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Abstract—Visual data comprise of multiscale and inhomogeneous signals. In this paper, we exploit these characteristics and develop a

compact data representation technique based on a hierarchical tensor-based transformation. In this technique, an original

multidimensional data set is transformed into a hierarchy of signals to expose its multiscale structures. The signal at each level of the

hierarchy is further divided into a number of smaller tensors to expose its spatially inhomogeneous structures. These smaller tensors are

further transformed and pruned using a tensor approximation technique. Our hierarchical tensor approximation supports progressive

transmission and partial decompression. Experimental results indicate that our technique can achieve higher compression ratios and

quality than previous methods, including wavelet transforms, wavelet packet transforms, and single-level tensor approximation. We have

successfully applied our technique to multiple tasks involving multidimensional visual data, including medical and scientific data

visualization, data-driven rendering, and texture synthesis.

Index Terms—Multilinear models, multidimensional image compression, hierarchical transformation, tensor ensemble approximation,

progressive transmission, texture synthesis.

Ç

1 INTRODUCTION

WITH advances in imaging technologies—such as CCD,
laser, magnetic resonance, and diffusion tensor—and

physically based solid and fluid simulation technologies,
new visual data of multiple dimensions have been
produced at an unprecedented rate and scale. These new
technologies bring new challenges to existing visual data
modeling and processing techniques. One of the funda-
mental and challenging problems is how to efficiently
represent, analyze, and visualize such a vast and ever
growing amount of visual data.

Visual data exhibit two important intertwined character-

istics. First, they comprise of signals at many different scales

or frequencies. For example, we can decompose a compo-

site signal into a series of cosine waves using the Fourier

transform. Such decomposition in the frequency domain

represents the original signal as a superposition of simpler

elementary components at distinct frequencies. Second,

these signals have spatially inhomogeneous magnitudes. If

we adaptively subdivide the spatial domain, it is possible to

approximate the original signal as a piecewise smooth

function, which has a more or less uniform magnitude over

each local region. Existing techniques, such as wavelet

transforms, have successfully exploited both of the afore-
mentioned characteristics to achieve a transformation that is
local in both frequency and space domains. As a result of
such decomposition and transformation, the inherent
structures of the original signal become better exposed to
compression. One important aspect of such inherent
structures is that even though the original signal appears
inhomogeneous, its elementary components at different
frequencies or local regions exhibit correlation [1]. Further
operations performed on these components can remove
redundancy and achieve compact representation. There are
at least two possible operations we can perform. First,
correlated components can be grouped together and
represented collectively in a lower dimensional space to
remove redundancy. Second, a component can be simply
pruned if its magnitude is negligible. Such processing gives
rise to significantly reduced size and dimensionality of a
data set and, overall, reduced computational and represen-
tational complexity.

Multilinear models based on tensor approximation have
received much attention recently. They are capable of
generating a more compact representation of multidimen-
sional data than traditional dimensionality reduction
methods. In this paper, we exploit the aforementioned
characteristics of visual data and develop an analysis and
representation technique based on a hierarchical tensor-
based transformation. In this technique, an original multi-
dimensional data set is transformed into a hierarchy of
signals to expose its multiscale structures. The signal at each
level of the hierarchy is further divided into a number of
tensors with smaller spatial support to expose its spatially
inhomogeneous structures. These smaller tensors are
further transformed and pruned using a tensor approxima-
tion technique to achieve a highly compact representation.

Our hierarchical tensor approximation has two signifi-
cant advantages. First, it can achieve far higher quality than
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wavelet transforms at large compression ratios. In compar-
ison to a traditional multiresolution analysis that simply
projects signals at various different resolutions onto a
prescribed basis that was obtained without any specific
knowledge of the data, our hierarchical approximation
actually adopts bases specifically tailored for the character-
istics of the data currently being approximated. Our high-
level approach is thus consistent with a rich line of research
on basis pursuit that seeks to find a dictionary that is
adapted to the particular signal at hand [2]. Second, this
hierarchical tensor-based representation facilitates progres-
sive or partial data transmission and visualization. By
transmitting the compressed data level by level, the receiver
can quickly view the low-resolution versions first and
decide whether it is worthwhile to wait for higher
resolution details. In addition, if visualization only concerns
a portion of the original data set, the subdivided tensors at
each level support partial transmission and decompression
and, hence, faster response time to user requests.

We have successfully applied our new hierarchical
tensor approximation (Fig. 1) in multiple tasks, including
medical and scientific data visualization, data-driven
rendering, and texture synthesis.

2 BACKGROUND AND RELATED WORK

A real Nth-order tensor A 2 <n1�n2�...�nN can be consid-
ered as an element of a composite vector space
Rn1 �Rn2 � � � � �RnN , where we call each Rni an elemen-
tary vector space, and � denotes the Kronecker product
of vector spaces. The dimensionality of the ith elementary
vector space is ni. Let us first review the basic tensor
approximation techniques, including rank-r approxima-
tion and rank-ðr1; r2; . . . ; rNÞ approximation.

A rank-r approximation of A is formulated as

Â ¼
Xr

j¼1

bj �1 u
ð1Þ
j �2 u

ð2Þ
j � � � � �N u

ðNÞ
j ; ð1Þ

where bj is a scalar coefficient, each u
ðiÞ
j is simply a column

vector of lengthni, and�k represents the k-mode product of a
tensor by a matrix.1 The column vectors, fuðiÞj g

r
j¼1, are not

necessarily orthogonal to each other. It is possible to devise a
simple greedy algorithm to suboptimally solve the basis
vectors in a sequential order. A more efficient algorithm for
rank-r approximation can be found in [3]. When r is small, the
scalar coefficients along with their associated basis vectors
give rise to a compact representation of the original tensor.

