
（二）背景及目的 

有些化學工廠的廢水經由水井排放到地底，地面的有毒廢棄物也會溶入雨水而進入地底，核

能電廠儲存在地底下的核廢棄物因為時間過長而容器腐蝕、或因為地層變動造成容器破裂等因

素，核廢棄物也因此進入地下水。這些都會造成日常飲用水的不安全。這些問題不只發生在臺灣，

世界其它國家也有同樣的情形。歐美有些國家甚至已設立專責機構負責這些污染源的清除工作。

此外身體內的血液在血管中的流動，地底下的碳氫化合物的抽取等。以上這些都屬於多孔介質中

的多相流問題[4,8,10,34]。因此了解多孔介質中的多相流的變化對解決很多實際問題是很有幫助

的。 

一般討論多孔介質中多相流的變化的數學模式都是由 Darcy law 與 transport equation 所組

成[5,6,7,9,12,13,14,15]。前者為橢圓方程式而後者為抛物線方程式，在高度非均勻多孔介質中

以上兩個方程式都是屬於非均勻的情形。換句話說，一個為非均勻橢圓方程式另一個為 非均勻抛

物線方程式。理論分析的方法很難得到有實質義意的結果[1,2,3,24,28,30,31,35,37,38,42,43, 

44,45]，因此我們計劃探討數值計算方法來了解非均勻橢圓方程式與 非均勻抛物線方程式的特

性。 

這是一個二年期的計劃。我們希望探討計算非均勻橢圓方程式與 非均勻抛物線方程式的方法

及這計算方法的誤差估計問題。假設ε代表一個很小的數字， 是一個以原點為中心半徑小於 1/2

的球， , ， ， ， 。 Denote absolute 

permeability by in  and in , phase pressure by  in and  in , 

and external source by  in and  in .我們希望考慮的橢圓方程式為[11,16, 

21,22] 
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顯然的，當ε很小時，計算 的代價會非常的高。如何使用很小的資源，穫得滿意的結果，

這是我們有興趣討論的。我們希望考慮的抛物線方程式為 

p
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同樣的，我們也要找出，當ε很小時，如何計算 的方法。 p

 

此計劃是之前計劃的沿續。在之前的計劃中，我們了解一些描述流體在破裂多孔介質中的微

觀模式與宏觀模式的關係，同時也了解一些微觀模式的解的均勻估計的問題，這對此次計劃會有

很大的幫助。 

 

（三）研究方法、進行步驟及執行進度。 

     基本上，均勻橢圓方程式與均勻抛物線方程式的計算方法已經被研究了五、六十年，甚至

更久[18,19,20,23,25,26,27,29,32,34,36,39,40,41,46]。這部份的知識是垂手可得也很

完備。不過非均勻的情形仍十分欠缺，若只是直接把計算均勻問題的方法套用在非均勻的

問題上，可以想像出這是十分沒有效率，非常糟糕的想法。我們則是想將計算均勻問題的

方法與之前微觀模式的解的均勻估計做一結合，發展出一套有效率的計算方法。同時也討

論計算方法的誤差估計問題。          

 

（四）成果與自評。 

      1.得到不均勻抛物線微分方程式的解的導數的  norm 的均勻估計結果[51]。此結果對我

們以後要發展出有效率的、可處理複雜情形的計算方法有很重要的理論依據。理論推導的

過程也是可做為進一步研究不均勻介質問題的有效工具。 

pL

      2. 找出一個計算非均勻橢圓方程式的解的數值方法，並且得到數值解與正確解之間的誤

差估計，此結果有很大的實用價值，它可以用來計算多重尺度的問題[52]。 
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Many elliptic equations defined in heterogeneous media are non-uniform elliptic equa-

tions with discontinuous coefficients. The heterogeneous media considered are periodic

and consist of a connected high permeability sub-region and a disconnected matrix block

sub-region with low permeability. Let ǫ denote the size ratio of matrix blocks to the whole

domain and assume the permeability ratio of the matrix block sub-region to the con-

nected high permeability sub-region is of the order ǫ
2. Elliptic equations with diffusion

depending on the permeability of the media have fast diffusion in high permeability

sub-region and slow diffusion in low permeability sub-region, and they are non-uniform

elliptic equations. It is proved that the L
p norm of the gradient of the elliptic solutions

in the high permeability sub-region are bounded uniformly in ǫ. One example also shows

that the L
p norm of the second order derivatives of the elliptic solutions in the high

permeability sub-region in general are not bounded uniformly in ǫ.

