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Interpolative Channel Estimation in OFDM and
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Abstract—We consider the phase-rotated linearly interpolative
channel estimation technique for multicarrier transmission. The
technique models the channel frequency response between two
nearby subcarriers as the product of a linear function and a
linear-phase factor, where the linear-phase factor may be equiv-
alently modeled in the time domain as a reference delay dubbed
the anchor delay in this work. We show that the performance of
the technique is a fourth-order function of the channel path delays
and the anchor delay. We derive a method to estimate the optimal
anchor delay. Analysis and simulation in a context of Mobile
WiMAX downlink transmission show that, with the proposed an-
chor delay estimate, we can attain better performance in channel
estimation than conventional linear interpolation and a previously
proposed method of phase-compensated linear interpolation.

Index Terms—Channel estimation, delay estimation, IEEE
802.16e, orthogonal frequency-division multiple access (OFDMA),
orthogonal frequency-division multiplexing (OFDM), WiMAX
downlink.

I. INTRODUCTION

L INEAR interpolation is a simple and efficient method
for channel estimation in orthogonal frequency-division

multiplexing (OFDM) and orthogonal frequency-division mul-
tiple access (OFDMA) systems. It first estimates the channel
responses at some pilot subcarriers by some means. Then linear
interpolation is carried out between neighboring pilot frequen-
cies. Hence, it is applicable when the coherent bandwith of the
channel is larger than the pilot subcarrier spacing. However, its
performance depends on both the symbol timing error [1] and
the amount of channel delay spread. While the former can be
mitigated by accurate symbol time synchronization, the latter is
more involved and deserves a closer look. Later derivation will
show how larger delay spreads may lead to greater performance
loss.

To mitigate the performance loss due to large delay spreads,
we consider using phase-rotated linear interpolation in channel
estimation, as has also been proposed in [2]. The approach is
motivated by the fact that delay in time corresponds to linear
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phase shift in frequency. By augmenting simple linear interpo-
lation with a linear-phase factor, we can better model the fre-
quency response of a multipath channel. Let the equivalent delay
of the linear-phase factor be termed the “anchor delay” and de-
noted . It may be considered a reference path located at
units of time after the symbol start time found by the synchro-
nizer. A key issue now is the determination of the anchor delay.
Hsieh and Wei [2] adopt Kay’s single-frequency estimators [3]
for it. As shall be elaborated later, their estimate of choice can
be interpreted as an approximate center of mass (COM) of the
path energies of the channel.

Thus far, no analysis of the optimal anchor delay from the
channel estimation perspective has appeared. In Section II of
this letter, we derive an analytical expression for the MSE
performance of phase- rotated linear- interpolation channel
estimation (RICE). Then in Section III, we derive the optimal
anchor delay, where we also comment on the relation between
the COM delay and the optimal delay. As a practical example,
in Section IV, we apply the proposed technique to WiMAX
downlink channel estimation and evaluate its performance
through both analysis and computer simulation.

II. PHASE-ROTATED LINEAR-INTERPOLATION CHANNEL
ESTIMATION AND ITS PERFORMANCE

Consider a typical baseband channel impulse response

(1)

where is the relative delay of the th path and is its complex
gain. Let , where and are, respectively,
the discrete Fourier transform (DFT) size and the sampling pe-
riod used in OFDM/OFDMA signaling. Then the channel fre-
quency response can be expressed as

(2)

where is normalized frequency (in units of OFDM/OFDMA
subcarrier spacing), , and is to
be determined. With RICE, the channel response at an interme-
diate frequency between two pilot frequencies and
is interpolated as

(3)
where and are some channel estimates as-
sumed to have been obtained using the pilot signal.

To find its performance, neglect the channel noise for now and
consider only the modeling error. Assume and
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. Let the pilot subcarriers and
be chosen randomly. Then the MSE in channel estimation at the

th intermediate subcarrier is given by (4) at the bottom of the
page. denotes averaging over all frequencies and

. We get

(5)

and thus

(6)

Taking the Taylor series expansion of , we find that the terms
below order 4 are canceled out in and that the fourth-order
terms dominate its numerical value. Thus

(7)

Averaging over yields the overall MSE as

(8)

where .
Several observations can be made of the last equation. First,

the difference between RICE and the conventional linear-inter-
polation channel estimation (LICE) lies in the value of . For
LICE, and the resulting overall MSE is

(9)

For RICE, the additional freedom in choice of gives it the
ability to surpass the performance of LICE. Secondly, the
overall MSE in either case is dependent on the fourth powers
of the path delays . Thirdly, the overall MSE increases with
the fourth power of the pilot spacing in both cases.