A rank-ðr1; r2; . . . ; rNÞ approximation of A is formu-
lated as

~A ¼ B �1 Uð1Þ �2 Uð2Þ � � � � �N UðNÞ; ð2Þ

where each basis matrix UðiÞ 2 <ni�ri , and the core tensor
B 2 <r1�r2�����rN . The column vectors of each UðiÞ are
orthonormal to each other. Once the basis matrices are
k n o w n , B ¼ A�1 Uð1Þ

T

�2 Uð2Þ
T

� � � � �N UðNÞ
T

. W h e n
r1; r2; . . . ; rN are sufficiently small, the core tensor and the
basis matrices together give rise to a compact representa-
tion. The Alternative Least Square (ALS) algorithm was
used in [4] and [5] to solve the optimal basis matrices given
their reduced ranks. In each iteration, ALS optimizes only
one of the basis matrices while keeping others fixed. A
closely related concept is the N-mode SVD [6], which also
decomposes a tensor into a series of products as shown in
(2). However, the resulting basis matrices in N-mode SVD
are not truncated and, therefore, retain their original ranks.

Tensor algebra has received much attention in computer
graphics and computer vision. The principle of rank-r
approximation has been applied to image coding and
classification in [7]. Concurrent rank-ðr1; r2; . . . ; rNÞ approx-
imation has been applied to similar problems in [8]. In
general, the orthogonality of the basis matrices enables
rank-ðr1; r2; � � � ; rNÞ tensor approximation to remove redun-
dancy among different modalities more effectively than
rank-r approximation. N-mode SVD and tensor approxima-
tion have been applied to 2D face recognition [9] and facial
expression decomposition [10]. Such an approach has been
further generalized to 3D face modeling and transfer in [11].
Tensor-based multilinear modeling has also been applied to
bidirectional texture functions (BTFs) in [12], [13], [14].
Rank-r approximation was used in [12], whereas rank-
(r1; r2; � � � ; rN ) approximation was applied in [13] and [14]. It
has been demonstrated in [14] that rank-ðr1; r2; � � � ; rNÞ
tensor approximation can achieve smaller Root Mean
Squared Errors (RMSE) than Principal Component Analysis
(PCA) given the same compression ratios.

It has been recently demonstrated that non-negative
tensor factorization [15] based on rank-r approximation can
outperform non-negative matrix factorization [16] for
sparse image decomposition. Rank-ðr1; r2; . . . ; rNÞ tensor
approximation has also been generalized to multilinear
clustering [17]. The clustering algorithm in [17] first per-
forms rank-ðr1; r2; . . . ; rNÞ tensor approximation using a
criterion based on pairwise distance, followed by K-Means
clustering on the transformed data. Recently, a related
technique called clustered tensor approximation has been
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Fig. 1. Examples of visual data our hierarchical tensor approximation

can be applied to.

1. The k-mode product of a tensor A by a matrix U 2Jk�nk , denoted by
A�k U, is defined as a tensor with entries ðA �k UÞi1...ik�1jkikþ1...iN

¼P
ik

ai1 ...iN ujkik .



developed and applied to precomputed radiance transfer in
graphics [18]. Note that the most previous applications of
tensor approximation consider the input data as a single-
level or single-resolution multidimensional array without
exploiting its inhomogeneous multiscale structures. The
only exception that does multiscale subdivision is the
sparse matrix approximation method based on H matrices
[19]. This method has been recently applied to compact
visual data representation and acquisition for computer
graphics [20]. We will compare our hierarchical approxima-
tion method with H-matrices [19] in Section 6.

On the other hand, wavelet analysis is inherently a
multiscale analysis tool and has been frequently applied to
visual data compression [21], [22], [23], [24]. Such wavelet-
based compression only recursively decomposes the low-
frequency components at each scale onto the coarser levels.
Efforts have been made to recursively decompose both the
low-frequency and high-frequency components at each
scale [25], [26]. Such a wavelet packet technique constructs
an overcomplete collection of wavelet bases and then
chooses a subset of the bases that most compactly
approximate the input signal. Even though these bases are
adaptively obtained, they are still convolutions of input
signals (coefficients) with prescribed filters. Therefore,
unlike the bases in tensor approximation, they are only
scale adaptive. When wavelets are applied to multidimen-
sional signals, the bases are typically formed as tensor
products of the one-dimensional bases. As a result, the
multidimensional bases are axis aligned. There has been
much work on developing more powerful oriented wavelet
bases for multidimensional spaces [27], [28], [29]. However,
such bases are still prescribed filters that cannot be adapted
to specific data, and the gained compression efficiency over
axis-aligned bases is limited.

3 TENSOR ENSEMBLE APPROXIMATION

In many situations, we need to simultaneously approximate
an ensemble of tensors, and most often, these tensors have
strong correlations. For example, a multidimensional array
of color values or velocity vectors gives rise to three scalar
tensors for the three color channels or three components of
the vectors. As we know, color response curves have much
overlap with each other and velocity components need to
satisfy certain physics-based equations. As a result, these
scalar tensors have strong correlations with each other. As
will be discussed in the next section, we also subdivide a
large tensor into smaller ones and approximate them
collectively because these subdivided tensors have local
spatial support and may share similar basis matrices among
each other.

Suppose the list of tensors that need to be approximated
are A1;A2; � � � ;Am, where m is the number of tensors and
Ai 2 <n1�n2�...�nN , and we look for a rank-ðr1; r2; . . . ; rNÞ
approximation of each Ai, which is denoted as ~Ai. Because
of correlations and redundancies among this list of tensors,
approximating each of them separately is suboptimal. We
move one step further and approximate all these tensors
collectively. To achieve this goal, we organize these
ml Nth-order tensors into an ðN þ 1Þth-order tensor G 2
<n1�n2�...�nN�m and obtain a rank-ðr1; r2; . . . ; rN; rNþ1Þ tensor

~G as its approximation using the ALS algorithm. Note that
rNþ1 � m. This approximation is compactly represented
using N þ 1 basis matrices, Uð1Þ; � � � ;UðNÞ;UðNþ1Þ, and a
core tensor H. That is,

~G ¼ H�1 Uð1Þ �2 Uð2Þ � � � � �N UðNÞ �ðNþ1Þ U
ðNþ1Þ; ð3Þ

where Uð1Þ 2 <n1�r1 ; � � � ;UðNÞ 2 <nN�rN and UðNþ1Þ 2 <m�rNþ1

andH 2 <r1�r2�����rN�rNþ1 . When necessary, it is actually quite

convenient to extract the core tensor Bi of each Nth-order

subtensor ~Ai out of this ensemble representation. Letu
ðNþ1Þ
i be

the vector representing the transposed ith row of UðNþ1Þ.

