FHRERATPEELRE CLET TS 2R

BRI E R R Y RET S BT A#2R %
= ER oy

142 GEI R

ERl T B R

2 % g% % ¢ NSC 100-2221-E-009-137-

o5 Wm0 100087 01 p 3 1014077 31 ¢
HoF o WA AEI ALAES K (9)

—‘J-%’,_;}-j—;,g :;3:47-‘5

?‘.__'ﬁ(

FE LB AR BArimy - Emm AR L 2
iAoy a-Jizem A g g

P& A R O 101& 107 31 p




LR 3

v Mg

FI# BOT $ics8 ko de Az gt > £ 0§ <« RS A
~%g%$’9$§ DI FET - ﬁ@ﬁm{$0»~,
PFETOTHBRBEAEVIFIOELFR LT o pl AR
fs-mBOT:b»;l BRI RS TR R 0 N A
THAHFE LR AEDERT A (dedlcated assets)k | #7
ﬂj%\m«\r;kdxa‘hﬁ (sunk cost) o & 7 B3I F 3R AE {7 ip 8 3L
& BT B AR F;; FIH 0 T Y i
f"BOT%i‘m)}a’ﬁi}”b’g"ﬁV:ﬁ ey Fp_‘ﬁxl‘ﬂ ‘1(13-’3‘4:\
T HE Lﬁa%s‘—mféﬁ s R EEF R ER W AR 1)
ol EFATNNR . RARF BRDE R TR S e
FTILIR ﬁiﬁif‘;'](discounted cash flow model, DCF ) - @
zﬁﬁ*%&ﬂ%%?%oﬁﬁﬁ%@ﬁ%ﬁmﬂﬂﬁﬁw
o LML AR S SFE NS kY FERETY
#-%] (real-option valuation models) °
BAF FEREIRTY 2T LG HBOTF FiEH
BR A oW R AR N IRE $§f§s 3 '% g2 "’" # 0
Fei®n o FuE BT & % 1%: ERREIE = 2 dE ks ﬁ’fﬂfq\% T
Rif e L ERE QR F AR DB FATL 0 78
BEEATEY cw#Fd 47 227 (C hold-ups’ ) ¥ i
Moo T Wi RIEERG Tf% 'L'%xwwoiix £ EH "ff\
T B AT G g I ¢ BB E ik e F gk )
FIRGF AR R REFF P MY EeFEAR T f’f‘:’”’a}f» p\
FUt 0 R T R R BOT% EESCEH I S ﬂ(.z«f'm\—ﬂ ,
EEOREFHPFRD QLT DR - Ko o Ffpr g*ﬁ“
fo R E TR T FREIFRE .:‘4—4 EERITREATRE
&

+
EL

‘fl] o

eF FERETE TS T’ﬁwkﬁafﬁﬁﬂiﬂé e
WEe; LR B REER BB E RS LY B T
RN EREEY uﬁi&&wﬁwkﬁmﬁﬂ’éﬁig%
1&@ iﬂ@m@ 4ok BOT & 57 FEHERTY 2 4

B iR £ wm B E ;I—u%‘..:;%:t&grs '5%:,"35 ?n%
rg’mipi'r%a‘»ﬁ

FESTY s AP T RE B A £ F B 3] (sequential
compound call option valuation model) - F& 3 % # BOT 4%
FLAEAD G REL T ATHHPfR o AT S :t&;}&if'—ifz}g
k}‘/”\*"’r j\:IL p%}@] 1/~{:B_;_'.¥%—5/:\ BOTEF = I% IE L’I‘!E P\_:.Fﬁ;—
2 g &A% MATLAB #2.5¢ % # B SCCO ¢n& ';%’f—n% Ry E
TRBORT RN BEFERTFR DR ELAT o

BOT » 2 4 it ~ 29 RALERMT ~ B %~ B & §
I AR R AT



oo R

W Mg



s

FET R AR

]3'1'

M EAR § Ly

5 BOT A% %

R SRR

B Ea ey

Sequential compound call option valuation of multistage BOT
infrastructure projects under performance bonding

B L
FHFHL:100£82 01p =
iF A LF

SRRy

RE

I+ BOT #is kdads sz g i, £ 4
DARNAHERRTL S ¢ X5 2y
F-BARAAER - R 0 A IO FRE
BaTARHPOL AR 2T 5 < R BOT
PFFBEEFL R0 HEA DEFTR G Fol 8
BEHE LR LY LR T A (dedicated
assets)#x FF #77) = SU Bk & A F(sunk cost) o A 7
A A0 T AR R g;_az];;:fj_ﬁ;ﬁgﬁg

Bl q:};‘—’?w P R EAF xiﬁ BOT & %
Kﬁﬁ? "&r':‘ﬁ‘ﬁ}\]wp ‘ﬁ»,’g‘i(lﬁféﬁ‘kﬁp

KFHERB A > 2 FFD R ESw
AHEE - TEEFFFFRIR LR F B A
& R3FH S 2 4ot IR £ O #03) (discounted cash
flow model, DCF)> = # £ if * > BOT & %=1 -
ﬁﬁﬁ%@ﬁ%&ﬁ@?iﬁﬁﬁu’kﬂﬁpi
A YRR S § e +.3 st
(real-option valuation models) -
BEAR WERBITER D EREF o LR

SBOT F [FE &=L 0 # A8 4wz
EHLEYEANE RN TEEE o oL

BOT 2 % EAfFENETFEAI LD 2
BEFE QR EFHPFATEP DR ZRTL > 7 ¥
PEFEATIEY ¥4 2“2 27 (“hold-ups™) &
Vagfhe T g Rz Ed ‘*f%f_;%'a
THFRLEERF o B AT A I
Bens i e 2 N BgdIf Tt & 3‘\
Erodwfery (Fengl oo Bt o 5
TR G BOT 3 O ¥ ¢ 3 o P
EEORFHFHR D RFT R - Ko
Ji> gﬁd%‘wpi¢m£<.ﬁ”@ap
ERFRZE R ET -

LR TR 2%

i
¥
b7 St
’ ]};C

SRR L EEEIS

ER S R Ny

NSC 100—2221—E—009—137

101&77 31p
ELE:s

TS N

AL 3 AR B i f ) REE SR
EREREMMPLBEAGTE - T pREET LE
LERL FHRDRP AR S REEF KR
L ARt 4% BOT & %9 FEH B IR 7
TEROFREDE G RL > TRRERER R
'%7%‘;}!»? '%i e vmiﬁ‘%’&?ﬁ °

