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DNA-binding domains/proteins play essential roles in
a cell, which are involved in transcription,
replication, packaging, repair and rearrangement.
Numerous prediction methods of DNA-binding
domains/proteins were proposed by identifying
informative features and designing effective
classifiers. These researches reveal that the DNA-



protein binding mechanism is complicated and existing
accurate predictors such as support vector machine
(SWM) with position specific scoring matrices (PSSMs)
are regarded as black-box methods which are not
easily interpretable for biologists. It is desirable
to design predictors using interpretable features and
classifiers, and the prediction results are
explainable for knowledge acquisition. In this study,
we propose an ensemble fuzzy rule base classifier
consisting of a set of interpretable fuzzy rule
classifiers (iFRCs) using informative physicochemical
properties as features. In designing iFRCs, feature
selection, membership function design, and fuzzy rule
base generation are all simultaneously optimized
using an intelligent genetic algorithm (IGA). IGA
maximizes prediction accuracy, minimizes the number
of features selected, and minimizes the number of
fuzzy rules to generate an accurate and concise fuzzy
rule base. Benchmark datasets of DNA-binding domains
are used to evaluate the proposed ensemble classifier
of 30 iFRCs. Each iFRC has a mean test accuracy of
77.46%, and the ensemble classifier has a test
accuracy of 83.33%, where the method of SVM with
PSSMs has the accuracy of 82.81%. The physicochemical
properties of the first two ranks according to their
contribution are positive charge and Van Der Waals
volume. Charge complementarity between protein and
DNA is thought to be important in the first step of
recognition between protein and DNA. The amino acid
residues of binding peptides have larger Van Der
Waals volumes and positive charges than those of non-
binding ones. The proposed knowledge acquisition
method by establishing a fuzzy rule-based classifier
can also be applicable to predict and analyze other
protein functions from sequences.

DNA-binding domains, feature selection, genetic
algorithm, support vector machine, fuzzy rules,
knowledge acquisition, physicochemical properties,
position specific scoring matrix, protein function
prediction
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Abstract: DNA-binding domains/proteins play essential roles in a cell, which are
involved in transcription, replication, packaging, repair and rearrangement.
Numerous prediction methods of DNA-binding domains/proteins were proposed by
identifying informative features and designing effective classifiers. These researches
reveal that the DNA-protein binding mechanism is complicated and existing accurate
predictors such as support vector machine (SVM) with position specific scoring
matrices (PSSMs) are regarded as black-box methods which are not easily
interpretable for biologists. It is desirable to design predictors using interpretable
features and classifiers, and the prediction results are explainable for knowledge
acquisition. In this study, we propose an ensemble fuzzy rule base classifier
consisting of a set of interpretable fuzzy rule classifiers (iFRCs) using informative
physicochemical properties as features. In designing iFRCs, feature selection,
membership function design, and fuzzy rule base generation are all simultaneously
optimized using an intelligent genetic algorithm (IGA). IGA maximizes prediction
accuracy, minimizes the number of features selected, and minimizes the number of
fuzzy rules to generate an accurate and concise fuzzy rule base. Benchmark datasets
of DNA-binding domains are used to evaluate the proposed ensemble classifier of 30
iFRCs. Each iFRC has a mean test accuracy of 77.46%, and the ensemble classifier has
a test accuracy of 83.33%, where the method of SVM with PSSMs has the accuracy of
82.81%. The physicochemical properties of the first two ranks according to their
contribution are positive charge and Van Der Waals volume. Charge
complementarity between protein and DNA is thought to be important in the first
step of recognition between protein and DNA. The amino acid residues of binding
peptides have larger Van Der Waals volumes and positive charges than those of non-
binding ones. The proposed knowledge acquisition method by establishing a fuzzy
rule-based classifier can also be applicable to predict and analyze other protein
functions from sequences.

Keywords: DNA-binding domains, feature selection, genetic algorithm, support
vector machine, fuzzy rules, knowledge acquisition, physicochemical properties,
position specific scoring matrix, protein function prediction.



INTRODUCTION

DNA-binding domains are functional proteins in a cell, which play a vital role in
various essential biological activities, such as DNA transcription, replication,
packaging, repair and rearrangement [1]. These transcription factors are mainly DNA-
binding proteins (DNA-BPs) coded by 2~3% of the genome in prokaryotes and 6~7%
in eukaryotes [2]. DNA-BPs play a pivotal role in various intra- and extra-cellular
activities ranging from DNA replications to gene expression control. The researches
reveal that the DNA-protein recognition mechanism is complicated and there is no
simple rule for this recognition problem [3].

Some researchers have increasingly interests in the prediction and analyse of
DNA-BPs [4-6]. Stawiski et al. presented that DNA-binding proteins could be
predicted using a neural network trained with features of secondary structures and
charged patches [4]. Ahmad and Sarai found that net charge, net dipole moment and
quadrupole moment could each distinguish binding and non-binding proteins with
known structures well [5]. Kumar et al. proposed a method for predicting DNA-
binding proteins using support vector machine (SVM) and position-specific scoring
matrices (PSSMs) profiles [6]. The methods [4-6] can fairly analyze and predict
DNA-binding proteins, but suffer from obtaining human-interpretable knowledge
from sequences.

Leung et al. [7] focus on protein-DNA bindings between transcription factors
(TFs) and transcription factor binding sites (TFBSs). A framework to discover
associated TF-TFBS binding sequence patterns in the most explicit and interpretable
form from TRANSFAC is proposed [7]. Recent mining on exact TF-TFBS-associated
sequence patterns (rules) has shown great potentials and achieved very promising
results [8]. The approximate rules reveal both the flexible and specific protein-DNA
interactions accurately. Huang et al. [9] proposed a systematic approach Auto-IDPCPs
to automatically identify a set of physicochemical and biochemical properties in the
AAindex database to design SVM-based classifiers for predicting and analyzing
DNA-binding domains/proteins from sequences. Auto-IDPCPs identified 23 features
of properties from the AAindex database [10] belonging to five clusters such as
hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility,
normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-
a(RCOOH)), etc.

The trend in analyzing DNA-BPs is not only to predict binding proteins well but
also to obtain knowledge for biological understanding and finding. It is desirable to
design predictors using interpretable features and classifiers, and the prediction results
are explainable for knowledge acquisition. Human thinking and reasoning frequently
involve fuzzy information originating from inherently inexact human concepts and
matching of similar rather than identical experiences. In many applications, rule-based
classifiers are created starting from machine learning and fuzzy logic.

In this study, we propose an ensemble fuzzy rule base classifier consisting of a
set of interpretable fuzzy rule classifiers (iIFRCs) based on the 23 physicochemical
properties as features [9]. Because the DNA-BPs have the property of natural
clustering, fuzzy classifiers using a scatter partition of feature spaces often have a
smaller number of rules than those using grid partitions. In designing iFRCs, feature
selection, membership function design, and fuzzy rule base generation are all
simultaneously optimized using an intelligent genetic algorithm (IGA) [11]. IGA
maximizes prediction accuracy, minimizes the number of features selected, and
minimizes the number of fuzzy rules to generate an accurate and concise fuzzy rule
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base.

A fuzzy rule-based knowledge acquisition system (FRKAS) using an ensemble
fuzzy rule classifier consisting of 30 iFRCs is proposed for prediction and analyse of
DNA-BPs. Each iFRCs has two fuzzy rules, one for binding and the other for non-
binding prediction. The ensemble classifier using eight physicochemical properties
performs well with a test accuracy of 83.33%, compared with an individual SVM with
PSSMs (82.81%) [6] and SVM with 22 physicochemical properties (80.73%) [9]. The
physicochemical properties of the first two ranks according to their contribution are
positive charge and Van Der Waals volume. The amino acid residues of binding
peptides have larger Van Der Waals volumes and positive charges than those of non-
binding ones.

MATERIALS AND METHODS

The framework of the proposed FRKAS is given in Fig. 1. FRKAS uses an
ensemble fuzzy rule classifier consisting of 30 interpretable fuzzy rule classifiers
(IFRCs). The design aim of iFRCs is to generate an accurate and concise fuzzy rule
base. The following sections present the used datasets, feature sets, the design of
IFRCs, the ensemble fuzzy classifier and knowledge acquisition of DNA-binding
domains.

Datasets

For comparisons with existing methods [6], [9], the same benchmark dataset
DNAset, also called main dataset from Kumar et al. [6] was used to establish an
ensemble fuzzy rule classifier. DNAset has 146 non-redundant DNA-binding domains
(or protein chains) in which no two domains have the sequence identity of more than
25%. A non-redundant set of 250 non-binding domains was obtained from Stawiski et
al. [4]. They used following criteria: 1) no two protein chains have similarity more
than 25% and 2) the approximate size and electrostatics are similar to DNA-BPs. An
independent data set DNA.set is additionally used, having 92 DNA-binding domains
and 100 non-DNA-binding proteins [6].