Keywords: permeability, perforated domain, fractured media, heterogeneous media

AMS Subject Classification: 35J15, 35J25, 35J67

1. Introduction

A priori Lp estimate for the gradient of the solutions of non-uniform elliptic equa-

tions with discontinuous coefficients is presented. Let Y (≡ [0, 1]n, n ≥ 3) be a

unit cube, B1/24(
~1
2 ) denote a ball centered at

~1
2 ≡ (1

2 , · · · ,
1
2 ) with radius 1/24,

Ym ⊂ B1/24(
~1
2 ) be a smooth domain, Yf ≡ Y \ Ym, ǫ ∈ (0, 1), Ωǫ

m ≡ {x|x ∈

ǫ(Ym − j) for j ∈ Z
n} be a disconnected subset of R

n, Ωǫ
f (≡ R

n \ Ωǫ
m) denote a

connected subset of R
n, and ∂Ωǫ

m represent the boundary of Ωǫ
m. The equations

that we considered are





−∇ · (Kǫ∇Ψǫ +Gǫ) = Vǫ in Ωǫ
f ,

−ǫ∇ · (ǫKǫ∇ψǫ + gǫ) = vǫ in Ωǫ
m,

(Kǫ∇Ψǫ +Gǫ) · ~n
ǫ = ǫ(ǫKǫ∇ψǫ + gǫ) · ~n

ǫ on ∂Ωǫ
m,

Ψǫ = ψǫ on ∂Ωǫ
m,

(1.1)

where ~nǫ is the unit normal vector on ∂Ωǫ
m and Kǫ, Gǫ, gǫ, Vǫ, vǫ are given func-

tions. System (1.1) has applications in flows in highly heterogeneous media, the

stress in composite materials, and so on (see [3, 10, 15] and references therein).

1
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Since ǫ ∈ (0, 1), they are non-uniform elliptic equations with discontinuous coeffi-

cients. If Kǫ is positive and smooth as well as if Gǫ, gǫ, Vǫ, vǫ are smooth and have

compact supports, the regular solution of (1.1) in Hilbert space Hk (k ≥ 1) exists

uniquely for each ǫ [14]. By energy method, it is easy to see that the H1 norm

of the solutions of (1.1) in the connected region Ωǫ
f are bounded uniformly in ǫ

if Gǫ, gǫ, Vǫ, vǫ are bounded uniformly in ǫ in L2(Rn). There are some literatures

related to this problem. Lipschitz estimate and W 2,p estimate for uniform elliptic

equations with discontinuous coefficients could be found in [15, 18]. Uniform Hölder,

Lp, and Lipschitz estimates in ǫ for uniform elliptic equations in periodic domains

were proved in [4, 5]. Uniform Lp estimate in ǫ for Laplace equation in perforated

domains was considered in [17] and the same problem in Lipschitz estimate was

considered in [23]. For non-uniform elliptic equations with smooth coefficients, exis-

tence of C2,α solution was studied in [11]. Uniform Hölder and Lipschitz estimates

in ǫ for non-uniform elliptic equations with discontinuous coefficients were shown in

[26]. Here we shall consider the non-uniform elliptic equations with discontinuous

coefficients in Lp space case. It is proved that Lp estimate for the gradient of the

solutions of (1.1) in the connected sub-region Ωǫ
f are bounded uniformly in ǫ but

the Lp gradient estimate in the disconnected sub-region Ωǫ
m may not be. This is

different from uniform elliptic equation case, in which uniform bound holds in the

whole domain [4, 5, 11, 15, 18]. We also note that the Lp estimate of the second

derivatives of the solutions of (1.1) may not be bounded uniformly in ǫ [26]. In

[26], Lipschitz estimate for the solutions of (1.1) was derived under some regularity

requirements on Gǫ, gǫ, Vǫ, vǫ and under smallness of vǫ. In this work, no regularity

requirements and no smallness of vǫ are needed. The assumption that the diameter

of Ym is less than 1/12 is only for convenience of presentation. Indeed the results

still hold if the diameter of Ym is less than 1.