Then,

Bi ¼ H�ðNþ1Þ u
ðNþ1ÞT
i : ð4Þ

We have compared our tensor ensemble approximation
against individual tensor approximation. Fig. 2 shows one
of such comparisons on texture images. In this example, the
original image is partitioned into 16 blocks, each of which
has three color channels. Our ensemble approximation
models the data as a list of 48 subtensors, approximates
them collectively, and achieves a peak signal-to-noise ratio
(PSNR)2 of 26.17 at 87.5 percent compression rate. On the
other hand, individual approximation needs to store a
distinct set of basis matrices for each color channel and each
subtensor even when these bases are similar and can only
achieve a PSNR of 20.13 at the same compression rate. Such
a difference is primarily caused by the excessive basis
overhead in individual approximation.

4 HIERARCHICAL TENSOR APPROXIMATION

Given a collection of multidimensional data sets with the
same size and dimensionality, our multilevel approximation
algorithm produces a compact hierarchical representation
based on tensor approximation by removing the redundan-
cies among different data sets, as well as within each data set.
In this section, we first introduce a lossless hierarchical
transformation of multidimensional matrices or tensors. This
transformation decomposes the original data into multiple
levels and removes the redundancy at each level by
exploiting the correlation among different spatial regions.
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2. PSNR ¼ 20 log10
Range of Signal

RMSE .

Fig. 2. A comparison of a reconstructed SPONGE texture from both
collective and noncollective tensor approximations. (a) Original image.
(b) A reconstructed image from the noncollective approximation. (c) A
reconstructed image from our collective approximation. (b) and (c) share
the same compression rate that is 87.5 percent.



To exploit spatial inhomogeneity of the original data, further
lossy approximation (quantization and pruning) is per-
formed on the resulting multilevel data. These two steps
together give rise to a very compact representation.

4.1 Hierarchical Transformation of Tensors

The basic idea of hierarchical transformation is to first
recursively partition the entire domain into smaller blocks
and define a truncated tensor-product basis for each
block. Every point in the domain is then covered by a
series of blocks with increasingly larger scales. The basis
over each of these blocks can provide a partial approx-
imation of the data item at that point. The summation of
these partial approximations is the actual approximation
of the data item. Let the input data set be a multi-
dimensional array defined by the tensor, A 2 <n1�n2�...�nN ,
where we assume ni ¼ 2ki . Let the set of indices for the
ith mode be Ii ¼ ½0; 1; . . . ; ni � 1�. The domain of the input
data set is then defined as the Cartesian product of these
sets of indices, D ¼ I0 � I1 � � � � � IN . We perform recur-
sive binary partition over each index set so that the
original data set is at level 0, and at level l, each index set
has been partitioned into 2l subsets. For example, Ili;j ¼
½j2ki�l; . . . ; ðjþ 1Þ2ki�l � 1� represents the jth subset of the
ith mode at level l. As a result, at level l, the original
domain is subdivided into 2Nl blocks. The block
Dl
½j1;j2;...;jN � represents Il1;j1

� Il2;j2
� . . .� IlN;jN .

We define a common set of truncated basis matrices for

the blocks at each level. The basis matrices for the blocks at

level l are denoted as Ul;ð1Þ;Ul;ð2Þ; . . . ;Ul;ðNÞ, where Ul;ðiÞ 2
<2ki�l�rli with rli � 2ki�l. We further define a tensor

Pl½jl
1
;jl

2
;...;jl

N
� 2 <2k1�l�2k2�l�...�2kN�l over the block Dl

½jl
1
;jl

2
;...;jl

N
� at

level l. There is a core tensor Ql
½jl

1
;jl

2
;...;jl

N
� 2 <r

l
1�rl2�...�rl

N so that

Pl½jl
1
;jl

2
;...;jl

N
� ¼ Q

l
½jl

1
;jl

2
;...;jl

N
� �1 Ul;ð1Þ �2 Ul;ð2Þ � � � � �N Ul;ðNÞ:

ð5Þ

Let Aða1; a2; . . . ; aNÞ be an element of the original tensor
A defined by the indices a1; a2; . . . ; aN with 0 � ai < ni,
1 � i � N . We can form an approximation of this element
using the aforementioned core tensors and basis matrices at
different levels. There is only one core tensor from each
level in this approximation. The approximated element can
be expressed as

~Aða1; a2; . . . ; aNÞ ¼
XL

l¼0

Pl½bl
1
;bl

2
;...;bl

N
� c

l
1; c

l
2; . . . ; clN

� �
; ð6Þ

where bli ¼ bai=2ki�lc and cli ¼ ai mod 2ki�l for 1 � i � N .

If the ranks of the basis matrices at all levels, frlig
L;N
l¼0;i¼1,

are given, the basis matrices and core tensors at all levels
can be potentially solved by minimizing the following
summed squared errors:

X

a1;a2;...;aN

k ~Aða1; a2; . . . ; aNÞ � Aða1; a2; . . . ; aNÞk2: ð7Þ

However, data compression is in general a more complicated
problem than approximation because compression needs to

deal with two conflicting goals, reducing approximation
errors while achieving higher compression ratios. Further-
more, the relative importance of these two goals changes for
different applications and, thus, different objective functions
can be formulated. For example, one objective could be
minimizing the approximation errors when the compression
ratio has a lower bound or achieving the highest compression
ratio when the PSNR has a lower bound. Since the ranks of the
basis matrices are directly related to the compression ratio,
they need to be adjusted as well.

