Q (resp. Q) is dQ (resp. 9Q%,). The problem
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that we considered is

-V (KuVU¥es) +1¥cw =G in %,

—V (ko Vipew) + € Vew = € gew  in QY

K,V By = Pk, Vie, - on 9O, (1.1)
Vew =Yew on 90 |

Ve =0 on 01},

where €,w € (0,1), A,7 > 0, and v € [0, M] are constants, K., (z) = K(£), k,(z) =
k(Z), K(1 - &y,,) +kXy,, is a periodic positive function in R" with period Y, and
i, is a unit normal vector on 9 . It is known that if K, k, G, g, are smooth, a
piecewise smooth solution of (1.1) exists uniquely and, by energy method, the H'
norm of the solution in the high permeability subregion Qjﬁ is bounded uniformly
in €,w, but not in the low permeability subregion 2% . However, the higher order
norm of the solution of (1.1) may not be bounded uniformly in €,w. Indeed, the
higher order norm may grow fast even in the high permeability subregion Q“fJ when
€,w become small. Therefore, if standard finite element or finite difference method
is used to compute the approximation of the solution of (1.1), then the mesh size
should be very small in order to obtain good approximation of the solution of
(1.1) when €,w are small. It is expensive to obtain the good approximation by
classical methods. On the other hand, homogenization theory tells us that when
€, w become small, the solution of (1.1) approaches to some function which satisfies
a simple elliptic differential equation. So one may expect that an approximation
of the simple differential equation is a good approximation of the solution of (1.1)
when €, w become small.

There are some literatures related to this work. Lipschitz estimate and W2 esti-
mate for uniform elliptic equations with discontinuous coefficients had been proved
in [22, 26]. Uniform Holder, L?, and Lipschitz estimates in e for uniform elliptic
equations with smooth oscillatory coefficients were proved in [5, 4]. Uniform Lips-
chitz estimate in € for the Laplace equation in perforated domains was considered in
[30]. Uniform Hoélder and Lipschitz estimates in € for non-uniform elliptic equations
with discontinuous oscillatory coefficients were shown in [34]. By homogenization
theory, the solutions of elliptic equations in perforated domains in general converge
to a solution of some homogenized elliptic equation with convergence rate € in L?
norm and with convergence rate '/? in H' norm as ¢ closes to 0 (see [6, 20, 28] and
references therein). Higher order asymptotic expansion for the solutions of elliptic
equations in perforated domains could be found in [7, 23]. Rigorous proof of higher
order convergence rate for the solution of (2.3) in Hilbert spaces was considered in
[6, 10, 28]. In this work, we shall derive uniform Ho6lder and Lipschitz estimates in
w for the solution of (1.1) and derive some convergence results of the approximation
for the solution of (1.1) in L* norm and Lipschitz norm.
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2. Notation and main result

For any set D, D denotes the closure of D, |D| is the volume of D, and Xp is the
characteristic function on D. Let C* denote the Holder space with norm || - ||ck,a
and LP (resp. H®, WP H§) denote the Sobolev space with norm || - ||zr (resp.
- sy || - lwees |l - |lz=) for & > 0, € (0,1],s > —1,p € (1,00) [18]. B,(z) is
a ball centered at x with radius » > 0. If D is a bounded set in R", we define
D(x,r) = DN B,(z). For any ¢ € L*(D) and r > 0,

1

sam,rE][ ey)dy = ——= o(y)dy.
( ) D(z,r) ( ) |D(x77n)| D(z,r) ( )

Remark 2.1. Next we recall an extension result [1].

For 1 < p < oo, there is a constant 71 (Y7, p) and a linear continuous extension
operator I, : Wlp(Q‘J:’) — WLP(Q) such that
1) If o € WHP(QY), then

Hue =@ in QF almost everywhere,
M ellwe@) < mllellwir@s),
V2 <Hup <73 if € L®(QF) and 72 < ¢ <73,
Hop=¢ inQifp= (|an~ for some linear function ¢ in Q.
2) For any constant r > 0, II,, /.((x) = (Il,p)(rz) where ((z) = ¢(rz).
It is well-known that if 7 > X\, K,k € C%!(R") are positive functions, and
HC1'||L2(Q?)—|-||Q6,UJ | L2(@= ) are bounded independent of €, w, the solution of (1.1) exists

uniquely and satisfy ||\I'€7w||H1(Q?) + 1€ e 0 GAV¢€7W|‘L2(Q%) < ¢ (independent of
€,w). By compactness principle [2, 18, 20],

n,v., — ¥ in L2(Q) strongly
KWV\I'F_MXQ? — KU in L2(Q) weakly as e,w — 0, (2.1)
GXas + € gewXay, — [Yf|G in L?(Q) weakly

where K is a constant symmetric positive definite matrix. Moreover, the function
U in (2.1) satisfies