2. Notation and main result

Lp (resp. Hs,W s,p) denotes a Sobolev space with norm ‖ · ‖Lp (resp. ‖ · ‖Hs , ‖ ·

‖W s,p), Ck,α denotes a Hölder space with norm ‖ · ‖Ck,α , [ζ]C0,α is the Hölder

semi-norm of ζ, W s,p
loc (D) ≡ {ζ|ζ ∈ W s,p(D) for any compact subset D in D}, and

H1
loc(D) ≡ W 1,2

loc (D), where s ≥ −1, p ∈ [1,∞], k ≥ 0, α ∈ (0, 1). H1
per(Y ) contains

functions in H1(Y ) satisfying periodic boundary conditions on ∂Y , C(Rn) is a space

of continuous functions in R
n, and C∞

0 (D) is a space of infinitely differentiable

functions with compact support in D. Define ‖ζ1, · · · , ζk‖B ≡ ‖ζ1‖B + · · · + ‖ζk‖B

for any Banach space B, B(x) is a ball centered at x, and Br(x) is a ball centered

at x with radius r > 0. For any set D, |D| is the volume of D, D is the closure of

D, XD is the characteristic function on D, dist(x,D) is the distance from x to D,

D/r ≡ {x|rx ∈ D} for r > 0, and

−

∫

D

ζ(y)dy ≡
1

|D|

∫

D

ζ(y)dy if ζ ∈ L1(D).
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If ζ ∈ L1(Rn), (ζ)x,r ≡ −

∫

Br(x)

ζ(y)dy. Define Ωm ≡ {x|x ∈ Ym − j for j ∈ Z
n} and

Ωf ≡ R
n \ Ωm. So Ωm = Ωǫ

m/ǫ and Ωf = Ωǫ
f/ǫ. For any ǫ, ω > 0 and j ∈ Z

n,

Eǫ ≡

{
1 in Ωf ,

ǫ2 in Ωm,
Ẽǫ,j ≡

{
1 in R

n \ (Ym − j),

ǫ2 in Ym − j,

Eǫ
ω(x) ≡ Eǫ(

x

ω
), Ẽǫ,j

ω (x) ≡ Ẽǫ,j(
x

ω
).

Define |||ζ|||C0,α(D∩Ωω
f
) ≡ ‖η‖C0,α(D/ω∩Ωω

f
/ω) and |||ζ|||C0,α(D∩Ωω

m) ≡ ‖η‖C0,α(D/ω∩Ωω
m/ω)

where η(x) = ζ(ωx), ω > 0, and α ∈ (0, 1). Define the left and the right limits of ζ

(denoted by ζ,− and ζ,+) on ∂Ym as

ζ,−(x) ≡ lim
x′→0

x+x′∈Ym

ζ(x + x′), ζ,+(x) ≡ lim
x′→0

x+x′∈Yf

ζ(x + x′) for x ∈ ∂Ym.

Denote by xi(i = 1, · · · , n) the i-th component of x ∈ R
n, R

n
+ ≡ {x|xn > 0}, and

∂R
n
+ ≡ {x|xn = 0}. Let B ≡ [0,M]n for some M ∈ N, Bǫ

m ≡ {x|x ∈ ǫ(Ym + j) ⊂

B for j ∈ Z
n}, and Bǫ

f ≡ B\Bǫ
m. For any function ζ on B, Πe

B
(ζ) and Πo

B
(ζ) defined

in R
n are extensions of ζ, are periodic with period [0, 2M]n, and satisfy

{
Πe

B
(ζ)(x1, ··, xi−1, xi, xi+1, ··, xn) = Πe

B
(ζ)(x1, ··, xi−1,−xi, xi+1, ··, xn),

Πo
B
(ζ)(x1, ··, xi−1, xi, xi+1, ··, xn) = −Πo

B
(ζ)(x1, ··, xi−1,−xi, xi+1, ··, xn),

for all i = 1, · · · , n. Πe
B
(ζ) (resp. Πo

B
(ζ)) is symmetric (resp. antisymmetric) with

respect to all coordinate planes (that is, xi = 0, i = 1, · · · , n) and is called even