Feature sets

The method Auto-IDPCPs [9] consists of three tasks: 1) clustering 531 vectors
of physicochemical and biochemical properties in the AAindex database into 20
classes using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm
based optimization method to select an informative feature set to represent sequences,
and 3) analyzing the selected feature vectors to identify the related physicochemical
properties which may affect the binding mechanism of DNA-BPs.

Auto-IDPCPs [9] used a systematic approach to automatically identify a set of
23 properties for predicting and analyzing DNA-binding domains/proteins in the
dataset DNAset. The 23 properties belonging to five clusters are used to design the
proposed ensemble fuzzy rule classifiers, shown in Table 1.

Interpretable fuzzy rule classifiers (iFRCs)

High performance of iFRCs mainly arises from two aspects. One is to
simultaneously optimize all parameters in the design of iFRCs where all the elements
of the fuzzy classifier design have been transformed into parameters of a large
parameter optimization problem. The other is to use an efficient optimization
algorithm IGA which is a specific variant of the intelligent evolutionary algorithm
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[11]. The intelligent evolutionary algorithm uses a divide-and-conquer strategy to
effectively solve large parameter optimization problems. IGA is shown to be effective
in the design of accurate classifiers with a concise fuzzy rule base using an
evolutionary scatter partition of feature space [12].

Flexible membership functions

The classifier design of iFRCs uses flexible generic parameterized fuzzy regions
which can be determined by flexible generic parameterized membership functions
(FGPMFs) and a hyperbox-type fuzzy partition of feature space [12]. Each fuzzy
region corresponds to a parameterized fuzzy rule. In this study, the value of each
physicochemical property is normalized into a real number in the unit interval [0, 1].
An FGPMF with a single fuzzy set is defined as

0 if x<aorx>d
x—a if a<x<b 1)
puy=48-2
ifc<x<d
d-c
1 ifb<x<c

where x € [0, 1] and a < b < c¢ < d. The variables a, b, c and d determining the shape
of a trapezoidal fuzzy set are the parameters to be optimized. It is well recognized that
confining evolutionary searches within feasible regions is often much more reliable
than penalty approaches for handling constrained problems [13]. Therefore, five

parameters V}, V2, ..., 1°<[0,1] (without constraints among V) instead of a, b, ¢ and d

are encoded into a chromosome for facilitating IGA. Let an additional variable L=V*
which determines location of the fuzzy set characterizing the occurrence of training

patterns. When V/are obtained, variables a, b, ¢, and d can be derived as follows: a=L-
(V3+V3), b=L-V3, c=L+V*, and d=L+(V*+V°) where b < L < c. This transformation can
always make the derived values of a, b, ¢ and d feasible and reduce interactions
among encoded parameters of the IGA’s chromosomes. Some illuminations of
FGPMF are shown in Fig. 2 [12].

Fuzzy rule and fuzzy reasoning method

The following fuzzy if-then rule base for n-dimensional classification problems
are used in the design of iFRCs:

Rj: Ifx1is Ajpand . . . and X, is Aj, then class CLj with CF;, j=1,...,N.

where R; is a rule label, x; denotes a variable of physicochemical property, Aji is an
antecedent fuzzy set, C is a number of classes, CL; € {1, . . ., C} denotes a consequent
class label, CF; is a certainty grade of this rule in the unit interval [0, 1], and N is a
number of initial fuzzy rules in the training phase. In this study, C=2 (two classes for
binding and non-binding), n=23 (initial number in the feature set to be selected), and
N=3C (initial number in the rule set to be selected).

To enhance interpretability of fuzzy rules, linguistic variables in fuzzy rules can
be used. Each variable x; has a linguistic set U= {small, medium, large}. Each
linguistic value of x; equally represents 1/3 of the domain [0, 1]. An antecedent fuzzy
set Aji € Ay where Ay denotes a set of subsets of U. Examples of linguistic antecedent
fuzzy sets are shown in Fig. 3. If x; is A;; representing {medium, large}, it means the
value of x; (physicochemical property) is belonging to the set of {medium, large}. If x;
is A;i representing {small, medium, large}, it means the physicochemical property is
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ALL, i.e., don’t care.

In the training phase, all the variables CL; and CF; are treated as parametric
genes encoded in a chromosome and their values are obtained using IGA. The
following fuzzy reasoning method is adopted to determine the class of an input

pattern X, = (Xp1, Xp2, - - -, Xpn) based on voting using multiple fuzzy if-then rules:
Step 1: Calculate score Scjassy (V =1, . . ., C) for each class as follows:
Sclassv = Zﬂj(xp)CFp /uj(xp):H/uji(Xpi)! ()
R]-eFC i=1
CL;=Classv

where FC denotes the fuzzy classifier, and ;(-) represents the membership
function of the antecedent fuzzy set A;;.

Step 2: Classify x, as the class with a maximal value of Scjassy.

Notably, X, is classified into the binding or non-binding class for one iFRC. The
final classification of x, is determined using the proposed ensemble classifier
consisting of 30 iFRCs in the study.

Chromosome representation of IGA

A chromosome consists of control genes for selecting useful features
(physicochemical properties) and significant fuzzy rules, and parametric genes for
encoding the membership functions and fuzzy rules. The control genes comprise two
types of parameters. One is parameters for selecting features. The other is parameters
for selecting fuzzy rules. The parametric genes determine variables of three types:

Vj‘i € [0, 1], t=1, ..., 5, for determining the antecedent fuzzy set A;, CL; for

determining the consequent class label of rule R;, and CF; € [0, 1] for determining the
certainty grade of rule R; , where j=1, ..., N and i=1, ..., n. A rule base with N fuzzy
rules is represented as an individual. The detailed explanation of the chromosome
representation and implementation can be referred to [12]. The design of an efficient
fuzzy classifier is formulated as a large parameter optimization problem. Once the
solution of IGA is obtained, an accurate classifier with a concise fuzzy rule base can
be obtained.

Fitness function of IGA
We define the fitness function of IGA for designing iFRCs as follows:
max Fit(FC) = ACC — W;N; — WiNs 3)

where W, and W; are positive weights. In this study, the fitness function is used to
optimize the three objectives: 1) to maximize the classification accuracy ACC, 2) to
minimize the number N, of fuzzy rules, and 3) to minimize the number N; of selected
features. For obtaining an easily-interpretable knowledge rule base for each iFRC, the
smaller values of N, and N; are better. Therefore, we used large values of weights W, =
0.2 and W; = 0.1. Since the classification accuracy is not the first priority for iFRC,
the ensemble fuzzy rule base classifier (EFRBC) consists of k (e.g., 30) iFRCs is
necessary for obtaining high accuracy of predicting DNA-BPs.

Ensemble fuzzy rule base classifier (EFRBC)

There are three opinions for using an ensemble strategy [14]: 1) Statistical: the
reason is related to lack of adequate data to properly represent the data distribution; 2)
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Computational: the reason is the model selection problem, and 3) Representational:
the reason is to address the cases when the chosen model cannot properly represent
the sought decision boundary. In this study, the training dataset DNAset is relatively
small, compared with the complex of recognition problems in the binding mechanism.
For considering interpretability, the same model SVM is used to construct the EFRBC.
Since the decision boundary of iFRCs is not complicated, the ensemble approach can
advance the prediction accuracy.

The EFRBC is composed of k=30 iFRCs and a voting method.

(1) Classification of iFRCs: The prediction accuracy is highly related to the
conciseness of the fuzzy rule base for every iFRC. The optimal design of iFRCs
can simultaneously optimize the three objectives using a weighted sum approach:
1) to maximize prediction accuracy, 2) minimize the number of features selected,
and 3) to minimize the number of fuzzy rules. However, the trade-off between
prediction accuracy and conciseness of the rule base can be determined by tuning
the weights W, and W;.

(2) Voting method: Different classification results of the query sequences will be
obtained from the outputs of the k independent iFRCs, and then these results are
integrated using the simple voting method.

k 1,
VS = ZT, T ={
= 0,

where k is the number of iIFRC, j=1, 2, ..., C is the class label, C; is the predicted
class label by ith iFRC. In this study, for a given query protein with C=2, the final
class is determined by argmax {VS;, VS,}.

Ci =]
otherwise '

(4)

Four performance measurements were used to evaluate iIFRC and EFRBC:
sensitivity (SEN), specificity (SPE), accuracy (ACC), and Matthew's correlation
coefficient (MCC), defined as follows: SEN = TP/(TP + FN), SPE = TN/(TN + FP),
ACC = (TP+TN)/(TP+FP+TN+FN), and MCC = ((TPxTN)-(FNxFP))/SQRT
((TP+FN)(TN+FP)(TP+FP)(TN+FN)), where TP, TN, FP and FN are the numbers of
true positive, true negative, false positive and false negative, respectively.