FEY S AF T REZ R E R BTG
#- 4] (sequential compound call optlon valuation
model) > 46 % 5 8 BOT H F & F o ) @2~
SRER PR o AT Y S KR AR LA 1T KRR
WHhOEELEEBOT 22 BB - PP
* g -1 % MATLAB 42.5¢ k428 SCCO (1% %
R EXRROEFT R TR R
) R A S

MaEi BOT~ 2 ¥ it ~ S AHLZUKRT - ha
HEE S BRI E R TR R RS
Abstract

The build-operate-transfer (BOT) model is a
popular approach to infrastructure privatization,
especially for large-scale infrastructure investments.
However, large-scale BOT projects usually require
long-term sunk investments in infrastructure
facilities that are exposed to uncertain market
conditions and unforeseen contingencies. To attract
private-sector investments in BOT projects, host
governments have offered a variety of concession
arrangements for BOT risk management, such as
loan repayment guarantee, minimum-revenue
guarantee, the rights to expand incrementally, and
the rights to abandon prematurely. The presence of
these arrangements means that traditional valuation
methods, such as the discounted cash flow model,
are no longer satisfactory for BOT project valuation.



Researchers have developed various real-option
models to treat the more complex BOT valuation
issues.

Although the real-option approach is popular,
existing BOT real-option valuation models have not
incorporated the impact of performance bonds on
project value. In particular, the value of BOT
projects is uncertain at contract signing, and must be
re-valuated when new project information is
available during contract execution. This produces
the possibility of a “hold-up:” the government may
pursue court enforcement of literal contract terms,
asking the concessionaire to invest in the underlying
project even when the project is deemed infeasible
by a re-valuation. To avoid the “hold-up” risk, BOT
concession contracts often grant concessionaires
voluntary abandonment rights during contract
execution. However, host governments also require
performance bonding by concessionaires as a
security in order to ensure that voluntary termination
is not exercised arbitrarily.

In real option theories, voluntary abandonment
is potentially valuable, but imposing a bonding
requirement creates a penalty term upon voluntary
abandonment. Performance bonding reduces the
value of voluntary abandonment rights even though
the arbitrary exercise of the rights can be avoided. If
the impact of performance bonds on BOT project
value is not assessed in BOT real option valuation,
the resulting project value would tend to be
overstated.

Accordingly, this research will apply the theory
of sequential compound call option (SCCO) to
derive a closed form solution to the valuation of
multistage BOT projects
performance bonding. This research will also
provide sensitivity analysis to examine the impact of
performance bonding on BOT project value. A

infrastructure under

computer program will be written to support the
numerical implementation of the closed solution
using MATLAB, and a real-world BOT case will be
chosen to demonstrate numerically the applicability
of the proposed valuation model.

Keywords:  Build-operate-transfer; ~ multistage
infrastructure investment, privatization, performance
bond, sequential compound call option, valuation,
sensitivity analysis

INTRODUCTION

For nearly three decades infrastructure
privatization has gradually become a popular,
well-established approach to the delivery of
infrastructure services. For the early developments of
this trend, Huang (1995) documented over eighty
privatized infrastructure projects in the world. Huang
(1995) focused on the institutional and regulatory
designs of these projects. For more recent
developments, Tam (1999) and Kumaraswamy and
Morris (2002) investigated build-operate-transfer
(BOT) infrastructure projects in Asia. Chen and
Messner (2005) investigated BOT water supply
projects in China. Kleiss and Imura (2006)
investigated private finance initiative (PFI) in Japan.
Winch (2000) investigated PFI public works projects
in the United Kingdom. Koch and Buser (2006)
investigated  public-private  partnership  (PPP)
governance in Denmark. Fischer, Jungbecker, and
Alfen (2006) investigated PPP infrastructure
developments in Germany. Vazquez and Allen (2004)
investigated BOT highway projects in Central
America and Mexico. Algarni, Arditi, and Polat
(2007) investigated BOT infrastructure projects in
the United States.

Between PFI and other types of infrastructure
privatization approaches, the BOT model is popular
for  large-scale infrastructure  developments.



Large-scale BOT projects usually require long-term
sunk investments in infrastructure facilities that are
exposed
unforeseen contingencies (for example Grimsey and
Lewis [2002]). To attract private-sector investments
in BOT projects, host governments have offered a
variety of concession arrangements for BOT risk
management, such as loan repayment guarantee,
minimum-revenue guarantee, the rights to expand
incrementally, and the rights to abandon prematurely
(for example Huang [1995] and Wibowo [2004]).
The presence of these arrangements means that
traditional valuation methods, such as the discounted
cash flow model, are no longer satisfactory for BOT
project valuation. Researchers have developed
various real-option models to treat the more complex
BOT valuation issues. For example, Rose (1998)
evaluated interacting toll road investment options.
Smit (2003) provided a real-option-based game
theory model to evaluate airport expansions. Garvin
and Cheah (2004) proposed a real-option pricing
model for analyzing toll road investments. Wand and
Min (2006) evaluated the interrelationships among
power generation projects. Huang and Chou (2006)
evaluated minimum-revenue guarantees.
Damnjanovic, Duthie, and Waller (2008) evaluated
the interconnectivity and flexibility of toll road
expansions. Huang and Pi (2009) developed a
European-style sequential compound call option
(SCCO) model to evaluate multi-stage BOT projects
involving dedicated asset investments. Huang and Pi
(2011) extended the SCCO model to assess the
impacts of competition and technological
obsolescence on project value in privatized
infrastructure markets.

real-option models are powerful
tools not only for complex BOT
concession arrangements. The real-option valuation

to uncertain market conditions and

In fact
valuation

approach has also been applied for information
technology and other types of investment projects.
For example, Panayi and Trigeorgis (1998)
developed a real-option model for the valuation of
multistage information technology projects. Yeo and
Qiu (2002) discussed the valuation of investment
flexibility of technology investment projects by the
real-option approach. Chen, Zhang, and Lai (2009)
developed an integrated real-option approach for the
valuation of information technology projects.
Eckhause, Hughes, and Gabriel (2009) developed a
real-option approach for vendor selection in
multi-stage R&D acquisitions.