(resp. odd) extension of ζ in R
n. For any function ζ on B, Π̂e,i

B
(ζ) (resp. Π̂o,i

B
(ζ)) in

R
n is extensions of ζ, is periodic with period [0, 2M]n, is symmetric (resp. antisym-

metric) in xi = 0 plane, and is antisymmetric (resp. symmetric) in other coordinate

planes, that is,

{
Π̂e,i

B
(ζ)(x1, ··, xj−1, xj , xj+1, ··, xn) = δ̂e

i,jΠ̂
e,i
B

(ζ)(x1, ··, xj−1,−xj , xj+1, ··, xn),

Π̂o,i
B

(ζ)(x1, ··, xj−1, xj , xj+1, ··, xn) = δ̂o
i,jΠ̂

o,i
B

(ζ)(x1, ··, xj−1,−xj , xj+1, ··, xn),

where δ̂e
i,j =

{
1 if i = j,

−1 if i 6= j,
δ̂o
i,j =

{
−1 if i = j,

1 if i 6= j,
and i, j = 1, · · · , n. For any

vector function ζ = (ζ1, · · · , ζn), we define Π̂e
B
ζ ≡ (Π̂e,1

B
ζ1, · · · , Π̂

e,n
B
ζn) and define

Π̂o
B
ζ ≡ (Π̂o,1

B
ζ1, · · · , Π̂

o,n
B
ζn).

The following statements are assumed throughout this work:

A1. Kǫ ∈ [d1, d2] for some d1, d2 > 0 and ‖Kǫ‖C0,α(Rn) for some α ∈ (0, 1) is

bounded independent of ǫ(< 1),

A2. Ym ⊂ B1/24(
~1
2 ) is a smooth domain, where

~1
2 ≡ (1

2 , · · · ,
1
2 ).

Our main results are:
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Theorem 2.1. Any solution of (1.1) satisfies

‖∇Ψǫ‖Lp(Ωǫ
f
) + ǫ‖∇ψǫ‖Lp(Ωǫ

m) ≤ c(‖ΨǫXΩǫ
f

+ ǫψǫXΩǫ
m
, GǫXΩǫ

f
+ gǫXΩǫ

m
‖Lp(Rn)

+‖VǫXΩǫ
f

+ vǫXΩǫ
m
‖W−1,p(Rn) + ǫ−1‖vǫ‖W−1,p(Ωǫ

m)), (2.1)

where p ∈ (1,∞) and c is a constant independent of ǫ(< 1).

Theorem 2.2. (1) In addition to

A3. Ym − ~1/2 is symmetric with respect to all coordinate planes xi = 0, i =

1, · · · , n,

the solution of




−∇ · (Kǫ∇Ψǫ +Gǫ) = Vǫ in Bǫ
f ,

−ǫ∇ · (ǫKǫ∇ψǫ + gǫ) = vǫ in Bǫ
m,

(Kǫ∇Ψǫ +Gǫ) · ~n
ǫ = ǫ(ǫKǫ∇ψǫ + gǫ) · ~n

ǫ on ∂Bǫ
m,

Ψǫ = ψǫ on ∂Bǫ
m,

Ψǫ = 0 on ∂B,

(2.2)

satisfies

‖∇Ψǫ‖Lp(Bǫ
f
) + ǫ‖∇ψǫ‖Lp(Bǫ

m) ≤ c(‖GǫXBǫ
f

+ gǫXBǫ
m
‖Lp(B)

+‖Πo
B(VǫXBǫ

f
+ vǫXBǫ

m
)‖W−1,p([−M,2M]n) + ǫ−1‖vǫ‖W−1,p(Bǫ

m)), (2.3)

where p ∈ (1,∞), c is independent of ǫ, and ~nǫ is the unit normal vector on ∂Bǫ
f .