DNA-binding knowledge acquisition

This study proposes a knowledge acquisition approach based on the optimal
design of fuzzy rule bases to insight of DNA-binding mechanism. The informative
knowledge can be revealed from three aspects: 1) identified informative
physicochemical properties, 2) rules of DNA-binding and non-binding mechanism,
and 3) further analysis of binding mechanism using physicochemical properties.

Auto-IDPCPs [9] used a systematic approach to automatically identify a set of
properties to design accurate SVM-based classifiers for predicting DNA-binding
domains/proteins. By analysing the rules of EFRBC, we can further reduce the
number of physicochemical properties with great contribution in predicting the
binding mechanism. From the appropriate interpretations of fuzzy rules with linguistic
variables, it is more understandable for biologists. The rule-based knowledge provides
an effective approach to insight of DNA-binding domains.

An illustrating example of iFRC, shown in Fig. 4, and its explanation are given
as follows. Fig. 4 shows two rules of one iFRC which uses tow features, H252
(PRAM900101, Hydrophobicity (Prabhakaran, 1990)) and H398 (ZIMJ680101,
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Hydrophobicity (Zimmerman et al., 1968)). The rules R1 and R2 with fuzzy sets are
binding and non-binding rules, respectively. The descriptions of two rules are given as
follows:

R1: if H252 is {medium, large} and H398 is {medium, large}, then binding with
CF1=0.196.

R2: if H252 is {small, medium} and H398 is {small, medium}, then non-binding
with CF2=0.549.

For example, a query sequence X, has normalized values of H252 and H398, 0.4
and 0.3, respectively. The classification procedure using this iFRC is described as
follows:

Step 1: Use equation (1) to calculate the values of membership functions uy() and uy()
for binding and non-binding, respectively.

The value of up;(0.4) is 0.537 for H252 and the value of up,(0.3) is 1.0 for
H398. The values of u,;(0.4) is 0.606 for H252 and the value of u,2(0.3) is 1.0
for H398. The binding value of up(Xp) is Up1(0.4) X up2(0.3)=0.537 and the non-
binding value of un(Xp)=Un1(0.4)* un2(0.3)= 0.606.

Step 2: Use equation (2) to calculate the score for each class.
Because the non-binding score Sgiass =Un(Xp)*CF2 =0.333 is larger than the
binding score Sciass =Up(Xp)*CF1=0.105, the query sequence by using the single
iFRC is classified into the non-binding class.

The fuzzy regions of binding and non-binding are illustrated in Fig. 4. The final
classification of the query sequence using the proposed ensemble classifier is
determined using the voting result of k=30 iFRCs. Generally, if the query sequence is
located near the boundary of some fuzzy regions, the ensemble strategy can improve
the prediction accuracy.

Results

The parameter settings of IGA [11] are Npop = 20, Pc = 0.7, Ps =1-P¢, Py, = 0.01
and a = 15. Because the search space of the optimal design of iFRCs is proportional
to the number N, of parameters to be optimized, the stopping condition is suggested to
use a fixed number 100N, of fitness evaluations.

Prediction performance evaluation

The training samples with 23 properties in the dataset DNAset are represented as
23-dimensional feature vectors. This set of 23 physicochemical properties is identified
by Auto-IDPCPs [9]. The dataset DNAIiset was used for evaluating test performance
of iIFRCs and the ensemble classifier EFRBC. Due to the non-deterministic
characteristic of genetic algorithms, the best iIFRC with high training accuracy is
selected for testing DNAiset from 30 runs. The average performance of 30
independent iFRCs in EFRBC is given in Table 2.

The SVM-based classifier with PSSMs has the training and test accuracies of
86.62% and 82.81%, respectively. The SVM-based classifier with 22
physicochemical properties identified by Auto-IDPCPs has high training accuracy
87.12% and a relatively small accuracy of 80.73%. The average performance of
IFRCs has the training and test accuracies of 74.32% and 77.46%, respectively,
without significant over-training problems. The average number of features is Nt



=1.34 and average number of rules is N, =2.0. It reveals that the selected features are
very effective and the rule bases are very concise. The test performance of EFRBC
has a high test accuracy of 83.33%, sensitivity SEN=82.0%, specificity SPE=84.8%,
and MCC=0.67, shown in Table 3. The ensemble strategy is effective for accurate
prediction with an improvement of 5.87%.

The occurrence number of features and their descriptions in the 30 iFRCs are
given in Table 4. There are eight features used in EFRBC. The 531 properties in the
AAindex database were classified into six groups [9], [10]: 1) Alpha and turn
propensities (A), 2) Beta propensity (B), 3) Composition (C), 4) Hydrophobicity (H),
5) Physicochemical properties (P), and 6) Other properties (O). Table 4 reveals that
the two top-rank properties are the positive charge (H88, FAUJ880111) and
normalized Van Der Waals Volume (P80, FAUJ880103).

Rule-based knowledge

Figure 5 shows seven iFRCs, a selected subset of 30 iFRCs, containing all the
eight features in Table 4. We selected two iFRCs, iFRC; and iFRCy,, to illustrate the
rules for DNA-binding mechanism. The iFRC; and iFRC, have training accuracies of
74.24% and 74.49%, the test accuracies of 72.40% and 82.81%, the feature numbers
N: of 2 and 1, and the rule numbers N, of 2 and 2, respectively. The selected
physicochemical properties are P80 (normalized Van Der Waals Volume), H88
(positive charge) and H355 (hydrophobicity). The fuzzy rules are linguistically
interpretable as follows:

Fuzzy Classifier iFRC;:
R1:if P80 is ALL and H355 is ALL, then binding with CF=0.161.
R2: if P80 is {small, medium} and H355 is {small, medium}, then non-
binding with CF=0.576.

Fuzzy Classifier iFRC,:
R1: if H88 is {medium, large}, then binding with CF=0.416.
R2: if H88 is {small}, then non-binding with CF=0.165.

Analysis of binding mechanism

The two top-rank features are positive charge (H88) and normalized Van Der
Waals Volume (P80), shown in Table 4. A typical DNA-binding domain sequence in
the training dataset DNAset, shown in Fig. 6(a), is used to have an insight into the
binding mechanism. The sequence is the chain of the protein with PDBID 1WVL, a
multimeric DNA-binding protein using Sac7d and GCN4 as templates, whose FASTA
sequence is shown in Fig. 6(b).

We used the tool APBS [15] plugged in VMD 1.9 [16] to get the direct
measurement of the charge distribution on 1WVL protein surface. The surface
potential on 1WVL at neutral pH was calculated where the negatively and positively
charged surfaces are shown in red and blue, respectively, shown as Fig. 7. The DNA-
binding pocket, positively charged cavity, is visible in dark blue. Once the domain
and DNA are assembled into clusters, hydrophobic molecules are held together by
Van Der Waals interactions. Hydrophobic ridge of residues in the minor groove, the
side-chain atoms of the hydrophobic ridge residues, is shown as gray spheres. Protein-
DNA interaction resulting in the formation of salt bridges between cationic amino
acid side chains and the phosphate backbone completely neutralize particular



phosphate anions, eliminating repulsive interactions with fractional negative charges
at neighboring phosphates [17].

Discussion

To avoid from overfitting the small-scale datasets in identifying
physicochemical properties using an optimization approach, this study proposes a
hybrid computational method of combining evidences by considering robust factors
from the viewpoints of statistics and biological experiments from literature. It can be
expected that the proposed method can effectively discover and rank more
informative physicochemical and biochemical properties closely relative to the DNA-
binding mechanism if the size of the training dataset is significantly increased. These
discovered properties in predicting and analyzing the DNA-binding mechanism can
be further investigated by biologists.

Conclusions

This study has proposed a systematic fuzzy rule based knowledge acquisition
system (FRKAS) to predict and analyze DNA-binding domains/proteins. The merits
of FRKAS can be summarized, described below.

1) The novel interpretable fuzzy rule classifiers (iFRCs) using informative
physicochemical properties as features are proposed in this study. The features
and classifiers are more helpful for understanding the binding mechanism rather
than the SVM with PSSMs.

2) To obtain an accurate and concise fuzzy rule base, an intelligent genetic algorithm
is utilized to optimize simultaneously the three objectives: maximizing prediction
accuracy, minimizing the number of features selected, and minimizing the number
of fuzzy rules. The designers can tune the weights in the weighted sum approach
according to the preference to the three objectives.

3) Due to the small size of the training dataset, an ensemble classifier consisting of
IFRCs is adopted to compensate the limitation, resulting in high-accuracy and
robust performance.

4) The design of FRKAS considers both prediction accuracy and interpretability at
the same time. FRKAS can also be applicable to predict and analyze other protein
functions from sequences.
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Figure 1. The framework of the proposed fuzzy rule-based knowledge
acquisition system (FRKAS) based on physicochemical properties (PCPs).

nix) pix) wix)
(
u r}“ A
1 ' 1 = -
1
o RN {don’t care) i
ptl— 1 —» 0 — 0 —
a b L cdl x 1 x 1 x 1 x
(a) (h) (c) (d)
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Figure 5. Some typical iIFRCs covering the eight physicochemical properties
(PCPs) in Table 4.

MVKVKFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDDNGKTGRGAVSEKDAPKELLDMLARAEREKK

(a)

>1WVL:A[PDBID|CHAIN|SEQUENCE
MVKVKFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDDNGKTGRGAVSEKDAPKELLDMLARAEREKK
GVLKKLRAVENELH

>1WVL:B|PDBID|CHAIN|SEQUENCE
MVKVKFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDDNGKTGRGAVSEKDAPKELLDMLARAEREKK
GVLKKLRAVENELH

>1WVL:C|PDBID|CHAIN|SEQUENCE

CCTATATAGG

>1WVL:D|PDBID|CHAIN|SEQUENCE

CCTATATAGG”

(b)

Figure 6. An illustrating example of PDBID 1WVL. (a) One domain sequence
randomly selected from the training dataset. (b) The FASTA sequence of
IWVL.

Figure 7. The molecular surface accessible for an electron donor protein. The
negatively and positively charged surfaces are shown in red and blue, respectively.
The figure was created by using VMD 1.9 [16]. Surface electrostatic potential was
calculated by using the APBS tool [15]. The DNA-binding pocket on IWVL is visible
as dark blue, and hydrophobic ridge of residues in the minor groove is visible as gray
spheres.
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Tables

Table 1. Physicochemical properties (PCPs) in the five identified
clusters C4 for analyzing DNA-binding domains, obtained from [9]

Cig AAindex ID PCP Cig AAindex ID PCP

7 BHAR880101 Flexibility 10 FASG760105 pK-C

7 BURA740101 Secondary structure 10 JOND750102 pk- (-COOH)
7 CHOC760103 Solvent accessibility 10 RADAS880108 Polarity

7 HOPT810101 Hydrophobicity 16 PRAM900101 Hydrophobicity

7 FAUJ880111 Charge 16 FUKSO010104 Solvent accessibility
9 KARP850101 Flexibility 16 KUMSO000103 Secondary structure
9 PALJB10115 Secondary structure 18 PONP800107 Solvent accessibility
9 ROSM880101 Hydrophobicity 18 GRAR740102 Polarity

9 KUHL950101 Solvent accessibility 18 FASG760104 pK-N
10Z1MJ680101 Hydrophobicity 18 FAUJ880113 pK-a(RCOOH)
10EISD860101 Solvent accessibility 18 FAUJ880103 Normalized van der
10GEIM800101 Secondary structure Waals volume

Table 2. The performance comparisons between the SVM and fuzzy rule
based classifiers. The training dataset and test dataset are DNAset and
DNAiset, respectively.

DNAset DNA.set
Accuracy (%)  Featureno. Ruleno.  Accuracy (%)
SVM + PSSMs [6] 86.62 400 NA 82.81
SVM + PCPs [9] 87.12 22 NA 80.73
iFRCs 74.32 1.34 2.0 77.46
EFRBC NA* 8 60 83.33

* The ensemble classifier EFRBC consisting of 30 iFRCs has no training accuracy

Table 3. Performances of the proposed FRKAS on DNAiset

Accuracy (%) SEN (%) SPE (%) MCC
83.33 82.0 84.8 0.67
Table 4. The eight features used in the 30 iFRCs
No. Feature ID AAindex No.  Property
20 H88 FAUJ880111 Positive charge
12 P80 FAUJ880103 normalized VVan Der Waals Volume
3 A237 PALJ810115  Secondary structure
2 A97 GEIM800101 Secondary structure
1 H252 PRAM900101 Hydrophobicity
1 H355 ROSM880101 Side chain hydropathy
1 H398 ZIMJ680101  Hydrophobicity
1 H482 KUHL950101 Solvent accessibility

A: Alpha and turn propensities. B: Beta propensity. C: Composition. H:
Hydrophobicity. P: Physicochemical properties. O: Other properties [9].
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Table 5. The
corresponding to the fuzzy classifiers, shown in Fig. 5

rule-based knowledge of DNA-binding mechanism

Fuzzy classifier

Rule-based knowledge

R1-b: If P80 is ALL and H355 is ALL then binding (CF=0.161)
IFRC; R1-n: If P80 is {small, medium}and then non-binding  (CF=0.576)
H355 is {small, medium}
iFRC, R2-b: If H88 is {medium, large} then binding (CF=0.416)
R2-n: If H88 is {small} then non-binding  (CF=0.165)
iFRC R3-b: If P80 is {medium, large} then binding (CF=0.235)
® R3-n: If P80 is {small, medium} then non-binding  (CF=0.969)
R4-b: If P80 is {medium, large} and  then binding (CF=0.949)
iFRC, AITIS ALL . L
R4-n: If P80 is ALL and A97 is then non-binding  (CF=0.718)
{small, medium}
R5-b: If H88 is {medium, large} and then binding (CF=0.910)
iFRC A237 is {small, medium}
> R5-n:  If H88 is{small} and A237 is then non-binding  (CF=0.286)
ALL
R6-b: If H252 is {medium, large} and then binding (CF=0.196)
iFRC, H398 is {medium, large}
R6-n: If H252 is {small, medium} and then non-binding  (CF=0.549)
H398 is {small, medium}
R7-b: If A237 is {small, medium} then binding (CF=0.867)
iFRC and H482 is {medium, large}
" R7-n: If A237 is ALL and H482 is then non-binding  (CF=0.153)

{small, medium}

-16 -



R ¢ 3Er IR M e R d 2
wriwr | FER ThERRAnE
F 8 () R

. 2011/12/04 = 5L %

%R - A ehIE P - P

, 2011/12/07 . B

idq ;g%. L L3 & "% %E
7 i D 4 fé‘?’

(¢ ) 2011 % - - &A SR T 0 AZ ¢ &
€3k - (# < ) 2011 The 22nd International Conference on
Genomic Informatics (GIW 2011)

Lo J 0o SR A (22 TR N SR AT 22 W0 i S deh
B iE iR

Optimization approach to estimation of kinetic parameters for
modelling metabolic pathways of muscle glycogenolysis

2. st N EEAF ST M ARSNPHF A = PR TR
EES

Intelligent triple-objective genetic algorithm for selecting
informative Tag SNPs

CE e

v ALE

FENF (L R G RGE 2 @3 R4 By T
Z A g 4oea dE S 2 §_112/05~12/06= p T = rHall B¢ &R
1. %4 3RS 8

e B pd PSS LA E L ERRERS o Nd R0 408
SRR 2B EAE > S LERA Y 5C-10C EFRE TR %o
R F L M ER R F o

5 #GIW 20112 BIOINFO 2011=- gk + i3 2 & A& e F & S8R5
TR ER § R A €327 GIWEBIOINFOR k427 4% #% » @ plenary talks
e - A2BFeho €& % - % B34 MITDavid Bartel;# 3#MicroRNAs
and Their Regulatory Targets ; % = #-&_d 55 B2 ¥ ¢ (KOBIC):Sanghyuk Lee
A +7 B Bioinformatics Research and Resources at KOBIC » % = % £_& 517 R e
B 3 ¢ < epAlfonso Valenciai# 3#-A Bioinformatics perspective of Cancer
Personalize Genome Data ; ¥ - ¥#&_d & % + & Kiyoshi Asai;i :#Algorithms for
RNA sequence analysise & {s - % #_d 7 [ < & ¢Jeong-Sun Seo’ ;£ Genome-wide

L™

= B
I

map of common and rare variants in Asian population using massively parallel DNA
and RNA sequencing — Preliminary results from 1000 Asian Genome Project -

FpL g A };;iposter’ A EERF - AT e B ERE - AR Bk
7 o gt Ao & iR R < L4 & Optimization approach to estimation of kinetic
parameters for modelling metabolic pathways of muscle glycogenolysis ¥ Intelligent
triple-objective genetic algorithm for selecting informative Tag SNPs ° ;4 3F # ~ 3R £



ﬁbiﬁpm~d’ﬁﬁxﬁéiﬁ LR e
I\

N bhi NNy
Ep% st B € AT B4 S e J g—ammﬁw,@%&ﬁuwmﬁﬁ
PEABR R Bipl R 2 BAEFRR 5 X A F R0 Y4 R ?‘fﬁ,ﬁ.
i?‘iﬂf%*%iﬁﬁﬁﬁﬁ*i*%Nﬂﬂ°i4€&Ganl5¥:4:
B FIH T MR B 6 Rt = 1 oy H = § KSBSB (Korean Society for
Bioinformatics and Systems Biology) - % - = 7 GIW ¢ &= = 7 1990 # & & »
frt 5 R AP ABETHFEHR 2006 22k GIW g5 0 &5 E I REY
L-2 T ER HRRE ERFoRAT LG E 2 TS (AASBI) i
REE SR BRAELFTAL kL F g (KSBSB) # GIW #