Although the real-option approach is popular
and powerful, existing BOT real-option valuation
models have not incorporated the impact of
performance bonds on project value. In particular,
the value of BOT projects is uncertain at contract
signing, and must be revaluated when new project
information is available during contract execution.
This produces the possibility of a “hold-up:” the
government may pursue court enforcement of literal
contract terms, asking the concessionaire to invest in
the underlying project even when the project is
deemed infeasible by a re-valuation. To avoid the
“hold-up” risk, BOT concession contracts often
grant concessionaires voluntary abandonment rights
during contract execution. According to Klein
(1996), voluntary termination can avoid “hold-ups.”
However, host governments also  require
performance bonding by concessionaires as a
security.  As  Vandegrift (1999) suggested,
performance bonding can ensure that voluntary
termination is not exercised arbitrarily.

In real option theories, voluntary abandonment
is a type of flexibility to avoid irreversible sunk
investments under adverse market conditions (for
example Dixit and Pinkyck [1994]). This type of



flexibility is potentially valuable and can encourage
private-sector investments in BOT projects (for
example Huang and Pi [2009, 2011]). Nevertheless,
imposing a bonding requirement creates a penalty
term upon voluntary abandonment. This reduces the
value of voluntary abandonment rights even though
the arbitrary exercise of the rights can be avoided. If
the impact of performance bonds on BOT project
value is not assessed in BOT real option valuation,
the resulting project value would tend to be
overstated, and investment
decisions.

this may mislead

This study tries to propose a sequential
compound call option pricing model with
consideration the influence of performance bonding.
The pricing model is constructed by following the
typical lifecycle for multistage BOT investments
shown in Figurel.

Operation
Pre- . . - . —
construction Construction
5, 5.K.B S.K.B 5.K.B 5.k B,

Stage | Stage 2 Stage m
| | | |, | | L,
[ I T T T T |

Figure 1. A typical lifecycle for multistage BOT
investments.

The rest of this paper is organized as follows.
The first section presents derives the pricing solution
for n-fold SCCOs. The second section derives the
partial derivatives of with respect to the
parameter B to discusses the influence of the
performance bond to the project value. The third
section presents a real-world application to a
three-stage BOT sanitary sewerage project. The fifth
section concludes.

A CLOSED-FORM SOLUTION
This section derives a closed-form pricing

model as a solution to a European Sequential
compound call option (European SCCO) with the
consideration of performance bond. In addition, the
proposed solution is based on risk-neutral pricing
approach.

First, the assumptions of the option pricing
model followed the well known B-S-M model
introduced by Black and Scholes (1973) and Merton
(1973).

The idiosyncratic assets of a BOT project are at
risk and assumed to follow a stochastic process of
the form:
ﬂz(r—q)dwodz?

St (1)

where s, denotes the stochastic asset value and
z2 denotes the standard Brownian motion under

risk-neutral environment Q. The parameter o7 is the
deterministic variance of the return, r is the
deterministic expected risk-free rate of return, and g
is the deterministic dividend payout rate. To obtain a
solution, assume that there is no-arbitrage in
frictionless markets. Also, for a one-stage project,
the investor would invest only if the time-t; value of

the one-fold option Cy,,(S,t;) is “in the money”,

I.e., Sy, —Ky,=-By, . By definition, K, is the

exercise price of the one-fold call option at time-t;

and B, is the amount of the performance bond.

1}

Then, the final payoff of a one-fold call option is

given as

Cypa(S:t) = max(Syy, — Ky —Byya)

= max(S i (K i~ B{l}yl)l,o)— Bays
Therefore, then risk-neutral pricing gives the

initial payoff of a one-fold European call option

with performance bond as:

)



C{l},l(sito)

—J'[l r(u)du (3)
=g E? {max(S w1~ Ky —Byys )}

E? denotes a conditional
operator.

where expectation

In addition, for a 2-stage project, the investor
would invest in the second stage at time t; only if the

balance between c,,,(s,t,) and K., ishigher than
the amount of the performance bondB . Here the
boundary  condition can  be known as

C1(Sit) =Ky 2 =By
Cpy2(S.t,) s given by

,» and the time-t; value of

22(S ) = max(S{ 1)

(4)
= maX<S{2},l ( )0)

By induction, for the n-stage project, denote
Chnin(S.tyand c,. (s.t) respectively as the
time-t; value of the n-(i-1)th SCCO and the (n-i)th
fold SCCO. Then the boundary condition for
exercising the n-(i-1)th SCCO is given by
Cran o) (1)
= max(Cyyi(S,t;) — Ky B }i) (5)
:max[ Chni (S 8) - ( K, )0]

Applying the idiosyncratlc asset value process
in (1) and the boundary conditions in (5) gives the
following theorem.

Theorem. (The European SCCO Pricing Formula)
Ciin(S:to)

J-‘ml q(u)du
'to

= S{n},Oe Nn{[g{n},i]nxl;[pi,j ]nxn} (6)
n —J“m r(u)du
_Z (K - B{n}mk ’ Nm{[h{n},i]mxl;[pi,j]mxm}
m=1
n [ rwdu .
- Z; B{n m€ N m—l{[h{n},i ](m—l}dl [pi,j ](m—l)x(m—l)}
where

“(u)]du
g{n},i: VlSISn

\/jt o?(u)du

ahi = S v1i<i<n
/La (u)du

Proof.

1-fold European call option

The final payoff of the option is written as equation

(3). Base on the risk-neutral pricing method,

provided by Cox and Ross (1976), Harrison and

Kreps (1979) and Harrison and Pliska (1981); the

fair price of a vanilla European call option with the

consideration of the performance bond is equal to

e_J.tor(U)duEQ{maX[S{l}’l_K{l},l’_B{l}yl]} under  the

measure Q.
Then
C{l},o(svto)

_ e,J'lOr(u)du £ {max [5{1},1 _ K{l}yl,—B{l},l]}

_ e,LOr(u)du {EQ [max[s{],},l — (K — B{1},1)'0]]_ 5;1},1} (7)
= Bya)) ‘L5, o 11)}}

—J-‘llr(u)du
=€ 0 EQ{(S{l}l—(K{

B —J-ll r(u)du
o
- {1},1e

,J‘l‘lr(u)du
=g ° EQ {S{l}l '1{3(1 1>(Kyy =By, 1)}}

7-[1:"(“) Q o
—(Kyya = Bye E {1{ S (Ko 11»}} Byl

According to equation (1), the solution of the
stochastic differential equation (S.D.E.) is given as
J.tl[r(u)—q(u)—%az(u)]du+zQth%o-z(u)du
Sy =Sp "
111 {1},0 (8)