(2) In addition to A3 and

A4.
∫
VǫXBǫ

f
+ vǫXBǫ

m
dx = 0,

the solution of





−∇ · (Kǫ∇Ψǫ +Gǫ) = Vǫ in Bǫ
f ,

−ǫ∇ · (ǫKǫ∇ψǫ + gǫ) = vǫ in Bǫ
m,

(Kǫ∇Ψǫ +Gǫ) · ~n
ǫ = ǫ(ǫKǫ∇ψǫ + gǫ) · ~n

ǫ on ∂Bǫ
m,

Ψǫ = ψǫ on ∂Bǫ
m,

(Kǫ∇Ψǫ +Gǫ) · ~n
ǫ = 0 on ∂B,

∫
ΨǫXBǫ

f
+ ψǫXBǫ

m
dx = 0,

(2.4)

satisfies

‖∇Ψǫ‖Lp(Bǫ
f
) + ǫ‖∇ψǫ‖Lp(Bǫ

m) ≤ c(‖GǫXBǫ
f

+ gǫXBǫ
m
‖Lp(B)

+‖Πe
B(VǫXBǫ

f
+ vǫXBǫ

m
)‖W−1,p([−M,2M]n) + ǫ−1‖vǫ‖W−1,p(Bǫ

m)), (2.5)

where p ∈ (1,∞), c is independent of ǫ, and ~nǫ is the unit normal vector on ∂Bǫ
f .

Clearly if the right hand side of (2.1) (resp. (2.3) and (2.5)) is bounded, Lp

norm for the gradient of the elliptic solutions of (1.1) (resp. (2.2) and (2.4)) in the

connected sub-region is bounded uniformly in ǫ. But this is not the case for the

elliptic solutions in the disconnected sub-region.
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The approximation of the solutions of elliptic equations in highly heterogeneous media is

concerned. The media consist of a connected fractured subregion with high permeability

and a disconnected matrix block subset with low permeability. Let ω denote the size

ratio of the matrix blocks to the whole domain and let the permeability ratio of the

matrix block subset to the fractured subregion be of the order ω2λ for some λ > 0.

The solutions of elliptic equations in highly heterogeneous media change smoothly in

the fractured subregion but change rapidly in the disconnected matrix block subset.

Indeed, it is shown that in the fractured subregion, the elliptic solutions can be bounded

uniformly in ω in Lipschitz norm; but in the matrix block subset, the elliptic solutions

may be unbounded in ω in general. Besides, a numerical method is proposed to find the

approximation of the solutions of elliptic equations in highly heterogeneous media. The

convergence rate of the numerical method in L∞ norm is also derived.

Keywords: heterogeneous media, fractured region.

AMS Subject Classification: 35J25, 35J67, 35M20

1. Introduction

A numerical method is proposed to find the approximation of the solutions of elliptic

equations in highly heterogeneous media. The media Ω ⊂ R
n (n = 2, 3) contain two

subsets, a connected subregion with high permeability and a disconnected matrix

block subset with low permeability. Let Y ≡ (0, 1)n be a cell consisting of a sub-

domain Ym completely surrounded by another connected sub-domain Yf (≡ Y \

Y m), XYm
be the characteristic function of Ym and be extended Y -periodically to

R
n, and ω ∈ (0, 1) be the size ratio of the matrix blocks to the whole domain.