BIOINFO = ¢k FPFALAZ SR ARRELERPREFEITERER £
EAEEG T B RMERAD S 5 P AE G~ 32 ke fodziE 120 4
Fox gl BERF LARLFHEY B F B AL LD 2 AR
AEH TS PR AIFE2MEREL RAPXE LS B BT §
REAE R folie ) BATIHMERERE NAEHE -

BARELS TSR d S FPERE R SRR L P T B
PERS > FALEPHEERDER BB F B P TAR O S
BHFERTLYA

3 ik

G KB R T I R R 4R R R RS R
TRl AL d » 2R REER 2 FE AP TAAR DL RBRREAY
B UEFRASEY kR S P TARFE LRI EFEFL LY LR
R PRV EIARMAT L hBATE B TR RSB AF S MR g Y o @)
PR (VBB E AR E T AR R TRy L L
LR pBLD G5 R N RY G SR e
R FLA ST WAL S AU ey = AR S s

4‘;}%Q~Pﬁ>}:i
1. # ) FAHE R LY )
2. "gzﬁ/}’i— Foo



FRERRFELR GRBEPN 2 7 E F I8 WREw§ R

t:»F{ ,:\a I
TR 2% eIt e g
?/ﬁ (t”T) i’#’ﬁ iiéf ,f
z 2,
gfiﬁp F 2012/5/17 % 2012/5/20 — [ LA 7
o PR A ‘ ] e 7
et 2 bR A
- ifé’?
(¢ 2)212F % B4 T3 FI1IRREEH
P

(# < ) The 2012 4th International Conference on
Bioinformatics and Biomedical Engineering
(iCBBE 2012)

(P2 ) Lg% it 23§ R0 T g

2. PR PR E B0 PR E

w & (# < ) 1.Designing predictors of bioluminescence
proteins using an efficient physicochemical property
~ AP mining method

2. Prediction of Carbohydrate-Binding Proteins Using a
Scoring Card Method

FERNF (A 2 RG22 (T3 FFH A Hr T
WEPFREHFETINER

2 s
. A iR

wﬁ%4%§m@%@£§ﬁ,xﬁkﬁ%%a&i#?ﬂﬁpﬁ
v (6 F R AR Foa A SR § R 520128 ¥ 2 B A ST
24 F1 4R ¢ &(CBBE 2012) ¢ R"Z L+ L% ¢ IEEE Englneerlng
in Medicine and Biology Society ¥ £+ # 7% -

Aot 42 # < 42 p £ " Designing predictors of bioluminescence
proteins using an efficient physicochemical property mining method ;> 3 & §_
@ P E I E gk iF i RSB MM PE - B E] B
& > *esupport vector machine s #f % » K31 ¥ 3k Fod g R % o 1
AT Few FR P ande (v B G R kA et B B Yrd o ¥ ek -
% %_ " Prediction of Carbohydrate-Binding Proteins Using a Scoring Card
Method ;> i & %Lf% *d FFEA A FFE 2 (Intelligent Gene Algorithm )
JER 30 B R 73 B Ap At g A Ek (di-peptide) chfg £ 45 H1 & L ot A
=+ (scoring card) > K MR L v FAIERE 0 T ATEE F0 TR
P g 1 S B BESS & STENR s i S rd o LB B il E e 2 0 4 b
RECERER LR E TS § RER S S Ll ] ot 2 3
e




£ &% ¢ £ 7% 4BRoom > 16 Section > & 3 v BFIRE T ~ FAEF
VAR T cAxFr BELAFHE o3 (- ) ZRARATFEFALI®
Athel?zﬂ;c;?ﬁ 3#Metabolic modeling: A Necessary Tool for Biotechnology ;
(Z)FWE 2 § ~ 5 Ann¥ 327 :#Fenton Oxidation of Contaminants using
Nanomagnetite ; (= ) % &rs i %5 g eChousxe w473 M An NMR view of
membrane transporters: application to mitochondrial carriers ; (2 ) 12 & 7|32
1 4 feDaniel 3% /i #-A general overview of medical robotics » £ 4-£2 4 +
LR rBRELIFAPOE AL FEAET BB 7~ F$E 0 7Y OB
fo (AR FAPIR MBI UL L HFRE > SR L A ST Y
AFIRAERAFLE AA A @ Fhr o B p b LR g
%ﬁggﬂm@%@@;kpwwrmgmﬁwﬁaaﬂ FI~2 R4
= I ;.J‘grﬂ\ p j\‘@;ﬁég’, V0B b ij"”l'—’J\ = H Bl v R
P~ 29 4R~ B %iﬁ%i AW EFEW - EFRZRF
F £ L SBEFR Cv*ﬂ’? ------ F o ML FaICBBE 20124% % 2 W%
GG 2 B EABAT L TR F I REER T % fE
AR RpFIRRo ¢ 7 s:ww PR N T S
BERS o B B RFT LT CR R FEORP P R AP B A
g PER D LR R gﬁme %w’&ﬁJﬁgng@m
B HE X g0 0 - a3 P R/Ap & @Eﬂlkﬂ%‘fj? S
o~ BhE o Hp Y g RaE g %‘1‘3‘ Pois BT o m’}?‘ﬁg

Ahr BpARE L A I & 1 8:30~12:000 A P iE € Hoerr A 3 & &L
B0 Fickd FHALZ ST %ma:%f% Flpt A fia e @ BEF Y2k
e ’H}A’\*‘?gﬂl#\ o 3% EE T ;{E %E i ér—]/?ﬁ-ﬂ» ER22) e WL oy
5311 47 1- F P I - ek 3 fF > 2 & support vector machine 4 &g % » &
Ak v %ﬁ’m—}p,PE@Txﬁ. H o7 F K Fv %ﬁ’[—%;lmiﬂlb;}'ﬂ"}'} O 4
Sk ATE T hEt A o

S Bthed = }Frf—‘g%éﬁﬁ—l ey R o E o o mAEsT
FB7 > A% 3 KA H ¢+ 3+ A+ (scoring card)&’lﬁﬁ‘*b o FAAERE
Agpdstd FEAAFFREZE R G b oh- A+ FP > R &
EESFE 2 A TT uE D AR FAF R 2 R P
B I AP 4B TR R AR -

B2 AT R REETA 24 FAR R LR ¥
Zﬂﬂm{ﬁ#ﬂwwg%ﬁjuw®ﬁﬁ§€%f :
kp WEA Iy RDF LAY S

O
1~ .

g




Fl- e 5 4

BHBIA 6 A e R4 B R DRAT 0 i A @D R AR

R A L LI L

S R R Y by /»ﬁf\mﬂufﬁéﬁ
AREE - 28T Mﬁ4§1ﬁ%% B A

S Bl o K Y ﬁﬁﬁrﬁm%m§4ipiﬂﬂﬁ4

d H

T ¥4

N

i

-

:‘:lu E'Jo*\.}i’% ﬂ\ g
R SRR RN NER R
Y

E”gf&&%AF g 0 d SRR ﬁ Fi?ﬁm" PR A > B jﬁ'&%

G Bl 2 4R mAARE RS 04 T LR P

/?fﬁ%%nwuwﬁ-ﬁiéyJ,nwﬂu
o REERP BB foAd 8 & (T E

224 20

VA

2

IFB m b

5@‘?.1

4
7

I Rl B

H ¥ b
le”_

& B

B 3
C
It
g]




3~ ER

FERFEP g Ry IfrE R EEF L |0 7 43 R
PRI LIRS > RR A AR R 2 SR FT LR DG
BRSSO MRF R OE R AL FEAFFASLLF
RARM R E B LAY E R gk 3 T @I MAE T D
BATH B T GRS LT S AR MR N o B R e B
{7 45 Pl AT 5 m*%ﬁlf%w«’ur%%w*mi*ﬂ PR L ER &
YRFEERE i A A X W £ ‘.%.aw%ﬂ AR
RIp A7 s

4~ v 7R
Proceedings of the 2012 6™ International Conference on Bioinformatics

and Biomedical Engineering (iCBBE 2012), Shanghai, China, May 17-20,
2012. (5 & & 22 k)
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Abstract—Carbohydrate-binding proteins play a pivotal
role in a variety of important biological recognition
processes. Compared with most studies of predicting
binding sites, very few studies investigate prediction of
carbohydrate-binding proteins. This paper proposes a
highly interpretable scoring card method for predicting
carbohydrate-binding proteins. First, a large-scale data set
of carbohydrate-binding proteins (CBPDB) collected from
three up-to-date databases, CAZy, CGF and Swiss-Prot is
utilized. The data set CBPDB consists of 2380 positive and
negative proteins with sequence identity 25% by removing
sequence redundancy. Secondly, we adopt a novel scoring
card method by way of generating an optimized scoring
card of dipeptides to predict the carbohydrate-binding
proteins. The prediction performance is promising with an
independent test accuracy of 78.67%. The dipeptide score
is helpful in discovering motif. The scoring card provides
an insight of further analyzing the binding mechanism
between carbohydrate and proteins.

