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% <~ 4 & : Title of the proposal: A study on the topological
insulator physics in nano-patterned 2DEG
The goals in this study are
1. to explore the topological insulator physics in
nano-patterned 2DEG,
2. to establish a basic theoretical framework for
later study on novel functionalities



made possible by the 2DEG fabrication technologies.
We propose to explore theoretically the possibility
of realizing artificial topological

insulator (TI) in nano-patterned two-dimensional
electron-gas (2DEG). The high mobility

of the 2DEG and the associated sophisticated
fabrication technologies already established

for 2DEG make this possibility attractive for a
fuller scale study on the TI physics.

Particular attention will go to the effects of spin-
orbit interactions (SOI), including

intrinsic SOIs such as the Rashba-type and
Dresselhaus-type SOIs, on the nano-patterned

2DEG. Their effects on gap opening and edge states
will be studied.

Nano-patterned 2DEG includes void lattices, nano-gate
lattices and magnetic flux

lattices. The SOIs considered are either uniform or
periodic, in direct correspondence to

the gate pattern. Lattices with inversion and without
inversion symmetry will be studied

to explore its connection to the robustness of the TI
effects. Various types of lattices will

be studied.

Hard wall potential model will be used for the void
and muffin-tin potential model

will be used for the nano-gate. Features of energy
level crossing or gap opening will be

studied at the high symmetry points, such as the K,
M, and theI points, and at other k

points in the Brillouin zone. Detail analysis of the
Bloch wavefunction in terms of the

cylindrical wavefunctions centered at a lattice site
will be carried out and the insights will

be applied to the study of magnetic flux lattices in
2DEG. Gap opening due to SOI, the

effects on the corresponding Berry curvature and the
Chern number for each such

occupied band will be calculated. Appropriate
boundary conditions will be introduced for

a direct calculation of the edge state dispersions
and edge state wavefunction. In



particular, the dependence of the edge states on the
orientation of the edges will be

explored.

In all, we aim at establishing a theoretical
framework for later study on novel

functionalities made possible by the 2DEG.

topological insulators, nano-patterned, nano-gate,
edge state, spin-orbit
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Title of the proposal: A study on the topological insulator physics in nano-patterned 2DEG

The goals m this study are

1. to explore the topological insulator physics in nano-patterned 2DEG,

2. to establish a basic theoretical framework for later study on novel functionalities
made possible by the 2DEG fabrication technologies.

We propose to explore theoretically the possibility of realizing artificial topological
msulator (TI) in nano-patterned two-dimensional electron-gas (2DEG). The high mobility
of the 2DEG and the associated sophisticated fabrication technologies already established
for 2DEG make this possibility attractive for a fuller scale study on the TI physics.
Particular attenfion will go to the effects of spin-orbit interactions (SOI), including
mtrinsic SOIs such as the Rashba-type and Dresselhaus-type SOIs, on the nano-patterned

2DEG Therr effects on gap opening and edge states will be studied.

Nano-patterned 2DEG includes void lattices, nano-gate lattices and magnetic flux
lattices. The SOIs considered are either uniform or periodic, in direct correspondence to
the gate pattern. Lattices with inversion and without mversion symmetry will be studied
to explore its connection to the robustness of the TI effects. Various types of lattices will

be studied.

Hard wall potential model will be used for the void and muffin-tin potential model
will be used for the nano-gate. Features of energy level crossing or gap opening will be
studied at the high symmetry points, such as the K, M, and the [ points, and at other &
pomnts in the Brilloumn zone. Detail analysis of the Bloch wavefunction i terms of the
cylindrical wavefunctions centered at a lattice site will be carried out and the insights will
be applied to the study of magnetic flux lattices in 2DEG. Gap opening due to SOI, the
effects on the corresponding Berry curvature and the Chern number for each such
occupied band will be calculated. Appropriate boundary conditions will be mtroduced for
a direct calculation of the edge state dispersions and edge state wavefunction. In
particular, the dependence of the edge states on the orientation of the edges will be

explored.

In all, we aim at establishing a theoretical framework for later study on novel

functionalities made possible by the 2DEG.

Keywords: topological insulators, nano-patterned, nano-gate, edge state, spin-orbit
mteraction, magnetic flux lattice, muffin-tin potential, energy level crossing, gap opening,

Berry curvature,
Chern number.
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Effects of edge potential on an armchair-graphene open boundary and nanoribbons

Chi-Hsuan Chiu and Chon-Saar Chu
Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China
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Pseudospin flipping is found to be the key process leading to the formation of an edge-potential-induced
edge state at an armchair-graphene open boundary and nanoribbons. At an open boundary, the edge potential
Uy is shown to turn on pseudospin-flipped (intravalley) scattering even though Uy does not post an apparent
breaking of the AB site (basis atoms) symmetry. For a valley-polarized incident beam, the interference between
the pseudospin-conserving (intervalley) and -nonconserving (intravalley) processes in the scattering state leads to
a finite out-of-plane pseudospin density. This two-wave feature in the evanescent regime leads to the formation of
the edge state. The physical origin of the edge state is different from that for the Tamm states in semiconductors.
For an armchair-graphene nanoribbon with a gapless energy spectrum, applying U, to both edges opens up an
energy gap. Both edge states and energy gap opening exhibit distinct features in nanoribbon conductance.

DOI: 10.1103/PhysRevB.85.155444

I. INTRODUCTION

Ever since the experimental separation of its sample,'?
graphene has become a fascinating paradigm for the ger-
mination of novel physical phenomena®** and future appli-
cations in carbon-based nanoelectronics.>~'* This is due to
the fact that the low-energy physics in graphene is that of
a two-dimensional massless Dirac particle,> and also to
its striking material properties of high electronic mobility'®
and thermal conductivity.'” The structure of graphene, a
single honeycomb lattice layer of carbon atoms, has provided
two additional twists, or degrees of freedom, to the Dirac
physics. Pseudospin,'®2° or the sublattice pseudospin, arises
from the bipartite honeycomb lattice, which consists of
two distinct triangular sublattices. Valley isospin?'~ arises
from two nonequivalent K and K’ points (Dirac points) at
the corners of the Brillouin zone. These have contributed
to anomalous physical characteristics in phenomena such
as Klein tunneling,'>*» quantum Hall effects,*?’ weak
(anti)localization,?=3° focusing of electron flow in a graphene
p-n junction,’ and electron beam supercollimation. '8

Edge states at a zigzag edge of graphene nanostructures
has attracted an immense amount of attention recently.’>°
These one-dimensional (1D) extended states, localized near
the system edge, are zero-energy states of topological origin,
and are the result of particle-hole symmetry.** The flatband
nature of the edge states contributes to the large density of
states in neutral zigzag graphene nanoribbons (GNRs) at the
Fermi energy, and leads to localized magnetic structures at
the zigzag edges.®® Recent scanning tunneling spectroscopy
measurements on chiral GNRs,*® with a regular mixing of
zigzag and armchair edges, reveals the presence of 1D GNR
edge states.*®*” There have been promising efforts to fabricate
ideal GNRs with only zigzag or armchair edges.’’~*? The
energy spectrum of the zigzag GNR is gapless because of
the edge states.>** On the other hand, the flatband feature of
the edge states could support an energy gap when a Hubbard
term for the on-site Coulomb repulsion is included.?*#648

Edge potentials were invoked recently for the study of gap
opening and gap modulation in the zigzag GNR.*>*" For edge
potentials applying along the GNR edges taking up either a
& profile® or a finite range profile across the GNR width,*”

1098-0121/2012/85(15)/155444(10)
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the GNR energy spectrum opens up a gap when the applied
potential is antisymmetric over the width of the GNR.4347
Meanwhile, the edge potential is also invoked to convert
the flatband edge states into valley-dependent gapless edge
states.*> An on-site energy Uy at the boundary is shown, when
the Uy magnitude is large enough, to suppress the hopping
onto the outermost sites and to change the edge to that of a
bearded edge.*® In the presence of a bulk energy gap A, due
to a staggered sublattice potential, the continuous Uy tuning
of the edge-state dispersion relation between the zigzag-edge
type and the bearded-edge type causes, at intermediate Uy
values, the conversion of the flatband edge states into gapless
edge states that span the bulk energy gap.** The topological
nature of these edge states derives from the fact that the states
involve essentially only one valley (K or K'), and that the
topological charge™ N3 = 1 z;sgn(A) is nonzero fora valley.**
Here 1, = =+ is the valley index.

The armchair edge of graphene, on the other hand, has no
edge states.**3%3* It is of interest then to consider the use of
the edge potential for possible generation and tuning of the
edge states. In this paper, we show that the edge potential
U, at an open boundary does cause the formation of edge
states, and the key is its turning on of the pseudospin-flipped
(intravalley) scattering process. With this scattering process
enabled, an incident wave in one valley will be reflected, at an
armchair open boundary, into two scattered waves associated,
separately, with K and K’ valleys. The interference between
the two scattered waves gives rise to out-of-plane pseudospin
density, which is of interest in its own right. As for the edge-
state formation, the two-wave feature is important because it
opens up both evanescent waves, from K and K’ valleys, for
the construction of the edge-state wave function. Even though
the two evanescent waves have different pseudospins, we show
that the edge potential can provide the needed pseudospin
rotation at the boundary for the edge-state boundary condition.
Two interesting edge-state features are worth noticing here.
The states are dispersive, and their formation does not require a
finite threshold in Uy. The fact that the edge states are generated
for arbitrary nonzero Uy shows unequivocally that the physical
origin is not Tamm-type™—the type of edge states induced,
or trapped, by a sufficiently strong trapping potential at the

©2012 American Physical Society
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system boundary. Rather, the role of U is to summon both
evanescent waves for the formation of the edge states.