If Ω(2ω) ≡ {x ∈ Ω|dist(x, ∂Ω) > 2ω}, the disconnected matrix block subset is

Ωω
m ≡ {x|x ∈ ω(Ym + j) ⊂ Ω(2ω) for some j ∈ Z

n}, the connected subregion is

Ωω
f ≡ Ω \ Ω

ω

m, and the boundary of Ω (resp. Ωω
m) is ∂Ω (resp. ∂Ωω

m). The problem

1
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that we considered is





−∇ · (Kω∇Ψǫ,ω) + γΨǫ,ω = G in Ωω
f ,

−∇ · (ǫ2λkω∇ψǫ,ω) + ǫτγψǫ,ω = ǫτgǫ,ω in Ωω
m,

Kω∇Ψǫ,ω · ~nω = ǫ2λkω∇ψǫ,ω · ~nω on ∂Ωω
m,

Ψǫ,ω = ψǫ,ω on ∂Ωω
m,

Ψǫ,ω = 0 on ∂Ω,

(1.1)

where ǫ, ω ∈ (0, 1), λ, τ > 0, and γ ∈ [0,M] are constants, Kω(x) ≡ K( x
ω ), kω(x) ≡

k( x
ω ), K(1−XYm

)+kXYm
is a periodic positive function in R

n with period Y , and

~nω is a unit normal vector on ∂Ωω
m. It is known that if K,k, G, gǫ,ω are smooth, a

piecewise smooth solution of (1.1) exists uniquely and, by energy method, the H1

norm of the solution in the high permeability subregion Ωω
f is bounded uniformly

in ǫ, ω, but not in the low permeability subregion Ωω
m. However, the higher order

norm of the solution of (1.1) may not be bounded uniformly in ǫ, ω. Indeed, the

higher order norm may grow fast even in the high permeability subregion Ωω
f when

ǫ, ω become small. Therefore, if standard finite element or finite difference method

is used to compute the approximation of the solution of (1.1), then the mesh size

should be very small in order to obtain good approximation of the solution of

(1.1) when ǫ, ω are small. It is expensive to obtain the good approximation by

classical methods. On the other hand, homogenization theory tells us that when

ǫ, ω become small, the solution of (1.1) approaches to some function which satisfies

a simple elliptic differential equation. So one may expect that an approximation

of the simple differential equation is a good approximation of the solution of (1.1)

when ǫ, ω become small.

There are some literatures related to this work. Lipschitz estimate andW 2,p esti-

mate for uniform elliptic equations with discontinuous coefficients had been proved

in [22, 26]. Uniform Hölder, Lp, and Lipschitz estimates in ǫ for uniform elliptic

equations with smooth oscillatory coefficients were proved in [5, 4]. Uniform Lips-

chitz estimate in ǫ for the Laplace equation in perforated domains was considered in

[30]. Uniform Hölder and Lipschitz estimates in ǫ for non-uniform elliptic equations

with discontinuous oscillatory coefficients were shown in [34]. By homogenization

theory, the solutions of elliptic equations in perforated domains in general converge

to a solution of some homogenized elliptic equation with convergence rate ǫ in L2

norm and with convergence rate ǫ1/2 in H1 norm as ǫ closes to 0 (see [6, 20, 28] and

references therein). Higher order asymptotic expansion for the solutions of elliptic

equations in perforated domains could be found in [7, 23]. Rigorous proof of higher

order convergence rate for the solution of (2.3) in Hilbert spaces was considered in

[6, 10, 28]. In this work, we shall derive uniform Hölder and Lipschitz estimates in

ω for the solution of (1.1) and derive some convergence results of the approximation

for the solution of (1.1) in L∞ norm and Lipschitz norm.
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2. Notation and main result

For any set D, D denotes the closure of D, |D| is the volume of D, and XD is the

characteristic function on D. Let Ck,α denote the Hölder space with norm ‖ · ‖Ck,α

and Lp (resp. Hs,W s,p, Hs
0) denote the Sobolev space with norm ‖ · ‖Lp (resp.

‖ · ‖Hs , ‖ · ‖W s,p , ‖ · ‖Hs) for k ≥ 0, α ∈ (0, 1], s ≥ −1, p ∈ (1,∞) [18]. Br(x) is

a ball centered at x with radius r > 0. If D is a bounded set in R
n, we define

D(x, r) ≡ D ∩Br(x). For any ϕ ∈ L1(D) and r > 0,

(ϕ)x,r ≡ −

∫

D(x,r)

ϕ(y)dy ≡
1

|D(x, r)|

∫

D(x,r)

ϕ(y)dy.

Remark 2.1. Next we recall an extension result [1].