Keywords—Binding, carbohydrate, genetic algorithm,
scoring card, protein, prediction.

. INTRODUCTION

Carbohydrates play an essential role in a variety of

important biological recognition processes like infection,
immune response, cell differentiation, and neuronal
development. All of these biological phenomena may be
regulated by the interaction of these carbohydrates with
proteins [1-5]. Carbohydrate-binding proteins are becoming
extremely useful in curing various illnesses. Experimental
work for identifying carbohydrate-binding proteins is costly
and time consuming. Therefore, effective computational
methods for predicting carbohydrate-binding proteins are
desirable.

It is vitally important to develop an automated and
efficient method for timely identification of novel
carbohydrate-binding proteins. However, some researches of
using empirical rules [6] or machine learning methods [7]
mainly focused on prediction and analysis of carbohydrate-

4

binding sites of proteins that are already known as
carbohydrate-binding proteins.

Someya et al. [8] first clarified the definition carbohydrate-
binding proteins and then constructed positive and negative
datasets. Using both informative features and an appropriate
classifier is essential to design an effective method for
predicting carbohydrate-binding proteins based on the primary
sequence only. They developed a carbohydrate-binding
protein prediction system by using support vector machines
(SVMs) [9], where the prediction of carbohydrate-binding
proteins was formulated as a binary classification problem.
Someya et al. [8] trained the SVM with three different
encoding methods: a direct encoding method (AA-20), and
two grouping methods (Levitt-6 and Someya-7). The SVM-
based method with AA-20 performs well with a leave-one-out
accuracy of 87% for the sequence with a sequence identity
35%.

Kumar et al. [10] developed SVM modules for
distinguishing between cancer and non-cancerlectin proteins
by using dipeptide composition, split composition, position
specific scoring matrix (PSSM) profiles and PSSM with 14
PROSITE domains as input features.

The merits of this study are to 1) utilize a large-scale data
set of carbohydrate-binding proteins collected from three up-to-
date databases, CAZy, CGF and Swiss-Prot, 2) propose an
easily interpretable method rather than the black-box-like SVM
for biologists, and 3) obtain a robust performance with
accuracy of 78.67% on carbohydrate-binding proteins with
sequence identity 25%.

Il.  MATERIALS

A. Datasets

Carbohydrate binding proteins are obtained from the
Consortium for Functional Glycomics (CFG) database and
Carbohydrate Active Enzyme (CAZy) database. All the
records from these two databases are served as positive protein
samples which can bind carbohydrate. The Gene Ontology
(GO) annotation terms about carbohydrate-binding functions
are obtained from the GOA database. The GO term,
carbohydrate binding function, and its child terms are
collected. Finally, the number of GO terms which are defined
as carbohydrate binding function is 778.



To obtain the negative dataset consisting of non-
carbohydrate binding proteins, the Swiss-Prot database of
release 2011 06, is also used. The Swiss-Prot database is
divided into positive and negative datasets using GO terms
mentioned above. If the GO terms of polypeptides in Swiss-
Prot contain any GO terms defined as carbohydrate binding
protein, the sequences are classified as positive samples. All
sequences obtained from the three databases, CAZy, CGF and
Swiss-Prot. The sequences from CAZy and CFG are
carbohydrate-binding protein. Sequences from Swiss-Prot
consist of carbohydrate- and non- carbohydrate-binding
proteins.

The positive dataset is composed of 57330 polypeptides
while the negative dataset is composed of 405046
polypeptides. USEARCH [11] is used to remove the sequence
redundancy of the dataset. The threshold of USEARCH is set
to 25%. After treating with USEARCH, the positive dataset
contains 2380 polypeptides and the negative dataset contains
49647 polypeptides.

To avoid the unbalanced problem, the previous method [12]
is used. The size of the negative dataset randomly chosen is
equal to that of the positive dataset. Finally, the completed
dataset contains 2380 polypeptides, shown in Table 1. The
dataset is equally divided into the training and test datasets.

Table 1. The numbers of sequences in the dataset CBPDB

stage positive negative
Original 57330 405046
Identity threshold 25% 2380 49647
Chosen negative sequences 2380 2380
Final dataset CBPDB 1190 1190
I1l.  METHODS

A novel scoring card method for predicting carbohydrate-
binding proteins is proposed.

A.  Construction of a scoring card

Figure 1 shows the data structures and experimental flow
chart of the proposed scoring card method. The scoring card in
arrow figure stands for the average of the statistic scoring
cards.

The CBPDB dataset was equally divided into two parts, one
for training and the other for independent test (outer loop in
Fig. 1). Furthermore, the training data set is split into ten parts
randomly (inner loop in Fig. 1) for ten-fold cross-validation.
Therefore, the method can obtain ten validation results and ten
statistic scoring cards. The statistic procedure of the scoring
card method is described as follows:

1) Separate the data set into two classes of carbohydrate-

and non-carbohydrate-binding proteins and calculate 400
dipeptide amounts for each class.

2) Due to the variance of sequence lengths in the two
classes, the number of each dipeptide in one certain class
is divided by the total number of dipeptides in this class.

3) A dipeptide in the carbohydrate-binding class got +1
score; otherwise, a dipeptide in the non-carbohydrate-
binding class got -1 score. So the 400 scores in a scoring
card can be derived from summation of all the dipeptide
scores in two classes.

4) Normalized the scores as positive numbers into the range
from 0 to 1000 in the scoring card.

Source Dataset

1/10 9/10
4

Optimized
scoring card
by validation
| Optimized |
scoring card

| Independent Test |

Fig. 1 Outline of the scoring card method

B.  Threshold value determination

In order to find a best threshold to assort the data in two
classes, the validation data in the inner loop were used. The
amounts of 400 dipeptides of all samples in the validation data
set were counted, and then the amounts were multiplied by the
counterparts of dipeptide humber in the scoring card. Finally,
sum the 400 numbers up and the summation is divided by the
sequence length to obtain a score of a sequence. The threshold
with the highest accuracy in validation is chosen as the
threshold value to classify two classes in the independent test.

In the test, the amounts of 400 dipeptides in a sample were
multiplied by the counterparts of dipeptide number in the
scoring card. Sum the 400 numbers up and the summation is
divided by the sequence length of a protein to obtain a score
for one sample. Equation 1 shows the calculation process. In
Eq. 1,iand j = A, C, ..., Y, the 20 amino acids, W is the
weighting of dipeptides of the test sample, and S is the score
in the scoring card, and L is protein length. Fig.1 illustrates the
process of test sample multiplied by the counterparts of
dipeptide number in the scoring card. Then the query protein
can be classified according to the threshold determined in the
validation step.
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C.  Scoring card

The ten statistics scoring cards in inner loop were averaged
to one scoring card (the arrow illustration in Fig.1). Afterward
the average scoring card was evaluated by ten validation
datasets. Ten best thresholds would be derived from ten
validations, and then the average of the ten thresholds was
used in the classification of independent test. In the final step,
there only had one scoring card, one threshold and one test
result.

D. IGA-scoring card

The scoring card is further optimized by an intelligent
genetic algorithm (IGA) [13] [14]. IGA utilizes an orthogonal
array (OA) [15] that was used in the crossover operation to
bring the better children than the traditional crossover method,
and it can efficiently obtain a high-quality solution set.
Orthogonal array is a fractional factorial array, which assures
a balanced comparison of levels of any factor.

Ten validation data sets were used for evaluating the fitness

function. The algorithm of generating the IGA-scoring card is
described as follows:

Step 1: Initial population
The half of initial population in the IGA-scoring card
consists of the ten statistic scoring cards in an inner loop,
and the other ten individuals in the initial population were
randomly generated from scores 0 to 1000. Therefore, the
initial population comprises Npop individuals totally and
Npop=20.

Step 2: Evaluation
The fitness function of every individual was appraised via
AUC from TPR and FPR.

TPR = TP/ (TP+FN) )
FPR = FP/ (FP+TN) ®)

Where TP is true positive and FP is false positive. In the
ROC curve, X axle is FPR and Y axle is TPR. The
validation data were used to find the best threshold
according to the highest accuracy and it can get both TPR
and FPR values from each threshold. TPR and FPR were
used to draw the ROC curve and evaluate the fitness
function for every individual.

Step 3: Selection
Use the traditional tournament selection that selects the
winner from two randomly selected individuals to form a
mating pool.

Step 4: Crossover
Select PceNpop parents from the mating pool to perform
orthogonal array crossover on the selected pairs of parents
where Pc is the crossover probability. Pc=0.9.

Step 5: Mutation

Apply the real number mutation operator to the randomly
mutated the gene from O to 1000 if the generated digit <
Pm, where Pm is the mutation probability. Pm=0.01.

Step 6: Termination
When the IGA come to 100 generations is the stop
condition and output the best individual as IGA-scoring
card. Otherwise, go to Step 2.