The effects of the edge potential on armchair GNRs are
also explored in this work, with edge potentials that are
symmetrically configured. Gap opening in the energy spectrum
is obtained in addition to the aforementioned edge-state gener-
ation. To best illustrate the gap-opening features, we consider
armchair GNRs that are gapless in their unperturbed energy
spectrum by judiciously choosing the GNR widths,33-3839.36
Our finding shows that the energy gap (a global gap) is formed,
at k = 0, when an edgelike branch splits out of and in between
GNR subbands. States in the edgelike branch have an edgelike
spatial profile, except in the long wave-vector regime (k = 0),
where the spatial profile becomes bulklike. Interestingly, we
can find an energy interval within which the edge states exist
while the bulklike states do not. The characteristics in the GNR
conductance associated with this energy interval are identified.
As the propagation direction of the edge states is correlated
with the pseudospin, it is expected that the edge states are
insensitive to disorder. The scattering wave formulation which
we have implemented in this work facilitates extraction of
analytical results for better physical understanding. All our
results compare well with direct numerical calculations.

This paper is organized as follows. In Sec. II, we present
our scattering wave approach to an armchair-graphene open
boundary in the presence of an edge potential Up. The
boundary condition is cast in a pseudospin scattering form
most convenient for our discussion. For the scattering states,
the out-of-plane pseudospin density is presented. For the
edge states, an explicit form for the pseudospin rotation
operator due to Up at the open boundary is presented. The
edge-state dispersion relation is obtained numerically while
its long-wavelength expression is obtained analytically. In
Sec. 11, we present our results for the armchair GNR due to a
symmetrically configured edge potential. The finite-size effect
on the edgelike branch and the gap opening in the GNR energy
spectrum are presented. The effects of the edge potential on
the armchair GNR conductance are also presented in Sec. [V.
Finally, a conclusion is presented in Sec. V.

II. ARMCHAIR GRAPHENE OPEN BOUNDARY

In this section, we present a scattering approach for the
study of edge-potential effects on a armchair graphene open
boundary. This approach allows us to extract, analytically,
physical pictures such as the edge-potential-induced pseu-
dospin scattering, the out-of-plane pseudospin density, and the
edge-potential-induced edge states. In particular, the analytic
expression for the edge-state dispersion relation in the long-
wavelength regime shows that the edge states are generated for
an arbitrary finite edge potential. This indicates that the edge
state is not of Tamm-type. All the features found in this section
will form the basis for the understanding of the edge-potential
effects on the GNR in the next section.

A. Basic model and a scattering approach

The conventions and notations that we adopt in this work are
described briefly below in the introduction of our basic model.
The tight-binding Hamiltonian® for a armchair graphene open

PHYSICAL REVIEW B 85, 155444 (2012)

FIG. 1. Armchair GNR with unit-cell coordinates M (vertical
dotted lines) and N (slanted dotted lines). Edges of the GNR are
at M =0 and M,,. Indicated are sites A (o) and B (o); Bravais
lattice vectors A; =a, — a, and A, = —a, + 2a;, where a; = 2aX
and a; = aX + ﬁa_‘?, and a = ﬁaoﬂ, with C—C bond length
ag = 1.42 A,

boundary is given by
H = Hyux + Hedge gates (D
where
Houe = =10 Z (AII, ék; + E’IIJAR:)’
(T.J) )

Hop e = Y 00 (Al + B, )
i

The operators ﬁk and Ag, create and annihilate electrons at
the A site of the ith unit cell, respectively, with cell coordinates
(M;,N;) and cell location R; = M;A| + N; A, where A; and
A are Bravais lattice vectors. In terms of the more familiar
Bravais lattice vectors a; = 2aX and a; = a¥ + \/jaj? (see
Fig. 1), we have A; =a; —a; and A, = —a; + 2a,. Here
a= ﬁag/Z and ag = 1.42 A is the C—C bond length. We note
that our choice of the cell coordinates (M;,N;) is convenient
for the armchair open boundary. Included in (7, ) are nearest-
neighbor hoppings, with y = 2.66eV. Hpyk includes only
M;; =2 0 due to the M =0 armchair boundary. The edge
potential Hegge gare applies an on-site energy Uy to the M; =0
sites. In all the expressions that follow, whenever appropriate,
units for energy, length, and wave vector are chosen to be yy,
a.and Ky = 2 /(3a), respectively.

Scattering states at the armchair open boundary are con-
structed out of the Bloch states of graphene, albeit restricting
the unit-cell summation in these Bloch states to M = 0.
Specifically, Fig. 2 shows that the scattering state consists of an
incident wave |\11|i ), and intervalley and intravalley scattered

waves |\111?ﬁ) and |\IJE; ). respectively, given by

(3

where ry (r2) denotes the intervalley (intravalley) reflection
coefficient. Here the Bloch states |¥P), given by

|wg) =D e R js),
JF

i) = [ ) [ i) + 2 95 )

C))

155444-2
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and n =1 (I) denotes the K (K') valley, while £ =1 (1)

;'z_ denotes the left- (right-) going state. We have kg, = —kg, for
' intervalley reflection and &, = k. for intravalley reflection.
0.6y Since both Hy and Hy are even in k,, regardless of whether
0.41 ky is real or complex, the pseudospins for kg, and kg, are the

= 02 same, but they are different from the pseudospin for k,,,,.
E -0 It is known® that scattering at a pristine armchai.r graphene
™2 open boundary involves only intervalley reflection where

pseudospin is conserved. Applying an edge potential Hegge gate
that affects equally the A and B site potentials in a unit cell
seems not to have broken the equal preference of staying in
either site, and thus it seems to be pseudospin-conserving. Our

_1.0l finding in the next subsection, however, shows the contrary.

B. Edge-potential-induced pseudospin scattering

In this subsection, we demonstrate the physical origin of
FIG. 2. States that involve reflection at the M = 0 openboundary ~ pseudospin flipping due to the edge potential Hegge gate. Insight
in Fig. 1. Shown are the energy contour, the Brillouin zone boundary ~ in this regard is obtained from the unit-cell recurrence relation.
(dashed line), and valleys K (at Kp%) and K’ (at —K£). The incident By substituting Egs. (3) and (4) into Eq. (1) and focusing upon
state is k, and the intervalley (intravalley) reflected state is ks (k,).  the coefficient of the term %, the recurrence relations are
The index for the left- (right-) going state is £ = 1(1). The index for obtained as
iy @ e ERE AR A=ED (=Us + ;) Vo + TV, = —EV,, (Ta)
sum over the unit-cell index j up to the open boundary (M; = TVior+ Vi +TVigs = —EVir, (75)
0), and over the A (B) site index s = 1 (2). This scattering state where Vyy = (¢$),¢$))T is the wave-function amplitude at the
approach has an advantage over the direct numerical approach ~ Mth unit cell, with
in that the asymptotic (M >> 1) boundary condition is already
taken care of by the Bloch states, and the scattering problem
is reduced to the finding of only two reflection cocfficients. Equation (7b) is obtained from the coefficients at the Mth unit
To sct the stage for the pseudospin scattering processes  cell for M > 0 and energy E. Terms involving T and o, are
in the next subsection, we provide the explicit form of the  from intercell and intracell hopping, respectively. Actually, the

(Pﬁ) — eik,,MaC](i) + rleikﬁJMaCl(;) + rzeiic,,,MaCl(;)‘ (8)

pseudospinor in the following: same equation gives the bulk recurrence relation for the Bloch
O AeNT — T states. On the other hand, Eq. (7a) carries the sole effect of the
(Ck s Cg ) = Nk(ls % Hka/Hk) : &) edge potential via the term —Up Vy. No unit cell of smaller M
Here Nj is the normalization constant for the pseudospinor, ~ €Xists to contribute to the hopping, and the negative sign on Uy
and = is for the conduction (valence) band. Furthermore, ~ follows from our sign convention for the hopping coefficient
H, = —yol1 + 2e=V3acos(k,a)], whereas Hy = —pl + 0 The hopping matrix T is given by
2!V cos(k,a)]. For real wave vector k, H, = HY, so 0 e—iV3ka
that Cl((z) = H;j(\/mHkD carries the phase of H, and the T= ia 0 : ©)
pseudospin orientation is in-plane.
In contrast, the pseudospin orientation becomes out-of-  Equation (7) is cast into a compact form by borrowing a
plane when k is complex. For our purposes here, k, is symbol V_; from, mathematically, the bulk recurrence relation
determined from in Eq. (7b) to M = 0, and substituting it into Eq. (7a), to give

1 —
cos(k;a) = —cos(+/3k,a) + %?,/EZ — sin2(v/3kya) (6) UoVo+TV_1 =0. (10)
The expression for V_; is given by Eq. (8), and Eq. (10) is

for a given ky and cnergy E. A complex k, is conveniently expanded to give

cast in the form ky = nk, — i§k;, where &, and k; are positive,

1 2) —ika- 1 2) ik - Ko -
U + e UG kR \ () (U 4 e an
Uoclﬁhrcg)e—fkn-(m—nz) Uocﬁ)Jrclf‘ly)e—fky-(m—nz) r qu(i) +Cl((:r)€—ikq'(a1—m) )

Rearranging into a form more convenient for our discussion on the reflection coefficients, we get

(1) (2) ,—ikg-a (1 (2) —ik,-a (1) (2) ,—ik,a;
Uockﬁ + Ck.ﬂ ¢ " r UOCkY + Cky € o I = — Uockﬂ‘ + Cka € ’ . (l 2)
UOC]((? + Cl((;)e—rkﬂ.(al—nz) U(]Cl(j) + C]((]}.)e_ikr.(al_nﬂ UOC](:,) + C[((L)efikq-(m —m)

Equations (11) and (12) are two key relations in this work.

155444-3
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Taking Uy = 0 in Eq. (12), we see that r; = —e~ 2= and
r, = 0. This results from the fact that the k, and kg states
have the same pseudospin and the k, state has a different
pseudospin. Furthermore, (kg — ko) - a2 = (kg — ko) - (a1 —
ay) = —2kyva. Pseudospin is conserved. Taking Up # 0,
however, has effectively brought about other pseudospins. In
fact, the on-site nature of Uy has kept intact the pseudospins of
the associated terms in Eq. (12), whereas the other terms have
their C](:") coefficients inverted due to their hopping origin.
Thus r» can no longer remain zero, and pseudospin flipped
reflection is invoked. It is clear that the turning on of the
pseudospin flipped reflection does not require a threshold Uy,
but rather a nonzero U,.