For 1 ≤ p < ∞, there is a constant γ1(Yf , p) and a linear continuous extension

operator Πω : W 1,p(Ωω
f ) →W 1,p(Ω) such that

1) If ϕ ∈W 1,p(Ωω
f ), then





Πωϕ = ϕ in Ωω
f almost everywhere,

‖Πωϕ‖W 1,p(Ω) ≤ γ1‖ϕ‖W 1,p(Ωω
f
),

γ2 ≤ Πωϕ ≤ γ3 if ϕ ∈ L∞(Ωω
f ) and γ2 ≤ ϕ ≤ γ3,

Πωϕ = ζ in Ω if ϕ = ζ|Ωω
f

for some linear function ζ in Ω.

2) For any constant r > 0, Πω/rζ(x) = (Πωϕ)(rx) where ζ(x) ≡ ϕ(rx).

It is well-known that if τ ≥ λ, K,k ∈ C0,1(Rn) are positive functions, and

‖G‖L2(Ωω
f
)+‖gǫ,ω‖L2(Ωω

m) are bounded independent of ǫ, ω, the solution of (1.1) exists

uniquely and satisfy ‖Ψǫ,ω‖H1(Ωω
f
) +‖ǫτ/2ψǫ,ω, ǫ

λ∇ψǫ,ω‖L2(Ωω
m) ≤ c (independent of

ǫ, ω). By compactness principle [2, 18, 20],




ΠωΨǫ,ω → Ψ in L2(Ω) strongly

Kω∇Ψǫ,ωXΩω
f
→ K∇Ψ in L2(Ω) weakly

GXΩω
f

+ ǫτgǫ,ωXΩω
m
→ |Yf |G in L2(Ω) weakly

as ǫ, ω → 0, (2.1)

where K is a constant symmetric positive definite matrix. Moreover, the function

Ψ in (2.1) satisfies
{
−∇ · (K∇Ψ) + |Yf |γΨ = |Yf |G in Ω,

Ψ = 0 on ∂Ω,
(2.2)

where |Yf | is the volume of Yf .

For any δ > 0, define µ ≡ δ
n+δ and take α ∈ (µ, 1). We assume

A1. Ω ⊂ R
n for n = 2, 3 is C3,α, Ym is a smooth simply connected domain,

A2. K,k ∈ C0,1(Rn) are positive periodic functions in R
n with period Y and

‖∇K‖L∞(Y ) + ‖∇k‖L∞(Y ) is small compared with minx∈Y {K,k},

A3. ǫ, ω ∈ (0, 1), 2λ ≥ τ ≥ λ > 0, γ ∈ [0,M],
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A4. ‖G‖Ln+δ(Ωω
f
) + ‖gǫ,ω‖Ln+δ(Ωω

m) for some δ ∈ (0, 3) is bounded independent

of ǫ, ω.

We have the following convergence result.

Theorem 2.1. Under A1-4, the solutions of (1.1) and (2.2) satisfy

‖Ψǫ,ω − Ψ‖L∞(Ωω
f
) + ǫ2λ‖ψǫ,ω − Ψ‖L∞(Ωω

m) ≤ cmax{ω, ǫτ},

where constant c is independent of ǫ, ω.

Define B ≡ (0, 1)n, Bω
m ≡ {x|x ∈ ω(Ym + j) ⊂ B for some j ∈ Z

n}, and Bω
f ≡

B \ B
ω

m. Suppose γ > 0 and




−∇ · (Kω∇Ψǫ,ω) + γΨǫ,ω = G in Bω
f ,

−∇ · (ǫ2λkω∇ψǫ,ω) + ǫτγψǫ,ω = ǫτgǫ,ω in Bω
m,

Kω∇Ψǫ,ω · ~nω = ǫ2λkω∇ψǫ,ω · ~nω on ∂Bω
m,

Ψǫ,ω = ψǫ,ω on ∂Bω
m,

Ψǫ,ωXΩω
f

+ ψǫ,ωXΩω
m

satisfies periodic boundary condition.