More accurate approximations to the overall MSE can be
obtained by retaining more terms in the Taylor series. For ex-
ample, in the case of LICE, if the channel has a very long delay
spread, then a sixth-order approximation may provide signifi-
cantly better accuracy as follows:

(10)

where .

III. ESTIMATION OF THE OPTIMAL ANCHOR DELAY

To find the optimal anchor delay, differentiate with respect
to and set the result to zero. Let the resulting delay be termed
the MSE delay and denoted . We get

(11)

However, to solve it requires knowing and , which
are available only after channel estimation. To sidestep this
problem, note that an equivalent cost function to can be
formulated in terms of as

(12)

Since

(13)

we have

(14)

, ,

, and collects the terms that are not a function
of . Note that, in obtaining (14), we have tacitly assumed the
presence of a number of equally spaced “pilot trios.” This is not
a fundamental limit to the proposed technique, as a more general

(4)
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form of (14) can be derived for arbitrary pilot structures. For
space reason, we omit its discussion.

To find the MSE delay, one way is to solve the equation
for . This leads to the equation

(15)
where and , . Letting

, we can convert the equation to

(16)

in which , ,
, , and

. Quartic equations such as this have a known
general solution whose calculation involves a few elementary
arithmetic operations and the computation of several square
roots and cubic roots [4].

An alternative method, perhaps simpler than solving the
quartic equation, is to search over a range of values of (or
equivalently, ) for the one that minimizes . The search range
does not have to form a continuum but can be discrete, for by
(8), a little change in would not change the overall MSE by
much. Experience shows that a resolution in on the order of

to is sufficient. Also, we only need to search over
the range . Moreover, the system is
usually designed such that the channel coherence time would
span at least a few OFDM/OFDMA symbols. Then would
stay relatively close from one symbol to the next. Hence, the
search range for each subsequent symbol can be narrowed to
a small region near the current solution. Depending on the
channel condition, we may even update the anchor delay only
once every few OFDM symbols.

A. Relation of COM Delay to MSE Delay

Consider a design objective that minimizes not the MSE but
the variation of with frequency in some sense as follows:

(17)

The value of that minimizes this function is given by

(18)

which is the COM of the path energies. Approximating
by , we obtain

(19)

which is the estimator proposed in [2]. Therefore, the COM
delay minimizes a different objective than the MSE and gives
a solution that is suboptimal in the MSE sense.

Fig. 1. Cluster structure in Mobile WiMAX downlink and corresponding
channel estimation method.

IV. APPLICATION TO WIMAX DOWNLINK CHANNEL

As a practical example, consider the OFDMA Mobile
WiMAX downlink. In partial usage of subchannels (PUSC)
transmission, the transmitted signal is made of some “clusters”
where a cluster consists of 14 consecutive subcarriers with
alternating structures in two successive OFDMA symbols, as
illustrated in the dashed rectangle in Fig. 1.

Let denote the channel response at subcarrier of
symbol , where and , and consider
channel estimation for symbols 2 and 3. Consider the following
estimation method, which makes use of information from the
previous and the next symbols: 1) do least-squares (LS) channel
estimation at pilot subcarriers (which simply divides the re-
ceived signal value by the pilot value at each pilot subcarrier
to obtain the channel response estimate at that frequency); 2)
do linear interpolation along the time axis to obtain ,

, , and (as indicated by the dash-dot
arrows in Fig. 1); 3) estimate one single anchor delay for both
symbols 2 and 3 using the available channel estimates so far; and
4) perform RICE to obtain channel estimates for the remaining
subcarriers in the two symbols (as indicated by the dotted ar-
rows in Fig. 1).