A comment on our seemingly surprising result, namely that
the edge potential Hegge gare affects equally the A and B sites
on the open boundary and can open up pseudospin flipped
reflection, is in order here. Equation (12) clearly shows that
pseudospins associated with Uy have their in-plane nature kept
intact. This is expected. What one might overlook, however, is
that Uy can still bring about pseudospins other than the incident
one. Equation (12) shows that this is achieved by way of
relative phases between the two components of a pseudospin.

C. Out-of-plane pseudospin density

As Uy opens up a pseudospin flipped channel, interference
between the pseudospins of the reflected waves will occur.
Since the pseudospins are in-plane for real k, the interference
will lead to out-of-plane pseudospin.

In this subsection, we present the out-of-plane pseudospin
polarization PP, in the vicinity of the M = 0 boundary.
Incident states propagating along +y with energy within AE
and from one valley (index n) are included. The density
ngy(E,M;) in the jth unit cell is

ne(E,Mp) =" (75w, (13)
[

where the primed summation has restricted the energy to the
range E < E(k,) < E+ AE, and k,,, > 0. Here s refers to
the A (B) sites, and & = (1,n) for incident k,. Equation (13),
or ng,, depends on M; but not on N;, as it should. The
pseudospin polarization, as defined by

MaAp — MBy
PP, = 2 "8 14
o Ray + Mgy (14)

is presented in Fig. 3, where M is used instead of M;. The
decay of PP, with M is due to the spread in the wave vector
Aky(E), the range of which is subjected to the restrictions
imposed by the summation. This leads to a decrease in the
decay length with increasing E, as is seen in Figs. 3(a)-
3(d). Meanwhile, PP,, changes sign as its valley-index 7
is changed, or as the incident wave vectors are changed, from
ky > 0 to k; < 0. Finally, the magnitude of PP, increases
with Up, as is demonstrated in comparing Figs. 3(a) and 3(c).

This out-of-plane pseudospin distribution can be realized
in the presence of a valley-polarized incident beam. The recent
development in valleytronics and, in particular, proposals on

PHYSICAL REVIEW B 85, 155444 (2012)

07 ] T '(a) 00 ) WA TSR ?1’7’:,1;
408
06
i Joa
£y i J
Y 02

INNNCHE

10 20 30 40 50

M

FIG. 3. (Color online) Contour plot of valley-dependent pseu-
dospin polarization PP, against unit-cell location M and energy
E. Edge potential Uy = 0.2 in (a),(b) and Uy = 1.0 in (c).(d).
Contribution from K valley (n = 1) is shown in (a) and (c), and from
K’ valley (n = —1) is in (b) and (d). States within AE =5 x 1073
are included. The sign of PP, reverses with 5 but the magnitude
remains the same.

valley-filter?** and valley-polarized electron beams® are,
thus, of direct relevance to this work.

D. Edge-potential-induced edge states

In this subsection, we turn our attention to edge states,
and we identify the key physical process that enables their
formation. The pseudospin of these edge states, however,
does not have an out-of-plane component. We will explain
the reason for this in our analytical analysis.

Starting with Eq. (3), but without an incident component
|llllf’q), we look for edge-state energy E4 for a given k, in
the complex k, regime. Already, Eq. (11) has provided the
basis for the numerical calculation of E.q. This is from the
zeros of the determinant of the matrix on the left-hand side
of Eq. (11). The case for positive Uy’s is illustrated in Fig. 4.
Turning on Uy, an edge state branch is formed out of the
bulk state continuum (gray area) on the valence-band side.
Increasing U, pushes the branch away from the continuum.
Near U, = 1, the edge-state branch has a zero slope near a
Dirac cone. Beyond Uy = 1, the slope in the long-wavelength
regime increases monotonically with Uy and approaches that
of the continuum on the conduction-band side. A change in
the sign of Uy simply changes the sign of Eeq.

A number of interesting features about these edge states are
in order here. These edge states are obtained without opening
a gap in the bulk state continuum. The dispersion relations
Ecq(ky) for all Uy start and end at Dirac cones. These include
cases when Uj is arbitrarily small but nonzero. There is no
threshold Uy, and this, in turn, assures us that the physics for
this edge-state formation is not Tamm-type.** In fact, the edge-
state formation is enabled by the opening up of the pseudospin
flipped channel, and by a pseudospin rotation at the boundary.
This pseudospin rotation analysis will be discussed in the last
part of this subsection.
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FIG. 4. (Color online) Edge-state dispersion relations induced by
Uy at an armchair open boundary are shown for U, = 1.4 (open
square), 1.2 (open circle), 1 (solid curve), 0.8 (dashed curve), 0.6
(dashed-dotted curve), 0.4 (solid circle), and 0.2 (solid square). Gray
areas depict the bulk electron continuum spectrum. Right panel shows
a k, range that includes two Dirac cones. Left panel shows a smaller
ky range.

An analytical expression for Ee(ky) is derived near the
Dirac cone, in the long-wavelength regime kya», < 1. This
complements our numerical results given above for a better
understanding. Assuming the form Eeq = a1 (Up)|gy|, where
lgy| = lkylazy < 1, and the coefficient o(Up), the Uy it
depends on is not necessarily small. We obtain, from Eq. (6),
k! = (nK + Ak{,) +iAk,. Here n =1 and —1 correspond
to cases for k,, and kg, respectively. To lowest order in g,. we

| — UZe Hna

_ _n/n
—

where k;, = Rek,y, ky =Imk,,, and A = UZe 29 —
¢'?%x@ The unimodular property of 2 has 2(1,1) = 2*(2,2),
or ry/riA a real number, and the property |2(1,1)? +
2(1,2)* =1 leads to |ra/ri] = 1. which is checked with
our numerical results. We have thus demonstrated that the
formation of the edge state requires the pseudospin rotation
to satisfy a particular condition at the boundary, namely
lra/ri| = 1.

On the other hand, & can be expressed in terms of the
orientation angles of the two pseudospins. The pseudospin
states of kg and k,, are of the form [cos(8/2), sin(6/2)e'?]T
and [sin(8/2), cos(8/2)e'?]7, where 8 and ¢ are real numbers
representing the pseudospins’ angles of orientation. As an
operator that rotates an angle m — 26 about an axis along
[cos(gh)x + sin(gh) V] x Z, we must also have

siné

2 = .
(—e"p cos @

e~ cos@
) . (20)

siné

ielVa 20 e~*x sin (ky,a)]
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have

1
Aky = E | — a%|qy| = G(U0)|Qy|s

I

2\/3

where G(U,) = %‘#l falz(Uo). The coefficient «,(Uy) is

derived from requiring the determinant of the matrix in
Eq. (11) to be zero. Using the relation C](f)/C]((” = E.q/ H,
we obtain, up to the second order in gy,

(15)

Ak;}r = [1 + GZ(UO)]QJEa

—an'] 1 — 0‘,’12
= . 16
=0z 3 1
Subsequently, in the kya,, <« 1 regime, we obtain

V3(UE-1)

J1+UE+U

This is another key expression, which is valid to all orders
in Uo.

The boundary condition, given by Eq. (12), must be in a
pseudospinrotation form at the energy E4(k,), which connects
pseudospins of the kg and k, states. From Eq. (12), and
dropping terms associated with k,, we have

Ecq =~ sgn(Uyg) kyla. (17

D Cl(‘;) +D Cl(‘:’} =0 (18)
B Cl((z) n ¥ CE} r =Y,
B ¥
where Dg = [Uj + e~e=aT] and D, =[Uy+ e~ %~aT] This
amounts to requiring 2 = —(rz/rl)Dﬁ_]D], to rotate k,’s

pseudospin to that of the kg state. The explicit form of 2
is

ie V32U e 4 sin (ky a)]
’ (19)
| — U2 2o
|
Comparing Eqgs. (19) and (20), we have
sinf = — (1 — Uge %) / |A[, (21a)
cosf = —(2Upe ™ sink,a)/ |Al, (21b)
eIt = je=ivha, (21c)
The relation |r,/r;| = | that the edge states are required to

obey has important bearings on their pseudospin. Expressed
in terms of @ and ¢. the edge-state wave function W 4(M) at
the Mth unit cell, in pseudospin form, is given by

ik, ma [ €08(8/2)
Veg(M) =re’ (Sin(9/2)€£¢)

ik Ma  SIN(6/2)
tre (cos(t?/Z)e"a5 ) ’
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from which we calculate the pseudospin polarization
PP, ea(M), and we obtain

Wl o, Wy

PP;ea(M) = :
qjad"ped

=0. (22)

The fact that PP_ 4 1s zero in Bq. (22) is clearly seen from
\llid 0, Weq = e 2 MkeIMa o5 9 (11112 — |r2|?), which vanishes
when |ry/ri| = 1.

III. ARMCHAIR-GRAPHENE NANORIBBON

In this section, the effects of the edge potential on armchair
GNR are studied. The scattering approach we invoked in the
previous section is applied here, and simplifications in both the
formulation and subsequent analysis are achieved. Features
studied include the generation of edge states, their hybridiza-
tion due to finite ribbon widths, band-gap modulation, and
pseudospin characteristics. An expression for the band gap,
up to second order in Uy, is obtained. In addition, an energy
window in the electron spectrum is found within which the
states are all edge states.

A. Formulation with scattering approach

The armchair GNR (see Fig. 1) hasedges at M = Oand M,,,
and a total number of sites W = M,, + | across the width. The
edge potential Hegge gaie in Eq. (2) now has M; = 0 and M,
Following Eq. (3), the GNR eigenstates | ™R consist of four
Bloch states, all of the form given by Eq. (4) but with the sum
over the unit-cell index j restricted to the interval 0 < M; <
M,,. For convenience of presentation, we label Bloch states that
correspond to the K valley as A and B, with their (§,n) = (1,1
and (1,1), respectively. Bloch states that correspond to the K’
valley are labeled C and D, with their (¢£,n) = (1,1) and (1,1).

( e—ikpj Mwa/Z[UO Cl((L) + C](ilzs)e—fkp.ag]
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respectively. For a given k, and energy E, we have

W) = Alwg )+ Blwg )+ Clwp )+ D|wg ). (23)
These coefficients are connected by reflections at the bound-
aries, given by

—1 Fap FacC 0 A

fea —1 0 Fep B

fca 0 =1 Fep C
0 ' fpc — 1 D

=0. (24)

Here r,,, denotes the reflection coefficient at the M = 0 edge
from Bloch states p to v, and 7, denotes reflection at the
M = M, edge.