Then we can use equation (8) to substitute the

Sy, inequation (3). The pricing formula becomes

C{l},o (Svto)
e_.l't:,lq(u)du { J' Zo?(u)du+29 j1az(u)du

- S31},0

} 9)

s (KB}

—j::r(u)du 0 —.[l:r(u)du
-(Kyy =By e E {1{%9(Km‘l—m»}}— Byj.8



Before deriving the pricing formula of a
European call option with the consideration of the
performance bond, we have to eliminate the
uncertain term in the expectation operator E°.
Therefore, we use Girsanov’s Theory to change the
probability measure, and the Radon-Nikodym
derivative is defined as

drR 1 t,
EZ—%EUZ(U)W”QW (10)

Base on the equation (10), the Brownian
motion term before and after change of measure can
be defined as

dzZ = dz{ + /[ o (u)du 1)

According to Girsanov’s
equation (11), we can rewrite equation (1) as

%S:(r—q+o—2)dt+odztR

Theorem and

(12)
where ¢z® represent the standard Brownian motion

the measure R,
numeraire.

under underlying asset as

Since the underlying asset is log-normally
distributed, we use the Ito’s lemma to find the
solution of equation (12). After some calculation,
the dynamic price of the asset S under measure R is
finally found and shown as follows

1ty 1 T
S, —s eJ:D[r(u)—q(u)-v—Ea-z(u)]du-v-zR /jléaz(u)du
{1h1 {1},0 ( 13)

Next, we can put (13) back into to the pricing
formula (9) and change the measure from Q to R,
and recalculate the probability,

C{1},o (S’to)

i‘::q(u)du Q dR
= S{l}voe E E : 1{3{1)‘1>(K{1)‘1’5{1)‘1)}

ol
—J' r(u)du
t Q
- (K{l},l - B{l}vlk ‘ E { 1{5{1}1>(K{1}1*B:1}.1))}}_ B{l}yle
1
7_[ q(u)du { }
to R
E 1{5{1}1>(K:1;.1*B:1;.1)}
fj.llr(u)du

1
7]. r(u)du
Q
- (K1 - Bl)e ’ E { 1{541}‘1>(K{1}‘1’B{1}1)}}_ Ble ’

—J.ll r(u)du
o

= S{l}voe

- llq(u)ciu
= S{l}voe J;O PR (In S{l},l > |n(K{1}v1 — B{l}l))
—L‘lr(u)du 7J.tllr(u)du
~(Kigs =By ™ PO(Ing, >In(Kyy, —By))-Bye
where
P*(InSyy, > In(Ky;, ~ By,))

1
= PR[In Suyo+ ,‘:[r(u)—q(u) +502(u)]du + zR,Ufn‘az(u)du > In(Kygy, — B{m))

s,
|n[K\1“;3J+ FIr (W) - a(u) +%az(u)]du
—_pr R 11~ Phja

Yo (u)du

=P(-2" < gy.)

With the same pattern, we can have
PO(InSy,, > IN(Kyy, — Byy,))= PR(=2° <hy,)

where

S 1
| .0 ty _ _ -2 d
n(K{m_B 1Jm[r(w q(u) i (u)ldu

ik
JEo (u)du

h{l},l -

Therefore, the pricing model becomes to
C{l},o(svto)
_ {l}yoe*J“oq(U)duPR(_ ZR < dl)

_ (K{l},l - B{l}ylkijt(:r(u)du PQ (_ ZQ < dz)_ B{l}’le*.[:r(u)du

t;
[ oW

du
= S{l},Oe N (9{1},1)

—fr(u)du —flr(u)du
_(K{l},l_B{l},l)e > N(hg,)-Bye ™

Both z® and z° are the standard Brownian Motion,
given the fact thatz ~ N(0,1), and 1-N(h,,,) = N(-hy,,)
N(0)=1.

2-fold compound call option

For the 2-stage project, the investor would
invest in the second stage at time t; only if

Cpya(S:t) 2 (K, — By, ), and the time-t; value of



Cpy2(S.1) given as equation (4).

According to the boundary condition given by
expression (4), the time-ty price of the two-fold
SCCO can be found by the risk-neutral pricing
approach elaborated by Lajeri-Chaherli (2002):

Cpy2(S:t,)

e 1 9 (0, (5.0 - (K,

:
*I'()

(15)
+ =B )] By}

[ max{o,.Cpu(s.t) - (KJ2 By ) (2B ¢ hor

Since c,,(s.t)is a one-fold call option, we can use

the result of equation (14) and shift the initial time
from to to t3, which is
C{Z},l(s’tl)

t2
—L q(u)du

= S{Z},le N(g {1},1‘*1)

’J‘:Z r(u)du 7J"'Z r(u)du
- (K{z},z - B{z}‘z)e ' N(hy, ) = Bpye ™

Also, set s,, be the equivalent asset value found at
the point where the underlying option finishes “at

the money”, i.e. ~Bpy ) and it can

25, 1) = (K,

be found at the point where the underlying option
finishes ‘at the money’. Set

In( )+j[r(u) q(u)—fcr (uidau, and it meanss, 1)81

\/ L:az(u)du

hija =

and only if zy-n, . With the consideration of

boundary condition and

“[r(u)-q Wa u)ldu+2, 2 0% (
Spys = Sioe™” ", then the equation (15)

can be rewritten as follows,

C{z},z(s ' to)

2 q(u)du

5{2},194” N(9gy11)
—L: r(u)du
1

—L‘z r(u)du
max 7(K<2}‘2 - Bmz)e . N(hy 1) ¢ F(2)dz— By .0

2},1

1
7~[la r(u)du poo
—e J'

—J‘:z r(u)du
- B{z},ze ' - (K{z},l - B{z},1)

e—j[: r(u)du J.ac e,-‘“‘lz q(u)dus j [r(u)- q(u)——a (u)]du+z\/m
= (
12

’h{zm

N (g<1},1,*1) f (Z)dZ

—J“‘lr(u)du 0 —J“‘zr(u)du 0
~(Kppa =Bk ™ [ N(y,) T@dz-Be ™ [ (@)

L
(K B }_{LD r(u)uurc
2}t f2}1 Nz
et @

- Ilr(u)du
f(z)dz— By, I‘"

—| “q(u)du
2,08 Jih - fe N(gyy)02
[Prwa

_( —B kj r(u)duj 78 TS N(hlllxl)dze to

—Lvr(u)du o 1 751
(T T Lh;m TS dz
—j“‘zr(u)du 0 1 L —J“‘lr(u)du
~Bpe J:hm = 2 dz-By e

Set

t2 1
a _ S{Zloeff‘oq(u)du rc 1 i 1 0% u)du)?
13 €

2\1 \/Z N(g{l},l,*l)dz !