Directly minimizing (7) with respect to the ranks and
basis matrices of the subdivided tensors at all levels would
be extremely computationally expensive if possible at all.
Therefore, we take a greedy approach and construct the
basis matrices of the subdivided tensors level by level from
top to bottom. The original input tensors are placed at the
top level, which is also the first level. At each level l, there is
an initial list of the Nth-order tensors, Al1;A

l
2; � � � ;A

l
ml

. We
exploit the correlation among these tensors and remove
redundancy by performing tensor ensemble approximation,
as discussed in the previous section. We only perform an
incomplete approximation in the sense that the ranks of the
truncated basis matrices are set to be smaller than
necessary, and the residual error is not necessarily reduced
to the desired level.3 From this incomplete approximation,
we can obtain an approximated version, ~Ali, of each tensor
Ali. A residual tensor, Eli ¼ A

l
i � ~Ali, is subsequently defined

for each tensor. Each residual tensor is then subdivided into
up to 2N smaller tensors by dividing the index set of each
mode in half unless an index set has only one element.
These subdivided residual tensors are passed to the next
lower level in the hierarchy for further approximation. Such
tensor subdivision and approximation can be repeated until
all index sets have only one element. It can be easily verified
that the original tensors at the top level can be faithfully
reconstructed by first reconstructing the (residual) tensors
at each level from their corresponding core tensors and
basis matrices and then accumulating the tensors at all
levels together (Fig. 3).

Meanwhile, in our hierarchical transformation, we need
to determine the ranks of the basis matrices at each level.
One potential solution would be a global nonlinear
optimization with the ranks at all levels as unknowns. Such
a large-scale nonlinear optimization is extremely expensive.
Since there are many unknowns, the optimization is also
very likely to be trapped in local minima. Inspired by the
fact that the size of the residual tensors at different levels
follows a geometric progression, we have designed a
relatively efficient scheme that achieves a suboptimal
solution. At the first level, this scheme chooses the set of
desired ranks, r1

1; r
1
2; . . . ; r1

N , for the basis matrices either
automatically or under user guidance. At subsequent levels,
each of the ranks follows a geometric progression. Though
not optimal, this scheme significantly reduces the number
of adjustable parameters and has been very effective in our
experiments. The common ratio we used for the geometric
progression was always set to 0.5. This is because with this
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3. A possibly large local error at one hierarchy level is likely to be well
captured and compensated at the next finer level since the magnitude of the
residual will influence the choice of the best basis on the finer level.



common ratio, the size of the core tensors at different levels
follows the same geometric progression as the size of the
original residual tensors, and thus, the compression ratio
achieved at each individual level remains approximately
the same, which further makes it possible to automatically
provide a rough estimation of the ranks at the top level once
a desired compression ratio is given. Experimental results
shown in Fig. 4 confirm that a common ratio of 0.5 is at least
near optimal.

4.2 Nonlinear Approximation

To achieve a more compact representation, we need to
perform further lossy approximation of the original data
from the above hierarchical transformation. We achieve this
goal by performing uniform quantization on the core tensor
coefficients followed by a tensor-pruning step. Coefficients
with a magnitude smaller than the quantization step are set

to zero. The elements of the basis matrices are also
uniformly quantized. In our experiments, we always use
8 bits per element for the basis matrices and 8-20 bits per
coefficient for the core tensors. After quantization, we
further perform a pruning step on core tensors by
introducing a separate pruning threshold, which can simply
be zero. For each core tensor Bli defined in (4), we compute
the square of each coefficient and obtain the summation of
these squared coefficients. If the summation is less than the
pruning threshold, the entire core tensor is eliminated. If the
pruning threshold is set to zero, a core tensor is eliminated
only when all of its coefficients have been quantized to zero.
Note that the number of residual tensors increases when we
descend to lower levels of the hierarchy. Therefore,
effectively eliminating the entire core tensors at lower
levels plays a crucial role in achieving high compression
ratios using our hierarchical transformation. This tensor-
pruning step bears resemblance to coefficient pruning in
wavelet-based image compression [21], [22]. Since the input
data has spatially varying details, the coefficients of the core
tensors corresponding to smooth regions of the data are
likely to be small. Thus, these core tensors are more likely to
be pruned. The trade-off between the compression ratio and
the PSNR is achieved by adjusting the tensor-pruning
threshold. Given a PSNR and a quantization step, we
perform a search for the tensor-pruning threshold that can
achieve the desired PSNR. We currently do not further
encode the coefficients of the remaining core tensors
because the focus of this paper is on the effectiveness of
hierarchical transformation and approximation in compact
data representation. More importantly, applications such as
real-time rendering only require data reduction but not
coding. In fact, coding may complicate matters in such
applications since decoding consumes extra computing
resources. When coding is really necessary, there are many
existing techniques such as arithmetic coding, entropy
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Fig. 3. In our hierarchical tensor transformation, an original tensor is represented as the summation of incomplete tensor approximations at multiple

levels. The tensors at each level are subdivided residual tensors passed from the higher level.

Fig. 4. The dependency of PSNR on the common ratio among ranks at

different levels. Experimental results for two data sets are shown here. A

fixed compression ratio is used for each data set. These results confirm

that a common ratio of 0.5 is (near) optimal.



coding, and zero-tree coding [22] from which one can
choose.

5 APPLICATIONS AND EXPERIMENTS

In this section, we discuss the potential applications of our
hierarchical tensor approximation in multidimensional data
visualization, data-driven graphics rendering, and texture
synthesis. We further conduct experiments and compar-
isons to demonstrate that our technique exhibits advantages
in all these areas.