In this work, the applied edge potential is symmetric with
respect to the center of the ribbon. Thus Eq. (24) can be
simplified further by exploiting the parity symmetry. This is
carried out by replacing R, by R;x — M,,a/2 in the unit-cell
summation of |‘PEW). The parity of the nanoribbon eigenstate
[w™R)Y is imposed by the relations C = £.A4 and B = &D,
where the upper (lower) sign corresponds to even (odd) parity.
Equation (24) is reduced to

lFrac Fras c
=0. 25
( Frpc I:FrDB)(B) 25)

The energy spectrum for each parity is determined separately,
according to Eq. (25). Level anticrossing thus occurs only
between states of the same parity because the edge potential
preserves the symmetry. For our convenience below, the
reflections from states {B,C} into states {A,D} are represented
by the reflection of state @ = (§ = 1,5) into states B = (§,7)
and ¥ = (£,n). The reflection coefficients in Eq. (25) are then
labeled as ry, and ry,, with subscript 1 (2) denoting inter-
valley (intravalley) reflection. These coefficients are obtained,
following a similar procedure that leads to Eq. (11), as

kv Mwa;z[UO C](in + C[((Z)e_ik},.ng]
rd ¥

Fa
e—ikex Mwa/?.[UO C](?ﬁ) + Cl((llﬂ)e—i'kﬁ-(m—m)] e—ikyx Mwa,fz[Uo C](iii) + Cl(;)e—iky -(m—au)] ) (rz., )

(e—ik,,, Myaj2 [UDC](KIQ) + CIE? e—ikﬂ-ng]

Numerical results from this scattering approach compare well
with exact diagonalization results. Moreover, Eqs. (26) and
(25) provide a useful starting point for the derivation of the
edge-potential-induced gap modulation, to be presented in a
later subsection.

B. GNR energy spectrum

In the following, we present the energy spectrum of
armchair GNR under the effect of edge potentials. To better
illustrate the edge-potential-induced gap-opening features, the
GNRs considered here are of the type W = 3p + 2 for non-
negative integer p, such that their unperturbed energy spectra

e—ikax Mya /2 [Uocl(i) + Cl((l) e—ika-(al—ng)]

) . (26)

are gapless.**%3% Figure 5 presents the energy spectrum of
anarmchair GNR for Uy = 1 and W = 80 and 41, respectively,
in Figs. 5(a) and 5(b). The same spectrum occurs around
another Dirac cone at k, = v/3K/2. Edge-state branches are
the isolated branches separated from the GNR subbands. The
GNR subbands open up an energy interval between them, at
the Dirac cone, leaving room for the edge-state branches to
develop. This is seen more clearly in Figs. 5(a’) and 5(b'),
where smaller k, ranges are shown. The gray areas are the
continuum spectrum for the bulk graphene, given by Eq. (6).
States with energy E(k,) that falls outside the gray area should
have their wave function exhibiting exponential behavior.
Guided by this, the GNR subbands and the edge-state branches

155444-6



EFFECTS OF EDGE POTENTIAL ON AN ARMCHAIR- . ..

E/70

E/70

FIG. 5. (Color online) Energy spectrum of armchair GNR for
Uy=1,and W =80 in (a) and 41 in (b). Smaller k, ranges are
shown in (a’) and (b’), where gray areas are the continuum spectrum
for the bulk graphene. Two branches outside the gray areas are
edge-state branches: odd (even) parity for the upper (lower) branch.
Dotted curve between the edge-state branches is that for a single open
boundary. Horizontal (dotted-dashed) line segments in (a") and (b")
denote energies to be considered in Fig. 6.

are easily identified. Furthermore, the edge states have two
branches with the upper (lower) branch having odd (even)
parity. This results from hybridizations between edge states
on the two GNR edges. The fact that the edge-state branch for
an open boundary, denoted by the dotted curve, is centrally
positioned in energy between the two edge-state branches
demonstrates a degenerate splitting feature, and it indicates that
the edge states are pretty well formed. When the two branches
overlap in energy, for sufficiently large k,, the edge states on
the two GNR edges become decoupled. It is worth pointing out
that when the small k, region of the edge-state branches falls

within the gray area, their spatial profiles |\P$§)|2, on the A or

PHYSICAL REVIEW B 85, 155444 (2012)

B sites, are expected to exhibit bulklike characteristics. This is
found in Fig. 6. When the edge-state branches overlap, linear
superpositions of the even- and odd-parity wave functions
produce edge-state wave functions \llgﬁ)) that localize on the
right (left) edges. These are shown in Figs. 6(a) and 6(b) for,
respectively, the cases of E = —0.03, and —0.05.

Another important indication shown in Fig. 6 concerns the
out-of-plane pseudospin for the edge states. The |\I-!‘(I'IR}|2 and
|4’§"‘R}|2 curves fall exactly on top of one another in Fig. 6.
This implies that the out-of-plane pseudospin vanishes for the
edge states. Furthermore, the out-of-plane pseudospins of the
GNR subbands are also found to be zero. We think that this is
due to the highly symmetric alignment of the GNR edges. For
less symmetric graphene boundary configurations, however,
the edge-potential-induced out-of-plane pseudospin feature is
expected to manifest near an armchair open boundary. This is
left for further investigation.

We present in Fig. 7 the evolution of the two edge-state
branches with the increase of Uyp. For positive Uy, the edge-
state branches are being drawn from the two highest GNR
valence subbands. Meanwhile, an energy gap is formed which
is increasing with Uy, and is indicated by A, in Fig. 7(c). The
gap is formed between two odd-parity branches, namely the
GNR subband, denoted by E&?ﬁp and the edge-state branch,
denoted by E. On the other hand, there is an energy
window in the spectrum that consists of only edge states. For
example, in Fig. 7(c), the energy window, bounded by the
ky = 0 edge-state branch (even parity) and its neighboring
GNR subband, on the lower energy side, is of the order
of 0.02y5.

C. Edge-potential-induced gap modulation

In this subsection, the edge-potential-induced energy gap
Ap(Up) is obtained up to second order in Ug. Toward this

end, we consider k, = 0. Equation (5) gives us Cl(: = Cl((? =

(a) — W |2,E = 0.02
- U |2, E = —0.03
-~ Uy |?, F =—0.03

FIG. 6. (Color online) Wave-function
spatial profiles for selected energies on the
________________ edge-state branches in Fig. 5. W =80 in
80 (a) and 41 in (b). Energies outside (inside)
the gray areas in Fig. 5 exhibit edgelike

0. T T T T T
®) —| ¥ 2E= 0.04

o 0% ==V, |?, E =—-0.05
q -0~V 2 E = —0.05
> 0.04 N
=T

>

-0

T (bulklike) profiles, denoted by squares and
circles (solid curves). Wy (1, denote wave
- functions that localize on the right (left)
edges.
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FIG. 7. (Color online) Energy spectrum of the W = 80 armchair
GNR in Fig. 5. Uy = 0.2, 0.5, 0.8, and 1.0 in (a), (b), (c), and (d),
respectively. Near the Dirac cone, the GNR subband ( EP% ) and the
edge-state branch (E n‘i"l) are both of odd parity, as denoted in (a).
The Uy-induced energy gap A, is indicated in (c¢). Dotted curve is
the open-boundary edge-state branch.

G =1/V2, 62 =2 = —n/v2, and ) = —C}2 for
o =(&,n). Substltunng these into Eq. (26), we obtam rz., =0
and

e—x’k,,,MwajZ[_Uo g;n + e—ikaxﬂ}x]
eikaxMua/2[ Uy £y + elhaxan]

(27

MNe = —

Energies for the odd-parity states are determined from
Eq. (25), which in turns gives the equation 1 + ry, = 0. For
our purposes here, the unperturbed wave vector k, for these
states is at nK when Uy = 0. Keeping up to the second order
in Uy, the correction 8kg, is,

8kgy = T Up + U,

|
I (28)
TR+

r,=

| | 1
ﬁ[z(p+l)_3(p+1)2]‘

The energy shift § E,, up to second order in 8k, is obtained
from Eq. (6), given by

= _g(ﬁSkx,cr - kﬁx) 29
Substituting Eq. (28) into Eq. (29), the band edges of the
subband E2% , where n = —1, and the edge-state branch E234,

PHYSICAL REVIEW B 85, 155444 (2012)

where 1 = 1, are obtained as

_ l 2
BE“_[(HI) §”2(+1)2U°]‘ G0

Here £ = 1. Finally, the energy gap Ap. up to second order in
Uy, is obtained as

p

Ap = EX(0) — TR

E2N0) = ug. (31

IV. CONDUCTANCE OF AN ARMCHAIR GNR

In this section, we present the conductance G of an
armchair GNR and its dependences on the edge potential
Up and the chemical potential p of the GNR. Our major
interest here is to identify the signatures of the edge states
and the gap opening in the G(Up,pt) characteristics. The
Landauer-Biittiker formula®"-*® is used for the calculation of G.

Figure 8 shows the contour plot of G, where its value,
in units of 2e2/h, is depicted by integers in the respective
regions in the pu-Uy plane. Essentially the integers denote the
number of propagating (right-going) channels in the GNR.
The G = 0 (black) region indicates the energy gap in p, which
has a zero p interval at Uy and opens up monotonically with
Up. The p interval in the small Uy regime is described by
Eq. (31). Furthermore, the Uy = 0 results can be understood
by comparing the energy spectrum close to that in Fig. 7(a).
Increasing it from zero, there are two right-going channels, one
from each Dirac cone, at ky = 0 and &, = fK0/2 giving
G = 2. As p increases further, approaching 0.07, two higher
GNR subbands enter for each Dirac cone, and G = 6. On the
other hand, decreasing p from zero, the higher GNR subbands
enter in a pair for each Dirac cone, and G’s value is in the
sequence 2, 6, and 8.

Similarly, the trend for finite Uy can be understood from
the energy spectrum for Up = 1, as shown in Fig. 7(d). A few

i T T T
6 4
0.9?