Agl

fj:;r(u)du o [ j‘o r(u)du
=Ky, ~Byp e [ N B N(h1 1.1)028 :

h\z/

—(K{z},1 B B{Z)‘l)e’icr(u)d th/z 1 \/17 ez dz

_[* - 22
-[lo r(u)du‘[, 1 e 2 dz —
2

M 27

C,=-By.e g lrwe - where

3 _
C{z},z(srto) = Z G
= .

Use bivariate normal distribution function to

reform ¢, and ¢, where the factor g, ., and

hy, 1 €aN be shift as



S 6 ,
|n(%)+ft [r(u)—q(u)+%o- (u)]du
— B2 !

K
Oajam = 212 .
L “o2(u)du
S t, 1
In(——22 )+ [*[r(u) - q(u) + o (u)]du
_ Kpe =B I 2
_ .
L o2 (u)du
L) - 9@ - o7 @]du + 2f o7 @)du
+
[ o (u)du
S 2
InC 0y [r(w) - a(u) + 7 o*W)du + 2, [ o ()
_ K{z}‘z - B{z}‘z ° 2
jt“az(u)du
20 ) [ - g+ St
Koo~ By %o 2 L, ko
i Jio? Wydu " ltot
J‘:zaz(u)du

Yot (u)du

/f o?(u)du .

can be reform as 92 TP1222  with

\/1_,01,22

the same deriving pattern, hy,,., can be reform as

where , _,_ o @ and

Finally, g

{1},1%1

: 1
~ e’ﬁ;q(”)d” J“” 1 = 212 T P22z

e )z,
“oen 27 \jl_pl,zz

t:
[ aw

du
:S{z},oe Nz(g{z},1v g{Z},Z;pl,Z)

t2 1
_ ~r(u)du o =72 he, + z
C, :*(K{z},z - B{z},z) e I J‘ L7 N({z“z Prz ]dz

’h“"‘lm /1_p1’22
- llr u)du eco 112
*(Kum - B{zm)e fores j N Ly

Moy 27
—J‘t‘zr(u)du .
Z_(K{z},z - B{z},z) e Nz(h{z},uh{z},zrpl,z)

Ky, - B{z}a)efj“’ Y (hyy.)

and ¢, is reformed by using traditional normal
distribution function shown as follows

— 7J.lzr(u)du o 1 e 1
—fr(u)du
C,=-B,.e™ I —e? dz-B, .6 ™
3 {2},2 s 17271' 2}1
—rzr(u)du W (u)du

] ’LO
= B{Z}xze N (h{z},l )_ B{z},le

Finally, the two-fold SCCO with consideration
of performance bond is
C{z},z (S!to)

—L[Zq(u)du

= S{z},oe Nz(g{z},lyg{z},z;pl,z)

“[%r@ydu 16
_(K{z},z - B{z},z) € LO e NZ(h{Z},l’ h{Z},Z;pl,Z) ( )
(K - B{z},l)efjw N (hg,)

T -

—l'ér(u)du

- B{z},z

where

m{

S 2},0 t, 2
In[s{"]-rjtu'[r(u)—q(u)—;a (u)]du
gy =——

! JEo? (uydu

Equation (16) can be rewritten as

wn

w

fio ]+ ¥ [r(u)—q(u)%crz(u)ldu .

if2

[i o (u)du

Cp12(S.1,)

12
7_[ q(u)du
=S{2}voe 0

NZ { [g{z}l ]le; [pI,J ]2x2} (17)
_2:1 (K{z},m - B{z}.m)efj“’ o Nm{ [hmi ]mxl?[Pu ]mxm}

2

_ ; B{z}’mefﬁu r(u)du N m'l{ [h{z},i ](m-l)xl; [pi,j ](m_l)x(m_l)}

n-fold compound call option

By induction, the n-fold SCCO pricing model
shows as follows
Cioin (S:1)

'[‘Mq(u)du
=S8 N {[94)ilnailoi;Tnnl
{n},0 n {n}idnxa i,jdnxn 18
n —J':Om r(u)du . ( )
_Z (K{n}m - B{n}mk Nm{[h{n},i]mxli[pi,j]mxm}
m=1
n —_[:" r(u)du )
- Z B{n},me N m—l{[h{n},i ](m—l)xl! [pi,j ](m—l)x(m—l)}
m=1
where



Sijo |, ¢ 1,
In[ ]+Lﬂ'[r(u)—q(u)+20— (u)]du .
Inji = ,7]}2 o (Wdu
|n[8*"}'0 J +[Ir(W) - q(u) —%az(u)]du

Sl o? (u)du

The correlation matrix is

symmetric, i.e.,

pi; = p;,;» and given by:

1; Vi=j

Pii=Y o (u)du
o ;o Vi<i<j<
\/ 402(u)du’ t<l=n

If the above solution for the n-fold SCCO,
then it is also true for an (n+1)-fold SCCO. To
prove that, present value of the (n+1)-fold SCCO
can be found by the sane risk-neutral approach as:

C{n+1},n+l (S ) to)
—J.“;Mq(u)du

= Siroa)® Noa {[g {n+}i ](n+1)><l; [,0 i ](n+1)><(n+1) }
n+l

- Z ( T - T )e_j"’ o N, {[h{ml},i ]mxl; [Pi, j ]mxm}

n+l - ( r(u)du
N {[h{nﬂ}d ](m-l)xl; o i ](m-l)x(m-l) }

_ZBnJrl

where gy,.,,;and hg ,;are the i-th g, h values of

n+1

the (n+1)-fold SCCO. The solution can be obtained
directly from Equation (17) by adding one more
fold layer. The following provides a more complete
outline of this proof. First, first denote

Criana(S,t) as the time-t; value of the (n+1)-fold

SCCO. The value is given by the boundary
condition

C{n+1},n+1 (S t’l)

= maX[CfM (S t ) K 17 n+1 1]
=maxpP,Cy,.,,,(S,t,) - ( inety1 ~ By )] B
(19)

which states that the underlying n-fold SCCO

Cpran(S.t,) Will be exercised at time-ty if its time-t

value is greater than or equal to the difference of

exercise price, K and performance bond, Birys

{n+1},1?