As can be seen, some slight modifications of the basic method
are made to accommodate the particular pilot structure. First,
in step 2, time averaging is used to obtain additional reference
points for RICE in symbols 2 and 3. Secondly, though not nec-
essary, in step 3, only one anchor delay is calculated for both
symbols. Lastly, in step 4, we estimate
by phase-rotated linear extrapolation (rather than interpolation)
using and . The equation is a simple modifica-
tion of (3) and is thus omitted. Note also that a corresponding
LICE version of the method is obtained by omitting step 3 and
letting in step 4.

Incidentally, we note that due to the given signal structure,
linear-interpolation channel estimation can perform better than
higher-order methods such as cubic interpolation [2] and raised-
cosine interpolation [5]. Compared to linear minimum mean-
square error interpolation [2], it also strikes a competitive bal-
ance between performance and complexity.

A. Performance Analysis

Four factors contribute to the channel estimation error, which
are: channel noise (assumed additive white Gaussian, i.e.,
AWGN), model error from time-domain interpolation, model
error from frequency-domain interpolation, and anchor delay
estimation error. It turns out that we can disregard the anchor
delay estimation error because in a low signal-to-noise ratio
(SNR), the channel estimation error is dominated by the contri-
bution from AWGN, whereas in a high SNR, the anchor delay
can be estimated accurately. Thus, we only need to consider
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the effects of the other three factors. For space reason, we only
give an outline of the analysis.

Let denote the average MSE in channel estimation
at subcarrier in symbol , where the average is taken over
all channel realizations. In step 1 of the proposed method, the
estimation error comes from AWGN only. As the pilots are
BPSK-modulated, we have , where

and is the variance of the AWGN. For step 2, both the
AWGN and the time-domain model error contribute to the
estimation error. We have , where

and is the model error
from time averaging, given by

(20)

Assume that the paths are Rayleigh faded. Then

(21)

, is the peak Doppler shift of path times the
OFDM/OFDMA symbol period, is the Bessel function of
the first kind of order 0, and the last expression is obtained by
approximating the Bessel function with second-order Taylor se-
ries expansion. Note that is independent of both and . Fi-
nally, for step 4, we get

(22)

where is as given in (8) for RICE or in (9) for LICE. As to
and , we have

(23)

where denotes the MSE in channel estimation by phase-
rotated linear extrapolation to a distance of subcarrier spac-
ings. By a similar derivation to (7), we get

(24)

For conventional non-phase-rotated extrapolation, .
Taken together, the average MSE per data subcarrier in the

estimated WiMAX downlink channel is approximately

(25)

B. Numerical Results

We simulate WiMAX downlink transmission with a 2.5-GHz
carrier, 10-MHz bandwidth, 1024-point DFT, and 128-point
cyclic prefix. The user channels are 3-path channels with power
profile (in dB) and delay profile (in
samples), which are based on the SUI-5 channel model [6].
The original SUI channels are quasi-static, but we consider
a 100 km/h mobile speed, corresponding to .
The simulated channels are block time-varying, with each

Fig. 2. Normalized MSE (relative to channel power gain) in Mobile WiMAX
downlink channel estimation, where “sim.” stands for “simulation” and “anal.”
for “analysis.”

path simulated using Jakes’ model. We assume perfect symbol
timing, that is, the receiver acquires the timing of the first path
accurately. In RICE, the anchor delay is obtained by the search
method with resolution.

Fig. 2 shows the channel estimation MSEs under different
methods. For RICE, the analytic results based on fourth-order
approximation match the simulation results closely under both
the COM delay and the MSE delay. For LICE, the sixth-order
approximation gives a better match. At low SNRs, AWGN dom-
inates the performance, thus the nearly slopes in the curves
in the low SNR region. Both LICE and RICE show error floors
at high SNR values due to model error, but for RICE with MSE
delay, the floor is the lowest.

V. CONCLUSION

We considered the phase-rotated linearly interpolative
channel estimation technique for OFDM and OFDMA systems.
We showed that a key performance issue was the selection of
the anchor delay, particularly when the channel had a large
delay spread. We derived a method to estimate the optimal
anchor delay. As a practical example, the proposed technique
was adapted and applied to OFDMA Mobile WiMAX down-
link channel estimation. Analysis and simulation both showed
that the proposed scheme could yield the lowest model error
and thus result in better performance than conventional linear
interpolation and a previously proposed method of phase-com-
pensated linear interpolation.
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