0.8f
0.7f
o 0-6f
< 0.5f
=y
0.4
0.3F .-"
0.2F
0.1F

—QIO -8 -6 -4 -2 0 2

1(1020)

FIG. 8. (Color online) Dependences of conductance on the edge
potential U, and the chemical potential yt. The armchair GNR has
W = B0. Integers in the figure denote the conductance G, in units of
2¢%/h, in the respective region. Dotted (dotted-dashed) line depicts
the odd- (even-) parity edge-state branch that emerges from the
continuum spectrum of the bulk graphene.

4 6 8 10
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added features should be noted here. Higher GNR subbands
are split and no longer enter in a pair as pu changes. The
energy gap (G = 0) is shifted to the positive-g region, and the
splitting of the edge-state branches near a Dirac cone brings
about interesting G structures. The conditions under which the
edge-state branches emerge from the continuum spectrum are
indicated by the dotted and dot-dashed lines. Thus increasing @
from zero, the G values are in the sequence 2, 0, 2, and 4. In the
opposite direction, when p decreases from zero, the sequence
of G values becomes 2, 6, 4, 6, and 8. In between the dotted
and the dot-dashed lines, where G = 2 and 6, the edge states,
including both coupled and decoupled edge states, are the sole
contributors to G. The jump from G = 2 to 6 arises from two
(one) channels in the even- (odd-) parity edge-state branch,
per Dirac cone. The next region (G =4) is another region
where G is contributed from edge states alone. Here, however,
only decoupled edge states are involved. The characteristics
presented above remain intact for the edge potential with a
smooth spatial profile.® It is perhaps not unexpected that the
atomic-scale profile for the edge potential is not very crucial
for the features found in this work. It may be that it is the
intravalley (small momentum change) scattering, rather than
the intervalley (large momentum change) scattering, that must
be invoked here. Finally, the edge-state features are expected
to be robust against weak disorder due to their chiral nature.

PHYSICAL REVIEW B 85, 155444 (2012)

V. CONCLUSIONS

In conclusion, we have studied the effects of edge potentials
on an armchair graphene open boundary, and on armchair
GNRs. The connection of the formation of the edge states with
the edge-potential-induced pseudospin flipping at the open
boundary has been elucidated. The subsequent generation of
out-of-plane pseudospin polarizations at an open boundary
is demonstrated. In the case of an armchair GNR, both
the formation of edge states and the opening of an energy
gap are found. These effects exhibit distinct characteristics
in the conductance of the GNR. Finally, the edge-potential
configuration considered in this work could be realized with
the technique of anisotropic etching of graphene by thermally
activated nickel nanoparticles,’> with some of the etched
graphene functioning as gating electrodes and others as the
GNR.
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Nonuniversality of the intrinsic inverse spin-Hall effect in diffusive systems
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We studied the electric current induced in a two-dimensional electron gas by the spin current, in the presence
of Rashba and cubic Dresselhaus spin-orbit interactions. We found out that the factor relating the electric and
spin currents is not universal, but rather depends on the origin of the spin current. Drastic distinction has been
found between two cases: the spin current created by diffusion of an inhomogeneous spin density, and the pure
homogeneous spin current. We found that in the former case the inverse spin-Hall effect electric current is finite,
while it turns to zero in the latter case, if the spin-orbit coupling is represented by Rashba interaction.

DOI: 10.1103/PhysRevB.85.165201

I. INTRODUCTION

The spin-Hall effect (SHE) and the inverse spin-Hall effect
(ISHE) can be observed in two- and three-dimensional electron
systems with a strong enough spin-orbit interaction (SOI).!?
Via this interaction the electric current induces a flux of spin
polarization flowing in the perpendicular direction and vice
versa. These effects take place in metals and semiconductors,
where the spin-orbit interaction arises from impurity scat-
tering, or band structure effects. Nowadays they are being
intensively studied theoretically (for a review see Ref. 3) and
experimentally** These phenomena establish an important
connection between spin and charge degrees of freedom that
can be employed in spintronic applications.

Here we will focus on ISHE. This effect is driven by
the spin current which can be produced in different ways.
It can be created by diffusion of an inhomogeneous spin
polarization, or it can be induced directly by a motive force of
various natures.®” In experimental studies the former method
was used in Refs. 5,8, while the latter was employed in
Refs. 9,10. From the theoretical point of view there are two
quite distinct mechanisms of ISHE, depending on the extrinsic
or intrinsic nature of SOI in an electron system. The extrinsic
effect is promoted by the spin-orbit scattering of electrons
from impurities.®> The intrinsic effect is associated with the
spin-orbit splitting of electron energy bands. This effect has
been studied in Ref. 11 together with the extrinsic mechanism.
A surprising result of this study is that the finite inverse SHE
takes place even in the case of a pure intrinsic Rashba'?
SOI, while the direct effect has been shown to vanish in
the considered case of a diffusive system.’> A reasonable
explanation is that the Onsager relation between direct (SHE)
and reciprocal (ISHE) effects should not be satisfied, because
the spin-current is not conserving. This argument also means
that for the ISHE effect the coelficient in the local linear
dependence I. = CI of the charge current density 7, from the
spin current density I; can depend on the source that originally
excites I;. In this sense ISHE is not universal. At the same time,
SHE is a universal effect, because the coefficient relating I,
to I, does not depend on how the electric current is produced.
It can be created, for example, by electron diffusion, as well
as by an external electric field. The result will be the same.
It follows from the gage invariance of the electromagnetic

1098-0121/2012/85(16)/165201(5)

165201-1

PACS number(s): 72.25.Dc, 71.70.Ej, 75.76.4j

field. Formally, one obtains the same spin current, independent
of whether it is induced by the scalar electric potential or
time-dependent vector potential.

In order to demonstrate the nonuniversality of ISHE we
will consider two kinds of spin-current sources. In the first
case, an inhomogeneous spin polarization parallel to the z axis
creates the spin flux due to spin diffusion. In the second case,
the spin current is driven by a spatially uniform “electric”
field, such that the fields acting on up and down spins have
opposite signs. The latter situation corresponds to spin current
generation mechanisms suggested in Refs. 6,7. Our goal is to
show that the factors C are different in these two situations.
Since our analysis has shown that in the case of the Rashba
spin-orbit interaction C = 0 for the source of the second kind,
we will consider the cubic Dresselhaus interaction, as well,
and demonstrate that the Onsager relation holds in this case.

The outline of the paper is as follows. In Sec. II the
linear response equations relating the spin and charge currents
to the auxiliary fields will be written for a disordered
two-dimensional degenerate electron gas (2DEG). From this
pair of equations the auxiliary fields can be excluded and
linear relations between the electric and spin currents can be
established. In Sec. III this theory will be applied to the cases
with Rashba (Sec. Il A) and Dresselhaus (Sec. IIIB) spin-
orbit couplings. The discussion of results will be presented
in Sec.IV.

II. LINEAR RESPONSE THEORY
The Hamiltonian of the electron system has the form
H=H,+V, (1)

where Hj is the unperturbed Hamiltonian of the 2DEG, which
includes the electrons’ spin-orbit coupling and their scattering
on randomly distributed spin-independent elastic scatterers.
The spin-orbit coupling has the general form

Hso=hk'o'; (2)

where the effective magnetic field hy is a function of the
electron momentum k and o = (0, ,0y,07) is the vector of Pauli
matrices. In general, hy can be generated by the bulk-inversion
asymmetry in the bulk and structure-inversion asymmetry in
a quantum well (QW).'* The perturbation term V = V, + V,

©2012 American Physical Society
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represents interactions of electrons with the auxiliary fields.
We will consider two types of fields. The first one is a slowly
varying in time nonuniform Zeeman field B which is directed
perpendicular to the 2DEG (z direction). The corresponding
interaction Hamiltonian is

Vi =o0,B. (3)
Another interaction is
V2 = O‘zk <A (4)

This Hamiltonian contains the uniform spin-dependent field
o;A, where A slowly varies in time. Such a field induces
the spin current by driving in opposite directions electrons
having opposite spins. It can be created, for example, by

PHYSICAL REVIEW B 85, 165201 (2012)

applying a time-dependent strain to a noncentrosymmetric
semiconductor. Indeed, as known'” the strain field u,, gives
rise to the spin-orbit interaction ao. i, k,. Hence, in this case
A, = au,,. Other mechanisms®’ of creating homogeneous
spin currents can also be presented in a form of a spin-
dependent vector potential that is able to drive spins.

Within the linear response theory the spin 7° and charge I°¢
currents of noninteracting electrons can be written in terms
of retarded Gy \.(w) and advanced Gﬁ,k.(w) single-particle
Green’s functions. Due to impurity scattering these functions
are nondiagonal with respect to the wave vectors k and k.
The linear response expressions for the currents, as functions
of the frequency €2 and wave vector ¢, at € — 0 are given

by

d
Qg =—iy f Ew(Tr{[Gka(w) — Gy (@] /Gy g kg @ + DV (2,0 (@)

kK

+ G;‘kf(w)js/C[G;f+q_k+q(w + Q) - Gﬁq_q,k_’_q(w + Q)] V(qu)n F(C!) + Q)})

1 av(e,q)
+ 3 Zk:ﬂF(Ek)TI'[TsjmT

where the spin-current and charge-current operators have the
conventional form'® j; /. = (1/2)[1;/¢,v]4, with v =k/m* +
d(hg - 0)/dk and 1, = 0;, 7. = e; np(w) is the Fermi dis-
tribution. In the following the low-temperature case will be
assummed, so that np(w + Q) =~ np(w) — Qé(w). The angular
brackets denote averaging over disorder. This averaging will
be performed within the semiclassic approximation, according
to the standard procedure,'” where we will neglect the
weak-localization corrections. We will assume that the spatial
variations of the external field are slow within the electron
mean-free path [, so thatlg < 1. This case corresponds to the
diffusion approximation, implying the expansion of Eq. (5) in
powers of g. Also the SOI field will be assumed weak enough
that A, < 1/t, where 7 is the mean electron scattering time.