5.1 Multidimensional Data Visualization

There has been an increasing amount of multidimensional
medical and scientific data that need to be visualized and
analyzed. Such data include 3D or 4D medical images and
4D time-varying multivariate volume data from scientific
computing. Effective data compression possibly with
progressive transmission would be desired when visual
data needs to be communicated between two remote hosts
over a link with limited bandwidth. When the amount of
original data used by an interactive application exceeds the
memory capacity, it would be desired to perform computa-
tion directly using a compressed form to reduce data
accessing cost. Compression based on our hierarchical
tensor approximation is suited for such purposes because
it can achieve high compression ratios, support progressive
transmission, and allow partial decompression.

To measure and compare compression performance, we
conducted experiments on a 4D time-varying scientific data
set and the Visible Human data set. The 4D time-varying
data set is a simulated volume sequence of five jets. Every
frame in the sequence is a multivariate 3D volume with a
scalar density and energy value and a velocity vector at
each voxel. The resolution of the volume is 128� 128� 128.
The color cryosection images of the Visible Human data set
consists of 1,871 scans of the entire body taken at 1 mm
intervals and amounts to 15 Gbytes. We have compared our
hierarchical tensor approximation against wavelets, wavelet
packet analysis, and the single-level tensor approximation
technique in [14] on the velocity field of the time-varying
volume data set and a subset of the color cryosection images
of the Visible Human data set. We construct multidimen-
sional wavelet bases using one-dimensional biorthogonal
wavelet bases from JPEG 2000 [30]. More specifically, given
a pair of one-dimensional scaling function and wavelet
function, we form all possible tensor products between
these two 1D functions to obtain a complete set of separable
multidimensional wavelet basis functions. The wavelet
packet algorithm we use follows [26]. In our experiments,
each data set is initially constructed as three third or fourth-
order tensors with one tensor for each color channel or
velocity component. In our hierarchical approximation,
these three tensors are placed at the top level and
approximated collectively. There are typically four to five
levels in the hierarchy. We did not perform any optimiza-
tion over the parameters. The reduced ranks were chosen in
a straightforward way. We ran five tests with different
reduced ranks for each data set. The reduced ranks used for
the top-level approximation are, respectively, 1/2, 1/4, 1/8,

1/16, and 1/32 of the original rank. The common ratio
between the ranks at two adjacent levels is always 0.5.

Figs. 8a and 8b show comparisons of compression ratios
that can be achieved by each of the aforementioned four
techniques over a wide range of PSNR values. Fig. 8a has the
results for a subset of the Visible Human data set, and Fig. 8b
has the results for the velocity field of the time-varying
volume data set. Except for very few large PSNR values, our
hierarchical tensor approximation achieved the highest
compression ratios. Moreover, in most cases, the compression
ratio it can achieve is at least one order of magnitude larger
than that achieved by the wavelet transform. Meanwhile, our
multilevel technique also maintains a fairly constant im-
provement over a single-level tensor approximation. The
curves in Fig. 8 indicate how the compression ratio and PSNR
depend on the reduced ranks of the basis matrices. In general,
both the approximation error and the compression ratio
increase when the ranks decrease.

Fig. 5 shows visualization results for a cross section of
the original time-varying volume data set and four
reconstructed ones. The original data set is a 4D array of
scalar density values. We apply the same color transfer
function to the four cross sections. If a reconstructed result
is similar to the original data, their visualizations should be
very close to each other. Otherwise, significant deviation in
color will occur. In Fig. 5, the result from our hierarchical
approximation only has very minor color deviations while
achieving a very high compression ratio. The result from
wavelet transform has the most obvious color deviations.
Fig. 7 shows a visual comparison between the single-level
and multilevel schemes on a local region from the Visible
Human data set. The original data has an extruding feature,
which the single-level method has failed to approximate
well, whereas the reconstruction from our multilevel
method still preserves the important details.

Despite the existence of advanced visualization techni-
ques such as direct volume rendering and isosurface
rendering in medical imaging and applications, a popular
method for visualizing multidimensional medical images is
still based on 2D cross sections since all the necessary details
are displayed clearly and can be interpreted in a straightfor-
ward way. Our hierarchical tensor approximation offers
better performance over a single-level approximation in
terms of extracting 2D cross sections from compressed data.
Suppose we have a single-level rank-ðr1; r2; . . . ; rNÞ approx-
imation ofA 2 <n1�n2�...�nN . The time complexity for decom-
pressing this tensor isOðminðr1; r2; . . . ; rNÞ�iniÞ. To achieve a
reasonable RMSE, minðr1; r2; . . . ; rNÞ needs to be propor-
tional to minðn1; n2; . . . ; nNÞ. On the other hand, our hier-
archical technique only needs to decompress the subdivided
tensors that intersect with the intended cross section at each
level. Since the subdivided tensors become smaller when we
descend in the hierarchy, the decompressed data points
become more and more concentrated around the cross section
and the decompression cost drops significantly. Therefore,
the total decompression cost is dominated by the first level.
Our experiments indicate that the minimum rank at the first
level of a hierarchical approximation can be one order of
magnitude smaller than the minimum rank of an equivalent
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single-level approximation. Thus, our hierarchical method

can achieve significant speedup in decompression.
Although visualization is not the focus of this paper, we

have built a simple visualization system based on viewing 2D
cross sections of a multidimensional data set. We have
conducted experiments on direct visualization from com-
pressed data using this system. To achieve faster decompres-

sion, we initially subdivide an original data set into smaller
blocks with a dimensionality of 64 for each elementary vector
space. These blocks form the list of tensors at the top level of
our hierarchy. They are approximated and further subdi-
vided at lower levels. During each step of visualization, only
those blocks intersecting with the intended cross section are

decompressed. Visualization speed is dependent on the
number of levels we need to decompress. Given a data set
with 80 blocks on the top level, our system can decompress all
levels and continuously display cross sections at five frames
per second on a 3.0-GHz Pentium processor. An example of
progressive decompression of a subset of the Visible Human

data set is shown in Fig. 6.