(2.3)

Under A1–3 and ‖G‖L2(Bω
f
) + ‖gǫ,ω‖L2(Bω

m) is bounded independent of ǫ, ω, the

solution of (2.3) exists uniquely and satisfies

‖Ψǫ,ω‖H1(Bω
f
) + ‖ǫτ/2ψǫ,ω, ǫ

λ∇ψǫ,ω‖L2(Bω
m) ≤ c,

where c is independent of ǫ, ω. By compactness principle [2, 18, 20],




ΠωΨǫ,ω → Ψ in L2(B) strongly

Kω∇Ψǫ,ωXBω
f
→ K∇Ψ in L2(B) weakly

GXBω
f

+ ǫτgǫ,ωXBω
m
→ |Yf |G in L2(B) weakly

as ǫ, ω → 0,

where K is a constant symmetric positive definite matrix. Moreover, the function

Ψ satisfies
{
−∇ · (K∇Ψ) + |Yf |γΨ = |Yf |G in B,

Ψ satisfies periodic boundary condition.
(2.4)

Next we consider Lipschitz estimate.

Theorem 2.2. Under A1-3, γ > 0, and ‖G‖Ln+δ(Bω
f
) + ‖gǫ,ω‖Ln+δ(Bω

m) is bounded

independent of ǫ, ω, the solutions of (2.3) and (2.4) satisfy

sup
x∈Bω

f

∣∣∇Ψǫ,ω(x) − (I −∇X(
x

ω
))∇Ψ(x)

∣∣

+ǫ2λ sup
x∈Bω

m

∣∣∇ψǫ,ω(x) − (I −∇X(
x

ω
))∇Ψ(x)

∣∣

≤ cmax{ωµ/2, ǫτ},

where constant c is independent of ǫ, ω.
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Next we consider the following




−∇ · (Kω∇Ψǫ,ω) = G in Bω
f ,

−∇ · (ǫ2λkω∇ψǫ,ω) = ǫτgǫ,ω in Bω
m,

Kω∇Ψǫ,ω · ~nω = ǫ2λkω∇ψǫ,ω · ~nω on ∂Bω
m,

Ψǫ,ω = ψǫ,ω on ∂Bω
m,

Ψǫ,ω satisfies periodic boundary condition,∫
GXBω

f
+ ǫτgǫ,ωXBω

m
dx =

∫
Ψǫ,ωXBω

f
+ ψǫ,ωXBω

m
dx = 0.

(2.5)

Under A1–3 and ‖G‖L2(Bω
f
) + ‖gǫ,ω‖L2(Bω

m) is bounded independent of ǫ, ω, the

solution of (2.5) exists uniquely and satisfies ‖Ψǫ,ω‖H1(Bω
f
) + ‖ǫλ∇ψǫ,ω‖L2(Bω

m) ≤ c

(independent of ǫ, ω). By compactness principle [2, 18, 20],





ΠωΨǫ,ω → Ψ in L2(B) strongly

Kω∇Ψǫ,ωXBω
f
→ K∇Ψ in L2(B) weakly

GXBω
f

+ ǫτgǫ,ωXBω
m
→ |Yf |G in L2(B) weakly

as ǫ, ω → 0,

where K is a constant symmetric positive definite matrix. Moreover, the function

Ψ satisfies 



−∇ · (K∇Ψ) = |Yf |G in B,∫

B

Ψdx =

∫

B

Gdx = 0,

Ψ satisfies periodic boundary condition.

(2.6)

Theorem 2.3. Under A1-3 and ‖G‖Ln+δ(Bω
f
) +‖gǫ,ω‖Ln+δ(Bω

m) is bounded indepen-

dent of ǫ, ω, the solutions of (2.5) and (2.6) satisfy

sup
x∈Bω

f

∣∣∇Ψǫ,ω(x) − (I −∇X(
x

ω
))∇Ψ(x)

∣∣

+ǫ2λ sup
x∈Bω

m

∣∣∇ψǫ,ω(x) − (I −∇X(
x

ω
))∇Ψ(x)

∣∣

≤ cmax{ωµ/2, ǫτ},

where constant c is independent of ǫ, ω.
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