III. INVERSE SPIN-HALL EFFECT

A. Rashba SOI

Let us first consider ISHE in the case of Rashba spin-orbit
interaction, where the spin-orbit field is linear in k and has the
form h, = h{® = ak x 2. If the auxiliary field is Vi, given by
Eq. (3), it creates a nonequilibrium and nonuniform in space
spin polarization S;. This distribution of electron spins relaxes
to the uniform state via diffusion that is accompanied by a
pure spin current. When V(€2,q) in Eq. (5) is represented by
Vi(£2,q), the last term in this expression vanishes. Also, the
terms containing the products G"G" and G*G* can be shown
to vanish, at least up to linear in ¢ terms. Since in the following
the higher-order terms starting from g2 will be ignored, only
the products of the form G"G* will be retained in Eq. (5).
We assume that B in Eq. (3) varies in the x direction, so
that ¢ is expected to flow in the y direction. In Fig. | the

Feynman diagrams contributing to Eq. (5). where V =V,

] ) (5)
+

are shown. The upper (lower) arms in the diagrams denote
the impurity averaged functions G;(a)(w) =(w— E —hy -
o £il")~! and the dashed lines depict the random scattering
potential correlator {|Uy|?). For simplicity this correlator will
be assumed short-ranged, i.e., independent of k, so that ' =
aNp{|Uk|*) = aNp|U|* = 1/27 is simply a constant. The
multiple scattering blocks in the diagrams shown in Figs. 1(b)
and 1(d) represent processes where the initial electron spin
density S, evolves in the diffusion process to S;. Since this
process is accompanied by the spin precession due to Rashba
SOL, i can be either z or x, as follows from the spin diffusion
equation'® for the spin polarization varying in space along the
x coordinate. In general such a diffusion-precession dynamics

(a)

.

(© @

FIG. 1. The Feynman diagrams for the charge current generated
by the intrinsic spin-Hall effect. The auxiliary field V' can be either V,
or Vo, where V; and V; are defined by Eq. (3) and Eq. (4), respectively.
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is represented by the diffusion propagator D;;(q). In the matrix
form it can be represented as

Dy; = [(1 = U /27, (6)

¥y =3 TH{0i Gy (@0, Gi(@)]. @

k
Using the above definition, the contribution of all four types
of diagrams in Fig. 1 can be written as

2J‘TNF

Q
If = ;-EB(KJ,ZDzz + Ky Dy + sz), (8)

where

Tt[Gly o (@)0; Gi(@)]. )

ki

K = Zk: -
It is easy to see that the diagonal components of D are finite at
g — 0, while the nondiagonal ones vanish as the first power
of g. Therefore, in the leading approximation the correlator K
in the second term of Eq. (8) must be calculated at g = 0. Up
to the small semiclassic corrections of the order of (akr/Er)’
this correlator is Kyy = —2maNg/ T, and the last two terms
cancel each other. At the same time, it is easy to see that K,
is 0 at ¢ = 0. Therefore, we did not include the corresponding
term K, D, into Eq. (8). Further, as follows from Eq. (9), the
correlator K, is proportional to h, x hy 4. Therefore, it turns
to 0 at ¢ = 0. In the leading approximation one finds from
Eqs. (8) and (9) that K; = 71.‘:‘!(}0!2ka /2m*T"? and

242

@ sp, 2k (10)

4r3
Our goal is to get an expression of the charge current
through the spin current ;. Therefore, the next step is to
calculate the spin current induced by the perturbation Bo,.

This current can be written in the form
I =E%B(R§x D,, + D, %Tr[ozcﬁ H(w)ozGﬁ(m)]),
k

(11)

where

L Tt[0; Gy q(@)0x GE(®)]. (12)

i ki
Ry = Zk: -
The second term in the large parentheses of Eq. (11) is equal
to —imNpquiD,;/2T'%. This term represents the diffusion
spin current. In its turn the first term is associated with spin
precession caused by the Rashba field. It takes a simple form in
the case when ¢ <« am™, that is, when spatial variations of the
Zeeman field are slower than spin-density variations caused
by spin precession in the SOI field. In this case it follows
from Eq. (6) that D,, = |U |*¥,, D, D, /2. A straightforward
calculation using Eqs. (6). (7), and (12) gives for the first
term in the large parentheses of Eq. (11) the expression
in NpquiD../T%, which is twice larger and has opposite sign
with respect to the second term. Finally, from Egs. (10) and
(11) the charge current becomes

L. (13)
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This result coincides with Ref. 11, taking into account that
2T" = 1/ and that the definition of I3 in Ref. 11 differs by the
factor 1/2.

The next example is the charge current induced in the y
direction by the external perturbation given by Eq. (4), where
A is parallel to the x axis. In this case the last term in Eq. (5)
turns to zero, along with the terms containing the products
G"G" and G?G*“. Further, a simple inspection of diagram (a)
in Fig. 1 shows that it is zero at ¢ = 0. The contribution of
other diagrams to I{ can be expressed as

(14)

U ah; B
—I—AZ(—Kyi Bk D RIZ$

where the first term corresponds to Fig. 1(b), while the second
one is given by Figs. 1(c) and 1(d). Since ¢ = 0, only diagonal
components of D enter in Eq. (14). Also,atg =0 onlyi =x
must be retained in the sum. As a result, after calculation of
K,,. onc can scc that the sum in the large parentheses turns
into zero, up to the small semiclassic corrections of the order of
(akp/EF)?. Therefore, within the semiclassic approximation
the homogeneous pure spin current cannot induce ISHE. At
the same time the spin current created by this source is finite
and is given by the Drude formula

UZNF

I =im™QA ;F (15)

This expression does not depend on the spin-orbit coupling.
The latter enters as a small correction ~ 372

Our calculations in this subsection show that ISHE is not
universal. The electric current induced by this effect is finite,
or zero, depending on whether the spin-current is produced
by diffusion of an inhomogeneous spin polarization or is a
pure uniform spin flux created by an external force of the
form Eq. (4). The driving force of this sort could be taken
into account within the formalism employed in Ref. 19. We,
however, cannot directly see whether their expressions for
spin and charge currents give, as we expect, vanishing ISHE,
because these equations are presented in a rather general form.

B. Dresselhaus SOI

Although at V =V, and for SOI given by the Rasha
interaction the electric current is zero, we do not expect that
the same takes place for a Dresselhaus SOI that is cubic in
k. The reason is that the spin-Hall effect does not vanish in
the latter case.?® The Dresselhaus SOI field in a quantum well
grown along the [001] direction is given by?!

hy = Bke(ky —K2),  hy = Bky (k2 — k7). (16)

where «? denotes the operator —(3/9z)* averaged over the
lowest subband wave function. Since k;" is a nonlinear function

of k, ka{( entering into Eq. (14) is not a constant. Therefore
Eq. (14) has to be modified. Denoting by a bar the average

th; over the Fermi surface, the modified expression for the
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current can be written in the form
U2 Bh‘
I = 1EA[Z ( 5K 5 o, D;RY,
i

2
—Z@;D,-E-R;ﬁ@], (17

o ol _ on Tr[o; G0 Gi@)]  (18)
i_§: aky 3k, oG Gice]

and

oni okl
>=> "k ( )Tr[ojG;(m)ozGﬁ(w)]. (19)

ijk

It is easy to see that the first term in Eq. (17) turns to zero,
similar to Eq. (14) in the Rashba case. However, other two
terms are finite, while they vanish for Rashba SO, as well as
for any other SOI which depends linearly on k. Taking SOI
in the form of Eq. (16), from definitions (18), (19), (12), and
(6)—7) one obtains at g = 0

Nrp—
Ry, = =21 hike, Ri =0,
an E
=-2n ( —Ehik, — —5hlk, — "hxkx),
ak, 3k, ok 0)
W=y — 2JTNF J'!'Nph—z (
xx — yy — T - F3 k*
b b 2r?
Tx — yy = —_—.
hi

Since only R;z is finite in Eq. (17), one has to calculate ©,.

From Eq. (18) it can be expressed as

aht ohl . okl —
Oy = —(2—Lhin) —2—Er2 + —ERp2 ). (21
=7 3( ok, ok, "+ g, M) D

Collecting all together one obtains from Eq. (17)

Wky (0h) ., 3hT
I —zeAsz—[z LS ( —Ep2 “hxhy)

r2 w2 \dky dk
ahy ah;
hk, — —%h'k 22
+3k aky ] (22)

This electric current can now be expressed through the spin
current. The latter is induced by the time-dependent “vector
potential” A in (4) and is given by (15). Denoting by Q the
expression in the square brackets of Eq. (22), one obtains

= 2eQ
Y 'mrvi

I (23)
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Taking into account that Q o ki it easy to see that the charge-
to-spin current ratio is of the same order of magnitude as
in the case considered in Sec. IITA, Eq. (13), provided that
the Rashba and Dresselhaus interactions are comparable in
their strengths. One more useful relation can be obtained by
using the expression for the spin-Hall conductivity derived
in Refs. 20,22. This conductivity can be written as oggy =
eNrpQ/ T2 Expressing Q in Eq. (23) through o5, and writing
the electric conductivity in the form of the Einstein relation
o = 2NgD, we find

=2"p 24)

o

On the other hand, the spin current induced by the spin-Hall
effect is given by IJ = osy E, where E is the electric field
in the y direction. Writing it as £ = I /o we arrive at [ =
OSHI;/U. This equation, together with Eq. (24), establishes
Onsager relations between spin and charge currents.

IV. CONCLUSIONS

Ouranalysis shows that the proportionality coefficientin the
linear relation between the electric and spin current densities
in the inverse spin-Hall effect depends on the origin of the spin
current. Therefore, it is not possible to introduce a universal
parameter that determines a charge to spin current response.
This nonuniversality is most clearly seen in the case of Rashba
SOI, where a pure spin current produced by diffusion of an
inhomogeneous spin polarization gives rise to the finite electric
current, while the latter is zero when the spin current is induced
by a force that is uniform in space. In this situation, however,
the ISHE produces a finite charge current, if SOl is represented
by a Dresselhaus SOI that is nonlinear in k. It is important
that in such a case the spin-Hall effect and ISHE obey the
Onsager relation for coefficients relating the spin and charge
currents.