Under risk-neutral pricing, the time-t, value of the
(n+1)-fold SCCO can be given by

C{n+1},n+1 (S ’ t0)

:e_j‘:r(u) { max[o C (nethn (S t ) ( {n+1}1

B )| B

(20)

where E? is the conditional expectation operator
with respect to a risk-neutral probability measure.
Assume the underlying asset value process is a
standard geometric Brownian motion in Equation
(1). Then the time-t; value of the asset can be given
by:

el:[r(u)—q(u)—%az(u)]du+z°W

S{n+1},l = S{n+1},0

(21)
where z is a standard normal random number with
. . 1 2
density function f(z):Ee 2
In addition, the time-t; value of the underlying
n-fold SCCO can be calculated by the value of the
original n-fold SCCO with a shift of start time from
to to t1. That is, on the basis of Equation (18),
Chyn(Si1)

[ awa

,Z2~N(02).

= S{n+1},1e Nn{[g{n},i,*l]nxl;[pi,j,*l]nxn}

I du (22)
L(K{ml},mﬂ - B{”ﬂ},mﬂk .|-‘1 (u)d y }J

N m {[h{n+1},i,*1]m><1 ; [pi,j,*l]mxm

M-

3
Il
5N

3
N

' M-

{ll (u)du
[B{ml},mﬂe x
N {[h{n+1},i,*1](mfl)><1 ; [pi,j,*l](mfl)X(m—l) }

where *1 denotes the time shift. Then substituting
equation (21) and equation (22) into equation (20)
gets



n+1 n+1(S t )

r(u)du
J.m {max[o C‘n+1 n(s ti) (K{n+1}‘1 - B{n+1},1)] - B{n+1},1}
—L‘" q(u)du .
S{n+1/le ' {[g{n},i,*l]nx1'[pi‘j,*l]nxn}
- z ( {n+1fm+1 T ‘n+1}‘m+1)x
- ‘1r(u)du o0 ’J“lm] r(u)du
=€ JIG J: ax40 e {[h’m-l ,*l]mxl;[pl,J,*l]mxm} f(Z)dZ
n ™ ¢ (u)du
z B\n+1‘ m:1€ J x
m=1
N4 {[h{n+1 ‘i,"l](m—l)xl; [pi,j‘*l](m—l)x(mfl)}
- (K{n+1}‘1 - B{n+1}‘1)
—J"” r(u)du
- B(n+1),le °

Now, let Sina be the time t1 equivalent value of

the underlying asset such that at time-t;, the value
of the underlying n-fold SCCO is ‘at the money’,

€. Cpupyn (S,1) = (K iy — Bppuys )= 0 Accordingly,

In(sl{+1}) ( ‘[:Dl[r(u)_q(u)—%o'z(u)]du+Z\/W

{n+1},0

and therefore

'”<s'f*1f + j [r(u) - q(u)Wa ()ldu

\/L'az(u)du

z)

Further let

In( |'|+1

5 )+ [rrw- q(u)—fa (u)]du

| Lloz(u)du

. )=hy

h{n+l},1 -

Because S, ,)S1n1) ,Given above, the

n+1

value of the (n+1)-fold can be solved by:
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C{n+1},n+1 (Svto)

,‘[‘;"‘lq(u)duﬂ't‘ol[r(u)fq(u)—%az(u)]duﬂ [ o (u)du
s{n+1} 0 x

t
ei-l‘lu r(u)du Joo

n 1 1, dz
o 6751 N n n}i*1dnx ' i,j,*1dnxn
oS CTRION W] V-
j . r(u)du
i (K{n+1 hmel T n+1 m+1)a q
- z
oo 1 -=
m=1 € 2 Nm h n+14,i,*1 dmx ; i,j,*1dmxm
J-h " m {[ { 1},,1] 1 [p,j,l] }
7.[:””1 r(u)du
n B{n+l},m+1 ‘ x q
- mZ; ) P e \ {h . } z
J-h " Ee moa {n+1},i,*1](m—1)x17[pi,j,*l](mfl)x(mfl)
r(u)du 1 L, - t1r(u)du
- (K{ml IS n+1 )e I J- —e? dz- B{n+1},1 Lu

M 27

The solution can be found by deriving the pricing
components separately. Denote the components as
C,~C,~and c, respectively, and start the derivation
with the first component. Recall the asset price
process in equation (21), and rewrite the value of

C, as:

eJ-l:qu(u)du .ro e-%(z— “:;gz(u)dujz

*h(ml),l

61 = S{n+l},0 Nn {[g{n},i,*l]nxl; [pi,j,*l]nxn }dZ

To specify the parameters of the n-variate normal

integration, letz, = z—/[*o(u)du . Then

- h{n+1},1 Y J.ttulo'z (u)du = (h n+i}1 o’(u)du) = —Onaa
where the factor g, ., isgiven by

In( 40y 4 j [r(u)—q(u)+= a(u)]du

e /La (u)du

Accordingly, the value of C,

1

g N4}l =

is further rewritten

as:

C=Spe T N sl
The value of the factor g, ,,,, with the time

shift can further be found by algebraic

manipulations as



)+ [ Irw-aw+ o7 @l

INCKOLE
L~ “”’)+j [ru)-g(u)+= az(u)]du+f[r(u) q(u)——az(u)]du+zj' o2 (u)du

In( S{rwl}i
Sy . vi<i<n

Onix =

B j{ &% (u)du

~ Ypatyin tZ2Prin

4y 1- P1,i+12

where the correlation coefficient is given by

B Yo’ (u)du
Prin = W

(2008), the value of the correlation
coefficient with the time shift can be given by:

According to Theorem 1(a) of

Lee et al.