5.2 Data-Driven Rendering

Data-driven approaches have been a popular choice in
rendering recently, including image-based rendering [31],
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Fig. 5. A comparison of the scalar density field of a time-varying volume data set reconstructed from a biorthogonal wavelet transform, a
corresponding wavelet packet transform, the single-level tensor approximation in [14], and our hierarchical tensor approximation. The resolution of
the original time-varying volume data is 128� 128� 128. (a) A visualization of a cross section of an original volume. (b), (c), (d), and
(e) Visualizations of three reconstructed volumes at the same cross section. The volumes in (b), (c), (d), and (e) were reconstructed from the wavelet
transform, the single-level tensor approximation, our multilevel tensor approximation, and the wavelet packet transform, respectively. They share the
same compression ratio, that is, 1,200. The same color transfer function is applied to all four volumes in (a), (b), (c), (d), and (e). Our result in (d)
agrees with the original data very well. The result from the wavelet transform deviates most significantly from the original, which indicates a large
RMSE. (f) and (g) show the magnified (�10) residual images of (c) and (d), respectively. (a) Original. (b) Wavelet PSNR=35.12. (c) Single-level
PSNR=43.56. (d) Multilevel PSNR=45.41. (e) Wavelet Packet PSNR=39.48. (f) Residual of (c). (g) Residual of (d).

Fig. 6. Our hierarchical tensor approximation supports progressive
transmission and decompression. Shown here are four images of a
cross section in a 3D medical data set. They have progressively more
details. These four images correspond to the decompressed data at four
different levels of a hierarchical approximation.



[32], BTFs [33], [34], and precomputed radiance transfer
[35], [18]. These approaches typically involve a large
amount of acquired or precomputed data and rely on
compact representation of visual data or their transfer
operators to achieve efficient rendering of final images. Our
hierarchical tensor approximation has the potential to
improve the efficiency in data representation for all these
approaches. We choose to measure the performance of our
technique on BTFs because there has been extensive
research on representing BTFs using tensor approximation
[12], [13], [14], and these previous results can serve as a base
for comparison.

Since it has been demonstrated in [14] that their single-
level tensor approximation can outperform PCA and
TensorTexture [13], we only compare our hierarchical
tensor approximation against the wavelet bases used in
JPEG 2000 [30], a wavelet packet algorithm [26], and the
single-level tensor approximation scheme in [14] on the BTF
data sets presented in [36]. In our experiments, the
parameter settings we use for compressing BTFs are the
same as those we use for compressing the Visible Human
data set and the 4D time-varying scientific data set.
According to the results shown in Figs. 8c and 8d, our
hierarchical approximation achieves the highest compres-
sion ratio for almost all PSNR values we have tested. It
maintains a significant improvement over single-level
tensor approximation. Wavelet transform has the worst
overall performance. Given the reconstructed images
shown in Fig. 9, we can also conclude that our technique
can effectively preserve the fine details of the BTF and
achieve the best visual quality among the four.

In all experiments, the compression ratios for the wavelet
transform are optimistically estimated according to the
number of nonzero coefficients after quantization without
considering the cost in coding their positions. We compute
the compression ratios for the single-level tensor approx-
imation according to the size of its basis matrices and core
tensor. For our multilevel tensor approximation, we
estimate the compression ratios according to the amount
of storage required by all remaining tensors and basis
matrices in the hierarchy after pruning.

5.3 Texture Synthesis

Template matching is the most frequent and costly step in
most contemporary texture synthesis algorithms, especially

in neighborhood-based texture synthesis [37], [38], [39],
[40], [41]. It can be formulated either as a convolution or a
nearest neighbor search, which leads to different accelera-
tion schemes such as FFT, kd-trees, or tree-structured vector
quantization. Although such schemes produce acceptable
performance for 2D texture synthesis, they are inadequate
for higher dimensional textures such as 3D dynamic
textures, where every patch is a 3D block with a much
larger number of pixels than in the 2D case. Tensor
approximation proves to be useful here because each 3D
texture block can be considered as a small third-order
tensor itself.

Suppose two 3D texture blocks are represented as two

tensors, P1 and P2. Given three basis matrices with

orthogonal columns and reduced ranks (r1, r2, and r3),

the rank-ðr1; r2; r3Þ approximation of Pi ði ¼ 1; 2Þ is given as
~Pi ¼ Qi �1 Uð1Þ �2 Uð2Þ �3 Uð3Þ, where Qi is the core tensor

of ~Pi. It can be easily shown that

k ~P1 � ~P2k2 ¼ kQ1 �Q2k2: ð8Þ

Since kP1 � P2k2 � k ~P1 � ~P2k2, the summed squared differ-
ences (SSD) between two tensors can be well approximated
by the SSD between their core tensors, which may have a
much smaller size and require much less computation. We
use such tensor approximation to accelerate template
matching in texture synthesis.

In practice, we generalize the multilevel 2D synthesis
algorithm in [42] to 3D dynamic texture synthesis and use
tensor approximation together with kd-trees to perform
nearest block search. The original synthesis algorithm
refines the synthesis result using multiple levels of block
size and texture resolution. Therefore, in a precomputing
stage of our revised algorithm, all sample texture blocks for
the same level are first collectively approximated using
tensors with reduced ranks as in Section 3. The resulting
smaller core tensors are inserted into a kd-tree. We
precompute such a kd-tree for each synthesis level. During
the actual synthesis stage, given a query texture block, we
first compute the core tensor of that query block and then
search the corresponding kd-tree for the nearest core
tensors, which further point to their corresponding original
texture blocks from the sample texture.