It should be noted that the expressions for the spin and
charge currents calculated above are related to local current
densities, while what is experimentally measured are total
electric currents, or electric potentials that are responses not
to local spin currents, but rather to currents that are integrated
over some distance (in 2D transport). For example, due to SOI
the spin-current density created by spin diffusion oscillates
and decays when the distance x from the spin-injection source
is increasing. One has to integrate this current over x to obtain
the total electric current induced by ISHE. Since the relation
Eq. (13) has the local form it will be preserved after such an
integration.
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topological phase transitions. Using realistic models we show that the parameter space controlling the
occurrence of level coincidences in energy bands has a much richer structure than anticipated
previously. In particular, we identify robust level coincidences that cannot be removed by a small
perturbation of the Hamiltonian compatible with the crystal symmetry. Different topological phases
that are insulating in the bulk are then separated by a gapless (metallic) phase, We consider HgTe/CdTe
quantum wells as a specific example.

© 2012 Elsevier Ltd. All rights reserved.

Recently level crossings in the energy bands of crystals have
become a subject of significant interest as they represent a key
signature for topological phase transitions induced, e.g., by tuning
the composition of an alloy or the thickness of a quasi-two-
dimensional (2D) system [1-4]. For example, it was proposed [5]
and soon after confirmed experimentally [6,7] that HgTe/CdTe
quantum wells (QWSs) show a phase transition from spin Hall
insulator to a quantum spin Hall regime when the lowest
electron-like and the highest hole-like subbands cross at a critical
QW width of ~65 A; see also [2,8-11]. Here we present a systematic
study of level crossings and anticrossings in the subband structure of
quasi-2D systems. We show that the parameter space characterizing
level crossings has a much richer structure than previously antici-
pated. In particular, we present examples for robust level coinci-
dences that are preserved while the system parameters are varied
within a finite range. Similar to the topological phase transitions
characterizing the quantum Hall effect [12], the insulating Z, topolo-
gical phases [1] thus get separated by a gapless (metallic) phase. Such
an additional phase was previously predicted in Ref. [13]. Yet it was
found that this phase could occur only in 3D, but not in 2D. Also, it
was not clear which systems would realize such a phase. Here we
take HgTe/CdTe QWs as a realistic example, though many results are
relevant also for other quasi-2D systems

Level crossings were studied already in the early days of
quantum mechanics [14-16]. They occur, e.g, when atoms are
placed in magnetic fields in the transition region between the
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weak-field Zeeman effect and the high-field Paschen-Back effect.
Also, they occur when molecules and solids are formed from
isolated atoms. Hund [14] pointed out that adiabatic changes of
1D systems - unlike multi-dimensional systems - cannot give rise
to level crossings. Von Neumann and Wigner [15] quantified how
many parameters need to be varied for a level crossing. While levels
of different symmetries (i.e., levels transforming according to
different irreducible representations, IRs) may cross when a single
parameter is varied, to achieve a level crossing among two levels of
the same symmetry, it is in general necessary to vary three (two)
independent parameters if the underlying eigenvalue problem is
Hermitian (orthogonal). Subsequently, this problem was revisited
by Herring [16] who found that the analysis by von Neumann and
Wigner was not easily transferable to energy bands in a crystal due
to the symmetry of the crystal potential. Similar to energy levels in
finite systems, levels may coincide in periodic crystals if the levels
have different symmetries. Of course, unless the crystal is invariant
under inversion, this can occur only for high-symmetry lines or
planes in the Brillouin zone (BZ), where the group of the wave
vector is different from the trivial group C;. If at one end point k; of
a line of symmetry a band with symmetry I'; is higher in energy
than the band with symmetry I, while at the other end point
k, the order of I'; and I'; is reversed, these levels cross somewhere
in between k; and k;. Herring classified a level crossing as
“vanishingly improbable” if it disappeared upon an infinitesimal
perturbation of the crystal potential compatible with all crystal
symmetries. In that sense, a level coincidence at a high-symmetry
point of the BZ such as the I' point k=0 becomes vanishingly
improbable. For energy levels with the same symmetry, Herring
derived several theorems characterizing the conditions under
which level crossings may occur. In particular, he found that in
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the absence of inversion symmetry level crossings that are not
vanishingly improbable may occur for isolated points k such that
these crossings cannot be destroyed by an infinitesimal change in
the crystal potential, but they occur at some point near k. Here we
identify several examples for such robust level coincidences. This
illustrates that level coincidences in energy bands can be qualita-
tively different from level coincidences in other systems [15].

Recently, several studies focusing on topological phase transi-
tions recognized the importance of symmetry for level crossings
in energy bands [2,8-10]. Murakami et al. [2] studied the phase
transition separating spin Hall insulators from the quantum spin
Hall regime, focusing on generic low-symmetry configurations
with and without inversion symmetry. They found that without
inversion symmetry the phase transition is accompanied by a gap
closing at points k that are not high-symmetry points. In inver-
sion symmetric systems the gap closes only at points k= G/2
where G is a reciprocal lattice vector. Here we show that level
crossings in quasi-2D systems can be characterized by a multi-
tude of scenarios, taking HgTe/CdTe quantum wells as a specific
example for which it is known that the lowest electron-like and
the highest hole-like subbands (anti)cross for a critical QW width
of about 65A [5-7,17]. In most semiconductors with a zinc
blende structure (point group Ty4) the s-antibonding orbitals form
the conduction band (IR I's of T), whereas the p-bonding orbitals
form the valence band (I's and I'7 of T4). The curvature of the I's
band is thus positive whereas it is negative for the I'g band. For
finite k, the four-fold degenerate I's states (effective spin j=3/2)
split into the so-called heavy hole (HH, m, = 1 3/2) and light hole
(LH, m; = £+ 1/2) branches. In HgTe, the order of the I's and I's
bands is reversed: I's is located below I's and it has a negative
(hole-like) curvature, whereas Iy splits into an electron
(mz= +1/2)and a hole (m; = + 3/2) branch [18]. HgTe and CdTe
can be combined to form a ternary alloy Hg,Cd;_,Te, where the
fundamental gap Ey between the I'g and I's bands can be tuned
continuously from Ey = +1.6 eV in CdTe to Eg = —0.3 eV in HgTe
with a gapless material for x~0.84 [18]. Tuning the material
composition x thus allows one to overcome Herring's conclusion
[16] that a degeneracy at k=0 between two levels of different
symmetries is, in general, vanishingly improbable.

Layers of HgTe and CdTe can also be grown epitaxially on top
of each other to form QWs. At the interface the corresponding
states need to be matched appropriately. The opposite signs of the
effective mass inside and outside the well result in eigenstates
localized at the interfaces [19]. We calculate these eigenstates as
well as the corresponding subband dispersion E,(K) using a
realistic 8 x 8 multiband Hamiltonian ‘A for the bulk bands I,
I's, and I'7, which fully takes into account important details of
E,(k) such as anisotropy, nonparabolicity, HH-LH coupling, and
spin-orbit coupling both due to bulk inversion asymmetry (BIA)
of the zinc blende structure of HgTe and CdTe as well as structure
inversion asymmetry (SIA) of the confining potential V(z). For
details concerning H and its numerical solution see Refs. [20,21].
In the following k = (k,,ky) denotes the 2D wave vector.

The symmetry group G of a QW and thus the allowed level
crossings depend on the crystallographic orientation of the sur-
face used to grow a QW [a (001) surface being the most common
in experiments]. It also depends on whether we have a system
without or with BIA and/or SIA. The resulting point groups are
summarized in Table 1. We show below that these different
groups give rise to a rich parameter space for the occurrence of
level coincidences. For a proper symmetry classification we
project the eigenstates of H onto the IRs of the respective point
group [22]. In the following, all IRs are labeled according to Koster
et al. [23]. As spin-orbit coupling plays a crucial role for BIA and
SIA [20] as well as for topological phase transitions [1-4], all
IRs referred to in this work are double-group IRs. For comparison,

Table 1

The point group of a QW for different growth directions starting from a bulk
semiconductor with diamond structure (point group O) or zinc blende structure
(point group T,) for a system without (“sym."”) or with (“asym.") SIA.

Bulk [001] [111] [110] [mmn] [Omn] [Imn] Axial appr.
On sym. D Dag Dan Can Can G Doch
asym. Cgy Cay Cay Cs G G Coov
T4 sym. Dy Cay Caw Cs (& G Deon
asym. Cap Cay Cs Cs [ G Coov

Table 1 also lists the point groups if the prevalent axial (or
spherical) approximation is used for H. In this approximation,
BIA is ignored and different surface orientations become
indistinguishable.

First we neglect the small terms in A due to BIA so that the
bulk Hamiltonian has the point group O. In the absence of SIA, a
quasi-2D system grown on a (001) surface has the point group Dyp
(which includes inversion) and all electron and hole states
throughout the BZ are two-fold degenerate [22]. Subband edges
k=0 in a HglTe/CdTe QW as a function of well width w are
shown in Fig. 1(a). The HH states transform according to I'§ of
Dgp. The electron-like and LH-like subbands transform according
to I'f. As expected, the I'§ and I'f subbands may cross as a
function of w.

In the presence of SIA we cannot classify the eigenstates anymore
according to their behavior under parity. Without BIA the
point group becomes C4,. HH states transform according to I's of
Ca4, and electron- and LH-like states transform according to I';. The
level crossings depicted in Fig. 1{a) remain allowed in this case
[8,24].

The situation changes when taking into account BIA. Without
SIA the point group becomes D,4 In this case, all subbands
transform alternately according to the IRs I's and I't of Dag,
irrespective of the dominant spinor components. In particular,
both the highest HH state and the lowest conduction band state
transform according to I's of D,y so that around w=G65 A
we obtain an anticrossing between these levels of about
29 meV (for k=0), see Fig. 1(b) [8-10]. With both BIA and SIA
the point group becomes C;,. Now we have only one double-
group IR I's. Thus it follows readily that all subbands anticross as
a function of a continuous parameter such as the well width.

While BIA opens a gap at k=0, level coincidences remain
possible for some K 70 when the well width w is tuned to a
critical value w [2,16]. Considering a (001) surface with BIA, we
find, indeed, that for each direction ¢ of k= (k,¢), critical values
W and k exist that give rise to a band crossing. Thus we get a line
in k space where the bands cross when w is varied within some
finite range, This result holds for QWs on a (001) surface with BIA,
without and with SIA (as studied experimentally in Refs. [6,7]). As
an example, Fig. 2(a) shows k in the presence of a perpendicular
electric field £, =100 kV/cm.