{—v A(KV) + [Y; ¥ = |Y}|G in Q, 22)

U=0 on 012,

where |Y7| is the volume of Y;.
For any 0 > 0, define u = %M and take « € (u,1). We assume

Al. Q C R" for n = 2,3 is C>“, Y}, is a smooth simply connected domain,

A2. K,k € C%Y(R") are positive periodic functions in R” with period Y and
VK] Lo (v) + | VK| Loo (v is small compared with min,cy {K, k},

A3. c,we (0,1),22>7>X>0,7€[0,M],
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A4, |\G||Ln+5(gcfu) + [|gewllLn+s(qs ) for some § € (0,3) is bounded independent
of €, w.
We have the following convergence result.
Theorem 2.1. Under A1-4, the solutions of (1.1) and (2.2) satisfy
Wew = WllLe(ay) + EMtbew — V| poe(w ) < cmax{w, €7},
where constant ¢ is independent of €, w.

Define B = (0,1)", By, = {z|z € w(Yy +j) C B for some j € Z"}, and B =
B\ B,,. Suppose v > 0 and

V- (KoVPeo) +7¥e0 =G in B?,

—V - (ko Vipew) + € Ve = € Gew in B,

K, VYV, -, =k, Vi, - i, on 9B,  (2.3)
Vew = VYew on OB%,,
\Ilewaanu + Pe,w Xaw satisfies periodic boundary condition.

Under Al1-3 and ||G||L2(B?) + |lge.wllL2(B2) is bounded independent of ¢, w, the
solution of (2.3) exists uniquely and satisfies

12l ) + €7 e Vel 2 < e
where c¢ is independent of €,w. By compactness principle [2, 18, 20],
n,v., — v in L?(B) strongly

K,V¥,Ape — KVY in L?(B) weakly  ase,w — 0,
GXps + € gewdps, — |Y¢|G  in L?(B) weakly
where K is a constant symmetric positive definite matrix. Moreover, the function

U satisfies

-V v Yi|y¥ = Y] i
{ V- (KVE) + Yy iy = V|G in 5, 2.4)

U satisfies periodic boundary condition.

Next we consider Lipschitz estimate.

Theorem 2.2. Under A1-3, v >0, and ||G||pu+s(s2) + [|gew |l Ln+o(sy,) is bounded
independent of €, w, the solutions of (2.3) and (2.4) satisfy

sup IV, (@) — (1 - vx%))v\p(xﬂ
e sup Ve () — (T — vx%))v\p(xﬂ

< cmax{w"/? €7},

where constant ¢ is independent of €, w.
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Next we consider the following

-V - (K,VU.,)=G in BY,

—V - (ko Vew) = € gew in BY,

K,VV¥,, -1, = e”‘kwvmw -1, on 0BY,

Ve = Yew on OB, (2.5)
V. ., satisfies periodic boundary condition,

/GXB? + € ge,wXpe dr = /\I!QWXB? + Ve wXpe dr = 0.

Under Al1-3 and HG||L2(B?) + [|ge.wllz2(B2) is bounded independent of €,w, the
solution of (2.5) exists uniquely and satisfies ||\I/€7w||H1(B;») + 12 Vpewllr2pe ) < ¢
(independent of €, w). By compactness principle [2, 18, 20],

In,v.,—v in L?(B) strongly
K,V ,Ape — KVY in L?(B) weakly  as e,w — 0,
GXpy + € gewdpy — [Yy|G in L?(B) weakly

where C is a constant symmetric positive definite matrix. Moreover, the function
U satisfies

-V (KVY) = |Y}|G in B,

/ Vdr = | Gdx =0, (2.6)
B B

U satisfies periodic boundary condition.

Theorem 2.3. Under A1-3 and ||G||Ln+5(6‘;’) +1gewllLr+s (e is bounded indepen-
dent of €,w, the solutions of (2.5) and (2.6) satisfy

sup |[VU, ., (z) — (I — VX(=)) V()|

il
mEB‘j‘.’ w
+E sup |Vipe (@) — (I — VX(Z) V()]
TEBY, w
< cmax{wh/? €7},

where constant ¢ is independent of €, w.
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