We have tested our tensor-based block search technique
on both 2D textures (Fig. 11) and dynamic textures (Fig. 10).
A typical size of the original 3D texture blocks is
32� 32� 32, and we use 5� 5� 5 core tensors to approx-
imate them. Although the number of vectors in a kd-tree is
still the same, the dimensionality of each vector has been
reduced from 32,768 to 125. In our experiments, this
reduction in dimensionality makes each nearest neighbor
search in the kd-tree more than 200 times faster. In
comparison to template matching using 3D FFT, our
accelerated kd-tree search is also at least five times faster,
which makes block-based dynamic texture synthesis more
computationally tractable. Surprisingly, our technique can
achieve the same speedup over FFT even in 2D texture
synthesis. Note that tensor approximation gives rise to a
small amount of error in the texture data. Therefore, the
compression ratio of the tensor approximation should be
chosen carefully.

WU ET AL.: HIERARCHICAL TENSOR APPROXIMATION OF MULTIDIMENSIONAL VISUAL DATA 193

Fig. 7. A comparison of the Visible Human data set reconstructed from
the single-level tensor approximation in [14] and our hierarchical tensor
approximation. (a) A magnified view of a cross section of the nose region.
(b) A reconstructed image from the single-level tensor approximation.
(c) A reconstructed image from our multilevel tensor approximation. (b)
and (c) share the same compression ratio, that is, 15.7.



6 DISCUSSIONS AND ANALYSIS

Resembling a multiresolution analysis such as wavelet

transform, our approximation represents significant and

typically low-frequency components at higher levels of the

hierarchy and less important (high-frequency) components at

lower levels. Because high-frequency components have

smaller spatial support, they can be approximated using

shorter basis vectors. That is one of the reasons why we keep

subdividing the residual tensors from level to level and use

increasingly shorter basis matrices to approximate them.

Shorter basis matrices impose less overhead on storage.
More importantly, traditional multiresolution analysis

simply applies scaled versions of a prescribed basis to

signals at various different resolutions, whereas our

hierarchical approximation extracts basis matrices specifi-

cally tailored for the data being approximated. Therefore,

our method is much better at removing redundancies in a
specific data set. In practice, we have found that the gained
efficiency of our method in representing three or higher
dimensional data surpasses the storage overhead for the
adaptively extracted basis matrices. Note that we count
these basis matrices when computing compression ratios.

As mentioned in Section 2, neither rank-ðr1; r2; . . . ; rNÞ
approximation nor rank-r approximation performs a hier-
archical transformation of the original data. Instead of
reducing the ranks of the basis matrices as in single-level
tensor approximations, our hierarchical approach relies on
eliminating small insignificant core tensors at lower levels
of the hierarchy to achieve compact representations.
Because our technique integrates the incomplete approx-
imations at multiple levels to produce the final approxima-
tion, for the same level of accuracy, the minimum rank of
the core tensor at the first level can be much smaller than
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Fig. 8. Comparisons of data compression ratios achieved on four data sets by a biorthogonal wavelet transform (dotted), a corresponding wavelet
packet transform (dash dotted), the single-level rank-ðr1; r2; . . . ; rNÞ tensor approximation (dashed), and our multilevel tensor approximation (solid).
The data sets include (a) a subset of the Visible Human data set, (b) the velocity field of the 4D time-varying volume data set, (c) a SPONGE BTF, and
(d) a LICHEN BTF. Overall, our hierarchical tensor approximation can achieve the highest compression ratios over a wide range of PSNR values. The
wavelet transform exhibits the worst performance. The adaptive wavelet packet transform is in general better than the original wavelet transform and
can occasionally achieve the highest compression ratios on high-end PSNR values. In many cases, the compression ratio achieved by our technique
is at least one order of magnitude larger than that achieved by the wavelet transform. Meanwhile, our multilevel technique also outperforms a single-
level tensor approximation in all scenarios. Since we use logarithmic scales for compression ratios, a small difference actually represents a
significant improvement. In fact, on the four data sets in (a), (b), (c), and (d), the compression ratios achieved by our technique are, respectively,
41.0 percent, 52.9 percent, 93.9 percent, and 121.8 percent higher than those achieved by the single-level tensor approximation.



the minimum rank of an equivalent single-level tensor
approximation. Although blockwise partitioning of the
original tensor was performed in [14], it was only for the
purpose of out-of-core computing.

Our hierarchical tensor subdivision, on the other hand, is
designed to exploit the inherent multiscale structures of the
data and is performed on the residual tensors that passed
from higher levels. Our hierarchical approximation shares
common intuitions with H-matrices proposed in [19]. None-
theless, there exist important distinctions between the two.

First, in an H-matrix, only the diagonal subblocks and those
subblocks adjacent to them are recursively subdivided. This
restriction has recently been lifted for compressing reflec-
tance fields [20], which nonetheless only adopts a rank-1
tensor to approximate every subblock. Our method, on the
other hand, is designed for compressing generic multi-
dimensional visual data. It subdivides any subblocks when
necessary and approximates every subblock using a more
powerful rank-ðr1; r2; . . . ; rNÞ tensor. Second, H-matrices
only approximate every subblock at the bottom level of the
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Fig. 9. A comparison of the reconstructed BTF images from a biorthogonal wavelet transform, a corresponding adaptive wavelet packet transform,
the single-level tensor approximation in [14], and our hierarchical tensor-based representation. The original SPONGE BTF has 45 views and
60 illumination directions, and the image resolution is 128 � 128. (a) An original BTF image. (b) A reconstructed image from the wavelet transform.
(c) and (f) Reconstructed images from the single-level tensor approximation. (d) and (g) Reconstructed images from our multilevel tensor
approximation. (e) A reconstructed image from the wavelet packet transform. The compression ratio for (b), (c), (d), and (e) is 55, whereas the
compression ratio used for (f) and (g) is 3,922. Overall, our results exhibit the best visual quality under the same compression ratio.