Q{n+1 i+1, j+1 Q n+1}1|+1Q {n+1}1, 1+1

- Quayaf -

IS a symmetric entry (i, j) of the n by

pl]*l

n+1 ]+1

where Qi

n correlation matrix of the n-variate normal integral.
Further algebraic manipulations get

Q{n+1},i+1, j+1

= Qs {2~ Qs f 2-(Q
I e [ o
7 et [ ot
[ rum ([ 7om
[ et [ ot @

j{"* o2(u)du j o2 (u)du
e[ \/j o*Wdu [ o @e
[ros [
oo |1 o

+ Q{n+1},1,|+1Q{n+l},l,J+1
) 2
L o?(u)du
- i 2
j{ o?(u)du

n+1 1, ]+1

=P VY l<i<j<n

Therefore, [, ;.]ua =00 jnpea) - Given above,

nxn

the value of ¢, is found as:

J.‘H q(u)du
to

61 = S{n+l},oe N n+l {[g{n},i ](n+1)><l; [pi,j ](n+1)><(n+1)}
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By a similar approach, the values of c,and ¢, can

be found, respectively, as:

u (u)d
Z ( n+l mel T n+1 m+lkj. -

m=1
)
J-’h‘ml}‘l i e? N m {[h{n+l},i,*1]m><1; [pi,j,*l]mxm }dZ

S|

1p
e? dz

-[ r(u)du 1
_(Kn+1 _Bn+l k .[h“ \/Z

n+l

> (K - B{m},m)efjm o N, 02y Tt L0 I |

m=1
— n j ru)du
C3 = _Z B{n+1},m+1

m=1

» 1 22 _
J._hyymm Ee N {[h{n+1},i,*l](m—1)x1![pi, j,*l](m—l)x(m—l)}dz
—J.“lr(u)du
- B{n+1lle °
n+l "" r(u)du
- Z B {n+1}, N m-1 {[h{ml},i,*l](m—l)xl ; [pi,j,*l](m—l)x(m—l)}

The solution can be obtained directly from equation
(18) by adding one more fold layer. Equation (18)
is proven by induction.

INFLUENCE OF PERFORMANCE BOND ON
PROJECT VALUE

To see the influence of the performance bond to the
project value, the following derives the partial
derivatives of c, with respect to the parameter B.

Proposition. From the pricing formula (18),

% s, (23)
n " r(u)du N { [ n}|]|x1 [p ]lxl}
2 o el
=) =L Ui Jgcayar WPILT Jocayeomg)

Proof.

For n = 1, (9) reduces to a vanilla European call
option, and therefore



aC{l},l (S ’ t0 )
By,

q(u)du

_J;O
0 | Su.e€ Nl(g {1},1)_
6B 7j-‘lr(u)du irlr(u)du
ua to to
(K{l},l - B{l.l,l)e Nl(h{m)— Byj.€ No

_.[:: q(u)du aN 1 (g a1 )
OBy,

= S{l}voe

- (K{m ~ B{l}’l)efj‘:r(u)du 8l\é1|3‘(h{1}v1) . e—j‘:r(u)du Nl(h{l},l)— e—j‘:r(u)du
1)1

By chain rule,

aNl{g{l},l} _ aNl{g{l}‘l}. G _
0By,

1
**9(1‘,.12 1

2 .
(K{l},l - B{l},l tt; O_Z (u)du

1
e
Qs OBy, or

oN, {h{l}‘l} _ ON, {h{1},1 } ) 6h{1},1 1

1
*Eh(ls.lz 1

OBy, ohy, By, 2z (K~ B Lo (u)du
since Bua_Mus ang replacing 9y, by
88{1}’1 68{1}’1 Y

s + /I o2y and by some simple calculation, it

follows that
ac{n},n(slto)

,J‘l: r(u)du
By, [N (hy;,)-1]<0

(24)
The partial derivatives of the pricing formula

Cun(S.t,) With respect to the parameter B is

written as aC /6B . Since
C{n},n (S’to)
" (u)du
-[0 Nn{[g{n},i]nxl; [pi,j]nxn}

—Jl:“ r(u)du .
(K{n},m - B{n}mk Nm{[h{n},i]mxli [pi,j ]mxm}

—j“m r(u)du .
Biyme ™ N oLl J s [ Jmapmad

= S{n},oe

C(n‘,,n (S’to)
= 5<n:‘oeij‘° e N, {9 impar g2 ngns [Pu ]}
~ (K jupo = By )eij‘” N, s Bz il ]

[ r(u)du
~(Kiojoa = Bpoa L N {hm,u 2o Mo ]w»(nm}

e r(u)du
~ (Ko = By e b rex PR LRI P
- (K{n}‘l - B{n},l}{j‘o e Nl{h{n}a}

’J“; r(u)du {
e N,y

- By e Mgz i o ](n-l)x(n-l)}

{n}.n

—J‘ln*l r(u)du

- B{n},nfle ° N n-2 {h{n},U h{n},Z [ h{n},n—z ) [pi,j ](n_z)x(n_z)}

" r(u)du
—...= B0 e J N

We have different Bs for different fold numbers.
Since the By,;, 1 =1, 2, ..., n-1, does not exist in
the multivariate normal functions, it follows that

aC{n},n(slto) e’L: r(u)du N'{ [h{”}vi ]le;[’o{n}vi)i]lxl}

- (25)
By - NH{ [hin},i ](I—l)xl; [p n}i,j ](I—l)x(l—l)

For i=n > Sip =Sum=Kgy,—Bp, °

aC{n},n (S’tO)

" (u)du
= S{n},oe LD ’ d
GB{n}Yn

_ [‘D" rwdu  §
~(Kpyo =By I By,

Nn{ [g{n},i ]nxl;[pi,j]nxn}

N, { [h{n},i ]nxl? [Pi,j ]nxn }

(26)

As a consequence, B, exists in the multivariate

integral N, 4,11+ Gjop20 Opni o || and.

Ny i Niapz oo N 215 |- Therefore, we have

ny,

to use partial derivative of the multivariate normal
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integral formula which derived by Lee, Yeh, and
Chen (2008) to do the sensitivity work. By Lee,
Yeh, and Chen’s Lemma 2,

NGy | Lo o |
0B,
(-v.)
{ ki — g } j .
x1
(~v,-v)
ki ~ PlkivPinliv
\/ n |v Xl )
g{n/,. 9y, n,,v‘| .
- ;
n '{%‘MJN” - 1_(P{n),.,v) (v-1pa
Pinkini ~ PlakivPin),

_\/(1’ (Pw,i,v )2 le (p‘n:;v )2 )‘|(v1)x(vl)

xN n-v { [g injisv ](n—v)xl; [p(n},i,j,‘v ](n—v)x(n—v)

nin

}(27)

And,

Ny iy |l )
By

(-v.)
n ah 1_(p{n},i,v)2 e
= flhy, { }NM :
v=1
Pij P( v Pl

(~v=v)
{J( i) oy )1 J
/’m)u PlnjivPin)iv

1-(pyi J
Zn: f(\”{ah }N“ - ol (-2
v=1
_\/( {nhiv Xl )\|v 1)x(v-1)
xN__, { [hm‘.‘#v ](n,v)xly [,0 i v ](niv)xwv)

where the symbol *v indicates a time shift, such
that the correlation matrix starts from time s, or

g{n}.i,#v i
2 o
u=l+v ,

gv‘{n‘ i [ j
In| = |+ r,-q,—=o, |
h i: ( Si,{ﬂ} J u;v 2
{n}i#v = ;
\/Z olr
= V1l<s<i<n