This flow chart is divided into training and test processes.
In the training part of the beginning, it used the training dataset
to build a scoring card, then the scoring card is optimized by
IGA with the validation dataset to get the best scoring card and
threshold value. In the test process, the input sample could
obtain a score through the scoring card.
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Fig. 2 The heat map of the IGA-scoring card
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IV. RESULTS

A Scoring card results

Figure 2 shows the best IGA-scoring card (with the highest
training accuracy) of 150 generation optimizations from 25
independent runs. Figure 3 depicts the training and test ROC
curves of the number-24 scoring card method. From the
curves, the AUC of training and test are 0.872 and 0.857 and
the accuracies of the training and independent test are 80.67%
and 78.67%, respectively.



The heat map reveals that the dipeptides have widely-
distributed binding abilities. The dipeptides LA and LI have
the highest score 1000 and the dipeptides CW and GN have
the lowest score 0. From the support of knowledge in the
scoring card, the motif discovering objective can be achieved
more easily.

By using the scoring card optimized by IGA, the AUC can
be significantly improved and hence increases the training and
test accuracies. The high performance arises mainly from IGA
and it can efficiently obtain a high-quality solution set. So the
performance in the scoring card method optimized by IGA can
get high performance.

V.CONCLUSIONS

The proposed method provides a more easily and intuitive
way to predict the carbohydrate-binding protein than any other
method, like SVM. Moreover, the scoring card method which
utilizes the 400 scores as weights is derived from the protein
sequence of dipeptide, and further efficiently optimized by the
intelligent genetic algorithm.

It can efficiently analyze the dipeptide feature through the
interpretable score feature in scoring card, and directly predict
the class in the problem which influenced by dipeptide or
protein sequence. Hence, the window threshold function in
scoring card method gives the advantage to select the samples
with stable prediction accuracy and also provides stable
independent test experiments.
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Abstract— Bioluminescence proteins are becoming increasingly
important in a variety of research fields such as in situ imaging
and the study of protein-protein interactions in vivo, and
increased spectral variety of bioluminescent reporters is needed
for further progress. The existing method BLProt using support
vector machine (SVM) and physicochemical properties to predict
bioluminescence proteins. The BLProt method identified the
most prominent features using various filter approaches, ReliefF,
infogain, and mRMR. BLProt utilized 100 features to achieve a
training accuracy of 80% and test accuracy of 80.06%.
Physicochemical properties are well recognized to be effective in
designing various predictors for understanding the functions and
characteristics of proteins. In this study, we propose an efficient
method for designing predictors of bioluminescence proteins
using a small set of informative physicochemical properties
obtained by using an inheritable bi-objective genetic algorithm.
The benchmark datasets were used to evaluate the proposed
method using SVM and informative physicochemical properties
as the features. The prediction accuracy of independent test is
81.79% using 15 properties. From the analysis of informative
physicochemical properties, some knowledge of bioluminescent
problems can be revealed. The proposed physicochemical
property mining method can be used conveniently as the core for
designing predictors for various types of bioluminescent
problems.

Keywords — Bioluminescent protein, genetic algorithm, SVM
physicochemical properties, prediction

l. INTRODUCTION

Bioluminescence is a light producing process. The basic

two factors included in this process are luciferase and luciferin,
which are the catalytic enzyme and its substrate respectively.
Work on bioluminescence is actively pursued at all levels,
such as naturalist or phtochemist, due to it abnormal
characters. The visible light, generated from luciferase, is
emitted at room temperature while light often can be generated
at extreme high temperature causing violent oxidation of some
objects. The actual emission of bioluminescence is the
extremely rapid final process of usually multistep reaction.
Most often, the excited state of luciferin is excited by electron
or photon [1].

Bioluminescence provides an ideal tool to solve scientific
problems. Previous studies [2] are already renowned for the
preparation and application of an extended series of

radiometric ion-sensitive indicators and a number of
sophisticated reporter molecules based on fluorescence
resonance energy transfer (FRET). In order to generate
genetically encoded FRET probes which are suitable for
radiometric measurements, more fluorophores are need to be
discovered or generated.

However, the biofunction of those bioluminescence
proteins are quite alike, they do not share strongly
homologous. Many orgasms use different proteins which have
different mechanisms to generate light [3]. Bioluminescence
proteins are becoming increasingly important in a variety of
research fields such as in situ imaging and the study of
protein-protein interactions in vivo, and increased spectral
variety of bioluminescent reporters is needed for further
progress.

Beside the bioluminescent characters, some characters are
also interesting. First, the luciferins are extremely hydrophobic
macro molecules. To catalyze the molecules, the catalytic sites
must be very different to tune the catalytic orientation between
the enzymes and subtracts. Secondly, the bioluminescence
light in some live orgasms, like firefly, is regulated. The GFP
does not have a significant regulation structure like the C-
terminal ball-chain structure of voltage-dependent gate
channel on neuron. But some regulation mechanisms still
occur for this purpose [4]. Third, the bioluminescence does not
share homologous but they have a similar function.
Understanding  physicochemical  properties  of  the
bioluminescence proteins may help improve the applications
of bioluminescence proteins.

Kandaswamy et al. [5] proposed an accurate prediction
method BLProt that uses a support vector machine (SVM) and
physicochemical properties to predict bioluminescence
proteins. BLProt used a training dataset consisting of 300
bioluminescence proteins and 300 non-bioluminescence
proteins, and an independent test dataset consisting of 141
bioluminescence proteins and 18202 non-bioluminescence
proteins. To identify the most prominent features, they carried
out feature selection with three different filter approaches,
ReliefF, infogain, and mRMR. For the aim of designing
accurate prediction methods, the major concern is to identify
feature wvectors with high discrimination abilities for
classifying positive and negative samples. Their feature
selection method suffers from a large set of candidate features.

We investigate the optimal design of predictors for



bioluminescence proteins from amino acid sequences using
both informative features and an appropriate classifier.
Furthermore, we obtain a set of informative physicochemical
properties which can advance prediction performance.
Physicochemical properties extracted from protein sequences
were utilized as effective features in recent years. Our
previous work Auto-IDPCPs [6] is an SVM based classifier
with automatic feature selection from a large set of
physicochemical composition features to predict DNA-binding
domain/protein. The POPI method used physicochemical
properties as efficient features to predict peptide
immunogenicity [7]. The prediction method UbiPred [8]
mined informative physicochemical properties from protein
sequences to identify promising ubiquitylation sites.

The informative physicochemical properties of amino acids
indices selected in this study were used as features in designing
SVM classifiers. An efficient algorithm inheritable bi-objective
genetic algorithm (IBCGA) was used to select significant
features which could discriminate the two classes of proteins.
The feature sets selected by IBCGA were analyzed carefully to
reveal the fundamental differences existed between
bioluminescence proteins and non-bioluminescence proteins. In
conclusion, we proposed a novel prediction method combining
the informative physicochemical properties of amino acid and
SVM to solve the prediction problem of bioluminescence
proteins.

Il.  METHOD

We propose a novel method using the physicochemical
properties for predicting bioluminescence proteins (PBLP).
The identification of an effective feature set of
physicochemical properties is mainly derived by using an
inheritable bi-objective genetic algorithm (IBCGA) [9]. The
IBCGA mines informative physicochemical properties and
tune parameter settings of SVM simultaneously while
maximizing 5-fold cross validation (5-CV) accuracy.

A. Datasets

The bioluminescence proteins (BLPs) extracted from
Martinetz et al. Pfam database are used to obtain the seed
proteins of BLPs. To enrich the dataset, PSI-BLAST with
stringent threshold (E value 0.01) is carried out to search
against the non-redundant sequence database. Then, CD-hit
are performed to remove the sequences with identity >= 40%
in the collected dataset. After all, a total 441 bioluminescence
proteins are kept as positive dataset. The statistic of the
training and test sets is shown in Table 1.

There are 300 BLPs randomly selected from the 441
positive samples and are served as training samples. The
others are served as test samples. There are 300 non-BLPs also
randomly picked from seed proteins of Pfam protein families.
These proteins, served as negative samples, are unrelated to
BLPs.

The negative testing dataset is composed of the seed
proteins of non-BLPs Pfam protein families. All sequences
contained in the training dataset have less than 40 residues are

removed. Finally, the test dataset is composed of 141 BLPs
and 18202 non-BLPs.

Table 1. The statistic of the training/test sets.

dataset Number of BLPs Number of non-BLPs
Training 300 300
Test 141 18202

B. Support Vector Machine

Support vector machine (SVM) is a learning model dealing
with binary classification problems. SVM constructs a binary
classifier by finding a hyperplane to separate two classes with
a maximal distance between margins of two classes consisting
of support vectors. In order to make linear separation of
samples easier, SVM uses one of various kernel functions to
transform the samples into a high-dimensional search space. In
this work, the commonly-used radial basis function is applied
to nonlinearly transform the feature space, defined as follows:

K(Xi,xj) :exp(—;/"xi —xj"),y >0 1)

The kernel parameter y determines how the samples are
transformed into a high-dimensional search space. The cost
parameter C>0 of SVM adjusts the penalty of total error.
These two parameters C and y must be tuned to get the best
prediction performance.