Fig. 10. Synthesis results for dynamic textures. (a) Sample frames from the input sequences. (b) Sample frames from the synthesized sequences.



subdivision tree using a single tensor approximation,
whereas our method does multilevel approximation with a
finer level approximating the residual errors from the coarser
level. As discussed in Section 1, visual data are superposition
of signals at multiple frequencies or scales. It is more effective
to decompose the original data into components with
different scales and then compress these components
separately. Further discussion and comparisons regarding
this can be found by the end of Section 6.1. Third, our method
performs ensemble approximation at each level to further
improve the compression ratio, whereas H-matrices generate
a distinct set of basis vectors for each subblock. Ensemble
approximation makes use of a common set of basis matrices
for multiple subblocks, thus, greatly reduces the basis
overhead.

One limitation of our method is that it is computationally
more expensive than both wavelets and single-level tensor
approximation even though we have taken a relatively fast
greedy approach. On the average, our hierarchical method
is three times as slow as single-level tensor approximation
and 15 times as slow as wavelets.

6.1 Covariance Analysis

At each level of the hierarchical transformation, we perform
tensor ensemble approximation, which can achieve a more
compact representation than individual tensor approxima-
tion when the collection of tensors at each level exhibit a
certain degree of correlation. In the following, we give both
mathematical justification and experimental evidence to
demonstrate such correlation does exist.

Suppose the list of tensors at level l is Al1;A
l
2; � � � ;A

l
ml

,

where ml is the number of tensors and Ali 2 <n
l
1�nl2�...�nl

N .

We unfold each tensor, Ali, into a vector, Xi. Denote the

mean of all these vectors as �X. We further arrange the

mean-subtracted vectors, X̂i ¼ Xi � �X as columns of a

matrix, S, which has a singular value decomposition (SVD),

S ¼ U�VT , where U and V are basis matrices with

orthonormal columns, and � is a diagonal matrix. As we

know, the covariance matrix of S is SST, which is

equivalent to U�2UT .
With modest assumptions, there exists correlation

among different local tensors at the same level of the

hierarchy. First, a common assumption in image compres-
sion is correlation among spatially close pixels [1]. Second,
we assume fXigml

i¼1 are different realizations (observations)
of the same underlying statistical process, X, which means
different regions from the same data set have shared
frequency-domain characteristics. The second assumption
is supported by the evidences and experimental results in
[1] and [43]. This assumption gives rise to correlation
among the basis vectors used for representing each local
region rather than direct correlation among the data in
different regions. Such correlation among the basis vectors
exists when a small subset of the singular values of S are
more important than the rest, and the column vectors of S
can be reasonably approximated by linear combinations of a
corresponding subset of basis vectors in U. In our
hierarchical approximation, since higher levels already
approximate the large-scale low-frequency components,
the residual tensors at a certain level largely represent
components at a scale equal to or smaller than the scale of
that level. Nevertheless, the second assumption implies
correlation at all scales.

We have performed experiments to verify the existence
of strong correlation among subdivided residual tensors at
each level. In all our experiments, the singular values from
the aforementioned SVD are highly nonuniform, and
typically, 30 percent of the singular values can capture
more than 90 percent of the total residual energy. This
means most of the singular values are close to zero, and the
residuals at each level can be well approximated using a
subset of principal components whose size is less than one
third of the number of residual tensors. Fig. 12 show
correlation results for two of the data sets. Correlation
results for three different levels are shown for these data
sets. As we can see, there exists strong correlation at all
three levels, and the degree of correlation varies slightly
from level to level. In the 4D time-varying data set, the third
level clearly exhibits the strongest correlation while in the
SPONGE data set, the degree of correlation is comparable at
all levels.

We have further compared the degree of correlation with
and without the approximations at higher levels. It turned
out that the correlation among the residual tensors is
slightly weaker than the correlation without higher level
approximations. Nevertheless, it should be clarified that
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Fig. 11. Synthesis results for 2D textures. Small: sample textures. Large: synthesized textures. The resolution of the synthesized textures is

256� 256.



these two correlations should not be directly compared nor
should they be used for predicting the performance of a
compression algorithm. The degree of correlation of the
residual tensors at a specific level is only indicative of the
degree of compression achievable on that level but not the
overall compression of the entire data set. A more accurate
prediction of the overall compression performance should
be based on the total number of tensors surviving pruning
because we need to store a core tensor for each of the
remaining tensors. Our multilevel approximation can
achieve better performance because the residual tensors at
the lower levels tend to have smaller magnitudes than those
tensors without higher level approximation and, thus, are
more likely to be pruned. Pruning lower level tensors is
advantageous because the number of tensors at each level is
exponentially increasing from top to bottom. This predic-
tion has been confirmed by comparisons we have per-
formed between these two schemes. Take the SPONGE data
set as an example. If we set PSNR ¼ 24:97, the compression
ratio achieved by our multilevel approximation is 44.35,
whereas the compression ratio achieved with multilevel
subdivision, but without higher level approximation is only
31.70.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we developed a compact data representation
technique based on a hierarchical tensor-based transforma-
tion. Experimental results indicate that our technique can
achieve higher compression ratios and quality than pre-
vious methods, including wavelet transforms, wavelet
packet transforms, and single-level tensor approximation
on three or higher dimensional visual data. We have
successfully applied our technique to multiple tasks
involving multidimensional visual data, including medical
and scientific data visualization, data-driven rendering, and
texture synthesis.

There exist a few directions for future work. First, on 2D
images, our current method does not perform as well as
wavelets and wavelet packets because our adaptive bases

require a more significant storage overhead in 2D than in
higher dimensions. We would like to investigate adaptive
methods with less basis overhead for the 2D domain.
Second, it is possible to extend tensor ensemble approxima-
tion to tensors across multiple scales and, thus, achieve
even higher compression ratios. However, such a method
would be more computationally expensive since basis
matrices across multiple scales would need to be optimized
simultaneously.
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