}(28)

andsg{"}vi _0 V1<i<n.Substituting (27) and (28)
{n}n

into (26) gives:

aC{n},n (S’to)
6B{n}'n
- r(u)du
ek { i) il )0 (29)
_e {[h ]nl)xl [p'l](—l) }

XN, 49 | x N,
p{n}i,j n nuo{ hn,

and
C(’}B{M" 2
- r(u)du 1 ([T oh o
:(K{n}n_B{n}n Lo —1 e Z(H 4 fn)
N2 aB{n},n
Ninsi = Ninjn Pain :
2 1
1- p{n},n i ) (n-1)
X Nn—l x NO
p{n},i,j nuo{ hn,
1-—
_\/( i x ) (n-1)x(n-1)
Since
1 71(g{n)‘n)2 1 *E[(hén}, P+ fin Oz(u)du}z
f =__ @2 —_ - @2 0
000)= 75 J2r ,
1 e*%(hgn;.nY*Ifg (r(u)-a(u))du K{n},n - Bn‘{n}
\/27r S{n}‘o
Qo _ Moo, and Crs,, 1 =Cos,,,2» it FOllows that
By, GB{n}vn



aC{n},n (S’to)
B,

n}n

_ efj‘on r(u)du N, {[h{n}'i ]nxli [pi,j ]nxn }

n r(u)du
LO d N n-1 {[h{”}' ](n—l)xl; [pi,j ](n—l)xn }

Denote by B, a subsequent performance bond. It

—e

can be verified by a similar method that for
vli<l<n,
0C,4(S.ty)
nhl
! s | Ny { I ]ilom]

-N ,,1{ [h{n},i ](H}A; [p{n},i,j ](H)X(H)}
Summing up (24) and (30) gives (23).0J

(30)

NUMERICAL IMPLEMENTATION

This section chooses a three-stage BOT sanitary
sewerage project for the numerical implementation
of the proposed valuation model. A MATLAB-based
computer program is written to support the
implementation.

Project profile

The three-stage BOT sanitary sewerage project
is a large-scale BOT project with 35 concession
years and a total construction cost of NT$1,356
million. The current population of the project’s
service area is 28,000. The forecasted population
IS 48,248 at the end of concession. To attract private
investment, the investor is allowed to abandon
voluntarily according to the conditions stipulated in
the concession contract. The concessionaire could
terminate the project prematurely, but a performance
bond was required to guarantee that the
concessionaire perform according to the concession
contract. The initial value of the performance bond
was NT$40.68 million, approximately 3 % of the
total construction cost. The bond value was reduced
to half of the initial amount after finishing 1-st stage
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construction work and remained the same to the end
of the concession period.

Parameter estimates

This study collects market data from the
Central Bank and the Taiwan Economic Journal
Database (TEJD) to support parameter estimations.

The expected risk-free interest rate is 4.19%,
which is estimated from monthly 10-year
treasury-bond spot rates observed between January
1995 and September 2007. Use a portfolio of six
public gas companies as a proxy to estimate
volatilities and the five-year volatility is about 16%.
This case study does not consider dividend payout,
and thus assume g=0. The underlying asset values of
the staged works are calculated by discounting the
net cash flows of each stage by the base-case ROE,
6.49%, which is estimated by using the capital asset
pricing model. According to the financial data of the
project disclosed by the government, the project had
an initial asset value So of NT$1660 million at to
which were calculated from the discounted value of
the project’s earnings before interest, tax, and
depreciation (EBITDA), without considering the
effects of financing and taxation. Based on this
discount rate, the time-% discounted value of the
construction cost is NT$1605 million. Table 1
summarizes the “base case” valuation parameters.

Table 1 The “base case” valuation parameters.
Variable
Time-t, discounted value of the
underlying project asset (So)
Time-t; discounted value of the
construction cost (K)

Value

NT$ 1,660 million

NT$ 1,605 million

Performance bond value (B) NT$ 40.68 million

Risk-free interest rate (r) 4.19%
Asset return volatility (o) 0.16
Dividend payout rate (q) N.A.




Valuation outcomes
Without the effect the
performance bond (that is B=0), the base-case

considering of

valuation parameters produce a project value of
NT$ 143.63 million at t,. However, this value is
smaller than the net present value (NPV) of the
project at t,, which is NT$ 244.14 million
calculated by the 6.49 % discounted rate.

When the effect of the performance bond is
considered (that is B=3% of total construction cost),
however, the project value is reduced from NT$
143.63 million to NT$ 143.62 million. There is no
much difference about the change of the project
value whether considering the influence of the
performance bond or not. That might due to the
small base-case volatility. Moreover, if the
investment risk raises and volatility is enlarged to
0.5, the project value would drop about 10% when
the influence of performance bond is considered.
Therefore, this result indicates that the effect of
performance bonding on project value should be
assessed carefully; otherwise, the project value will
be overstated, and this may mislead investment
decisions.

Sensitivity analysis

In general, the value of sequential multi-fold
CCOs increases with underlying asset value and
volatility, and decreases with risk-free rate. Figure
2 shows the project values calculated by different
financial tools. In this case, the project under
performance bonding with small volatility has
irregular outcomes because the 2nd-fold of the
SCCO options wouldn’t be exercised.

From the result of derivation in section 3, the
project value decreases with an increase of the
performance bonding. The sensitivity with respect
to the performance bonding (B) is further graphed
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in Figure 3.

Moreover, the of different
performance bonding decisions gives different
results of project value. Figure 4 shows the
investment value of consistent performance
bonding project worth less than the project with
decreasing performance bonding decisions set by
contract.

consideration

Figure 2. Sensitivity analysis with respect to sigma.
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Figure 3. Sensitivity analysis with respect to B.
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CONCLUSION

Real-option theory is popular in managing
complex valuation problems in BOT undertakings.
However, previous BOT real-option valuation
models have not incorporated performance bonds
in valuation. This tends to overstate BOT project
values when the projects in question involve
voluntary abandonment rights. This paper derives a
valuation model to contend with this issue.
Sensitivity analysis shows that the value of
flexibility created by the option to abandon
decreases when the value of the bond is increased.
Moreover, different setting of performance bonds
could leads to different investment decisions.
Therefore,  considering  the of
performance bonds during valuation is necessary.

influence
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