For multi-class classification problems, ‘one-against-one’
strategy is applied to transform the multi-class problem into
several binary classification problems. Given h classes, there
are h(h—1)/2 classifiers constructed and each one trains the
samples from two classes. A voting strategy is applied to give
a final prediction for test samples. In this study, h=2 and the
used SVM is obtained from LIBSVM package version 2.81
[10].

C. Inheritable Bi-objective Genetic Algorithm

Selecting a minimal number of informative features while
maximizing prediction accuracy is a bi-objective 0/1
combinatorial optimization problem. An efficient inheritable
bi-objective genetic algorithm [11] is utilized to solve this
optimization problem. IBCGA consists of an intelligent
genetic algorithm [12] with an inheritable mechanism. The
intelligent genetic algorithm uses a divide-and-conquer
strategy and an orthogonal array crossover to efficiently solve
large-scale parameter optimization problems. In this study, the
intelligent genetic algorithm can efficiently explore and
exploit the search space of C(n, r). IBCGA can efficiently
search the space of C(n, r+1) by inheriting a good solution in
the space of C(n, r) [11]. Therefore, IBCGA can economically
obtain a complete set of high-quality solutions in a single run
where r is specified in an interesting range such as [5, 20].

The proposed chromosome encoding scheme of IBCGA
consists of both binary genes for feature selection and
parametric genes for tuning SVM parameters, where the gene
and chromosome are commonly-used terms of genetic
algorithm (GA), named GA-gene and GA-chromosome for



discrimination in this paper. The GA-chromosome consists of

n=531 binary GA-genes b; for selecting informative properties

and two 4-bit GA-genes for tuning the parameters C and y of

SVM. If b=0, the i"" property is excluded from the SVM

classifier; otherwise, the i property is included. This encoding

method maps the 16 values of yand C into {27, 2°°..., 2°}.

The feature vector for training the SVM classifier is
obtained from decoding a GA-chromosome using the
following steps. Consider a given DNA-PBs sequence. At first,
the index vectors for all selected physicochemical properties
are constructed from AAindex for each amino acid. Feature
vector of a peptide consists of the selected features whose
values are obtained by averaging the values in their
corresponding index vectors. Finally, all values of the feature
vectors are normalized into [-1, 1] for applying SVM.

Fitness function is the only guide for IBCGA to obtain
desirable solutions. The fitness function of IBCGA is the 5-
CV overall accuracy. IBCGA with the fitness function f(X)
can simultaneously obtain a set of solutions, X,, where r=rgup,
sattl, ..., Feng iN @ single run. The algorithm of IBCGA with
the given values rg, and renq is described as follows:

Step 1) (Initiation) Randomly generate an initial population
of Ny individuals. All the n binary GA-genes have r
1’s and n-r 0’s where r = rgaq.

Step 2) (Evaluation) Evaluate the fitness values of all
individuals using f(X).

Step 3) (Selection) Use the traditional tournament selection
that selects the winner from two randomly selected
individuals to form a mating pool.

Step 4) (Crossover) Select p; "Ny, parents from the mating
pool to perform orthogonal array crossover on the
selected pairs of parents where p. is the crossover
probability.

Step 5) (Mutation) Apply the swap mutation operator to the
randomly selected pp -Npo, individuals in the new
population where p,, is the mutation probability. To
prevent the best fitness value from deteriorating,
mutation is not applied to the best individual.

Step 6) (Termination test) If the stopping condition for
obtaining the solution X; is satisfied, output the best
individual as X;. Otherwise, go to Step 2). In this
study, the stopping condition is to perform 40
generations.

Step 7) (Inheritance) If r < rg,4, randomly change one bit in
the binary GA-genes for each individual from 0 to 1;
increase the number r by one, and go to Step 2).
Otherwise, stop the algorithm.

D. Prediction Method PBLP

The selected m physicochemical properties and the
associated parameter set of SVM by using PBPL are used to
implement the computational system and analyze the
physicochemical properties to further understand the BLPs.
Since the PBPL is a non-deterministic method, it should make
more effort to identify an efficient and robust feature set of

informative physicochemical properties in five aspects. The
procedure is as the following steps:

Step 1 : We prepare the independent data sets where each set
is used as the training data set of 5-CV.

Step 2 : PBPL is performed R independent runs for each of
independent data sets. In this study, R = 30. There are
total 30 sets of m physicochemical properties for each
of independent data sets.

Step 3 : Choose the set of selected physicochemical properties
with a maximal accuracy.

PBLDs will automatically determine a set of informative
physicochemical properties and an SVM-model for prediction
bioluminescent and non- bioluminescence proteins.

Ill.  RESULTS

A. Results of training and test datasets

The training data sets contain 300 positive and 300
negative samples. The sequence similarity of the training data
set is smaller than 40%. We performed 30 independent runs of
PBPL to select robust feature set which could improve the
performance of SVM classifier on discriminating the two
classes of proteins. The highest training accuracy of 30 PBPL
runs was 84.11% and its corresponding test accuracy was
81.79%. (Table 2).

Table 2. Results of the training and independent test by
BLProt and PBLP.

Method Spe(i;‘)icity Sensit(i)\//oity Accuc;ocy Fsiat}serte
= BRI 84.21 74.47 80.00 100
E PBLP 79.25 84.11 84.5 15
_ BLProt 74.47 84.21 80.06 100
& PBLP 81.89  68.79 81.79 15

B. Selected a small set of physicochemical properties.

The quantified effectiveness of individual physicochemical
properties on prediction is useful to characterize the PBLP
mechanism by physicochemical properties. Orthogonal
experimental design with factor analysis can be used to
estimate the individual effects of physicochemical properties
according to the value of main effect difference (MED) [7, 12].
The property with the largest value of MED is the most
effective in predicting BLPs.

According to MED, the 15 informative properties are
ranked and their descriptions are shown in Table 3 and Fig. 1.
The most effective property with MED=16.16668 is
RACS820111 denoting “Differential geometry and polymer
conformation. Conformational and nucleation properties of
individual amino acids”.



Table 3. The highest accuracy with selected m = 15 feature set

Featur  AAindex
elD D
8 BHARS8010

Description

Positional flexibilities of amino acid residues in

1 globular proteins
13 BROC82010 The isolation of peptides by high-performance
2 liquid chromatography using predicted elution
positions
18 BUNA79010 1H-nmr parameters of the common amino acid
3 residues measured in aqueous solutions of the linear

tetrapeptides H-Gly-Gly-X-L-Ala-OH
Physical reasons for secondary structure stability:
alpha-helices in short peptides
Amino acid preferences for secondary structure
vary with protein class
202 NAKH92010 The amino acid composition is different between
1 the cytoplasmic and extracellular sides in
membrane proteins
Protein secondary structure

95 FINA910104

107 GEIM800111

223 PALI810101

310 RACS820111  Differential geometry and polymer conformation. 4.
Conformational and nucleation properties of
individual amino acids
380 VENT84010  Hydrophobicity parameters and the bitter taste of L-

1 amino acids
439 PARS000102 Protein thermal stability: insights from atomic
displacement parameters (B values)
Amphiphilicity index of polar amino acids as an aid
in the characterization of amino acid preference at
membrane-water interfaces
The packing density in proteins: standard radii and

473 MITS020101

475 TSAI990102

volumes
489  PUNTO030101 A knowledge-based scale for amino acid membrane
propensity
491 GEOR03010 An analysis of protein domain linkers: their
1 classification and role in protein folding
502 ZHOH04010 Quantifying the effect of burial of amino acid
3 residues on protein stability

IV. DISCUSSION

The merits of the proposed method are twofold: 1) a small
set of informative physicochemical properties is identified for
predicting bioluminescence proteins (PBLP) with promising
accuracy, and 2) the small set of informative physicochemical
properties can be more easily interpretable. The existing
method BLProt with a test accuracy of 80.06% has been
proved to be more accurate than BLAST and HMM using 100
features. The proposed method PBLP achieves a higher test
accuracy of 81.79% using only 15 physicochemical properties
for predicting bioluminescence proteins.

The identified feature sets from 30 independent runs of
PBLP are very robust. The appearance frequency of each
identified cluster in the 30 runs is shown in Fig. 3. From the
statistic result, the clusters 7, 9, 10 and 16 with very high
selection frequencies are more informative for predicting
bioluminescence proteins. The selected clusters of the 30 runs
are very similar in terms of cluster ID from 20 clusters. The
most effective property with RACS820111 is belonging to the
10th cluster with Beta propensity in six groups.

PBLP is an efficient approach to selecting informative
physicochemical properties for SVM classifier. With the
IBCGA-selected features, the prediction accuracy of our
method is better than the existing method. This method can be
also applied to other sequence-based prediction problems.
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Figure 1. The rank of the selected feature set with the highest
training accuracy is analyzed by MED analysis.
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