In general, three independent parameters must be tuned for a
level coincidence in a quantum mechanical systems [15] if the
underlying eigenvalue problem is Hermitian. While the multi-
band Hamiltonian H used here [20] is likewise Hermitian (not
orthogonal), only two independent parameters (w and k = |k|) are
necessary to achieve the level degeneracy. We have here an
example for the robustness of band coincidences under perturba-
tions that was predicted by Herring [16] to occur in systems
without a center of inversion (in multiples of four). It shows that
level coincidences in energy bands can behave qualitatively
different from level coincidences in other quantum mechanical
systems [15]. We note that the band coincidences found here are
not protected by symmetry in the sense that - unlike the other
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Fig. 1. (Color online) Subband states in a symmetric HgTe/CdTe quantum well (for k=0) as a function of well width w calculated with an 8 x 8 Hamiltonian (a) neglecting
BIA (point group Dgp) and (b) with BIA (D2g). States transforming according to I'& of Dy, (I's of D24) are shown in red; states shown in black transform according to I'F* of

Dy (I'7 of Dau).
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Fig. 2. Critical wave vectors i that give rise to a level coincidence in a HgTe/CdTe QW (a) on a (001) surface taking into account BIA (b) on a (110) surface neglecting BIA. In
both cases a perpendicular field £, = 100 kV/cm was assumed. In (a) the level coincidence requires a well width w=66.1 A for ki[110] and w =66.3 A for kI[T10]. In

(b) we have W =60.9 A for ki[001] and W =60.7 A for ki[110].

cases discussed above - the group of k is the trivial group
C, containing only the identity.

The situation is different for quasi-2D systems grown on a
(111) surface. In the absence of BIA and SIA, the point group is
D34 HH states at k=0 transform according to the complex
conjugate IRs I'S @ I'§ or I'; & I';, where & indicates that these
IRs must be combined due to time reversal symmetry. All other
subband edges transform according to I'} . In the presence of BIA
and/or SIA the point group becomes C3,. Then HH states trans-
form according to the complex conjugate IRs I's & I's. Electron-
like and LH-like states transform according to I'y. Thus it follows
that on a (111) surface the HH states always cross the other states
at k=0 as a function of w [similar to Fig. 1(a)]. The IRs for different
geometries starting out from a (001) or (111) surface are summarized
in Table 2.

Finally we consider quasi-2D states on a (110) surface. In the
absence of BIA and SIA, the point group becomes D.;,. Here, all
subbands transform alternately according to I'Y and I'; with the
topmost HH-like subband being I't and the lowest electron-like
subband being I';. A level crossing as a function of w is thus again

Table 2

Irreducible representations of quasi-2D states (k=0) on a (001) and (111) surface,
starting from a bulk semiconductor with diamond (point group Oy) or zinc blende
(point group T,) structure for a system without (“sym.”) or with (“asym.”)
structure inversion asymmetry.

Bulk (001) (111)
Group c, LH HH Group ¢, LH HH
On sym. Dap ri rg Dag rg r&erd
asym.  Cap ry I's Cay Iy Iselg
Ta sym. Daa Iy Tsp Caw rs I'sels
asym.  Cay rs Is Cay ry I'sels

allowed at k=0. In the presence of either BIA or SIA the symmetry
is reduced to C;,. While the point group in both cases is the same
[25], we obtain a remarkable difference between these cases.
With SIA the level crossing occurs for a line in k space, similar to
the (001) surface, see Fig. 2(b). With BIA we obtain a level
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crossing only for KI[T10] with k=~ 00012 AT and w~625 A
thus giving an example for the level crossings occurring for
isolated points k0 as discussed by Murakami et al. [2]. These
examples illustrate that the occurrence of level crossings at either
isolated points or along continuous lines in parameter space is not
simply related with the system symmetry [25]. In the presence of
both BIA and SIA (group C;) we have the same situation as with
BIA only, i.e, adding SIA changes the values of k and W, but we
keep KI[T110].

In conclusion, we have shown that a rich parameter space
characterizes the occurrence of level coincidences in the subband
structure of quasi-2D systems. In particular, we have identified
level coincidences for wave vectors k # 0 that cannot be removed
by a small perturbation of the Hamiltonian compatible with the
QW symmetry [16]. Taking into account the full crystal symmetry
of real materials is an important difference between the current
analysis and previous work that considered only lattice periodi-
city, inversion and time reversal symmetry. The full set of
symmetries imposes additional constraints on the band Hamiltonian
beyond the torus topology of the BZ that reflects the translational
symmetry. These additional constraints generally reduce the
number of parameters that are required to obtain level crossings
[16] so that robust level coincidences can be achieved even in
quasi-2D systems. As quasi-2D systems can be designed and
manipulated in various ways not available in 3D this opens new
avenues for both experimental and theoretical research of topo-
logically nontrivial materials.

As a specific example, we have considered HgTe/CdTe QWs,
where a particular level crossing reflects a topological phase
transition from spin Hall insulator to a quantum spin Hall regime
[5-7]. The robustness of the level coincidences found here implies
that these phases, which are insulating in the bulk, are separated
by a gapless phase similar to the metallic phases that separate the
insulating quantum Hall phases [12]. While in HgTe[CdTe QWs
the range of critical well widths W giving rise to the metallic
phase is rather small (about 0.1 monolayers), we expect that
future research will be able to identify materials showing larger
parameter ranges that can be probed more easily in experiments.
We note that our symmetry-based classification of level crossings
is independent of specific numerical values of the band structure
parameters entering the Hamiltonian H. Indeed, our findings are
directly applicable also to other quasi-2D systems made of bulk
semiconductors with a zinc blende or diamond structure such as
hole subbands in GaAs/AlGaAs and SiGe quantum wells. In
general, the k-p coupling between the LH1 (I'F of Dg) and
HH2 (I'g ) subbands gives rise to an electron-like dispersion of the
LH1 subband for small wave vectors k [26]. If these subbands
become (nearly) degenerate at k=0, the coupling between these
subbands becomes the dominant effect. This situation is
described by the same effective Hamiltonian that characterizes
the subspace consisting of the lowest electron and highest HH
subband in a HgTe/CdTe QW [5]. It can be exploited if biaxial
strain is used to tune the separation between the LH1 and HH2
subbands [27].
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“Effects of spin-orbit interaction on the topological physics in a 2D triangular muffin-
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The findings that we have obtained in this project are many. Two major parts are:

1. Impact on the topological physics research:
A. Edge-states generation at an armchair-graphene open boundary:

In this finding, not only that we have shown that edge-states can be generated at an
armchair-graphene open boundary by an edge-potential, we have also shown that the
edge-states are non-Tamm-like. This peculiar nature of the edge-state, namely, that there
is no threshold edge-potential for the edge-state generation, is very interesting, and is
worth further exploration. It is because one might wonder whether there is topological
origin in this edge-state formation, and if it did, how to identify it.

Equally importantly, we have shown that the physical mechanism that makes possible
the edge-state formation is the turning on of pseudospin-flipping scattering at the open
boundary. This is confirmed by our finding of out-of-plane pseudospin spatial
distribution when a valley-polarized beam incident upon an open boundary. We have also
studied the contribution to these edge-states to the conductance in an armchair-graphene
nanoribbon. The chirality of the edge-states is expected to cause their conductance to be
more robust against disorder. This, again, is worth further exploration.

B. Effects of structure-inversion asymmetry (SIA) and bulk-inversion asymmetry (BIA) on

the topological physics in HgTe quantum well structures:

With the introduction of the BIA to the 8x8 Luttinger Hamiltonian, we have
shown that the IZ” =0 energy levels in the HgTe quantum well exhibits level
anti-crossing at a well width very close to the well known critical well width for
level-crosing, had the BIA were not introduced. The question whether this would destroy
the topological physics is answered in this work. We show that the 2D Hamiltonian of
the HgTe quantum well still contains gapless (or level-crossing) features. We further
calculate explicitly the edge states, their wavefunction, and their contribution to the
conductance in a quantum channel that is formed out of the quantum well. The
conductance characteristics for a quantum channel with a potential region, and with or
without BIA terms, are studied in light of the Fano processes. Our results show that the
BIA term has not destroyed the topological nature of the system, but has distinct effects
on the transmission characteristics. This study gives insight upon the robustness of the
topological features in well known topological systems.

C.Topological physics in a 2D muffin-tin potential triangular lattice:

In this work, we find out that by introducing a spin-orbit interaction that comes
together with the muffin-tin potential lattice on a 2D semiconductor substrate, the system
exhibits Z, physics. The Chern numbers of individual energy bands are calculated and
the optimal lattice configurations for the energy gap are obtained. This work provides
insight for the possibility of driving a normal system into a topologically non-trivial
regime.

2. Nonuniversality of the intrinsic inverse spin-Hall effect in diffusive systems:
We find out that the factor relating the electric and spin currents is not universal, and
depends on the origin of the spin current.
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The APS march meeting was from Feb. 27 (Monday) to March 2 (Friday). My group had
three talks to present in this meeting: on Monday, Thursday, and Friday, all on the
morning. So we arrived Boston on Feb. 26 (Sunday) afternoon, and leave on March 3
(Saturday) morning.

The first talk, by my postdoctoral research associate Dr. L. Y. Wang, was in the Session
A32: Topological Insulators: Quantum Hall Effects. The title of the talk was:
“Topological property for magnetic flux tubes in a two-dimensional electron gas”.

The second talk, by my Ph.D. student Mr. C.H. Chiu, was in the Session VI1: Focus
Session: Graphene Structure, Stacking, Interactions; edges and grain boundaries”.
The title of the talk was: “Effects of edge-potential on an armchair-graphene open
boundary and nanoribbon”.

The third talk, my myself, was in the Session Y32: Topological Insulators: General
theory. The title of the talk was: “Effects of spin-orbit interaction on a triangular
lattice potential patterned two-dimensional electron gas”.

The second and the third talks have each drawn a number of responses and discussions
after the presentation. We considered them well received.

In between our talks, we have attended sessions mostly focusing on topological physics
and graphene related topics. There were many sessions on these two general topics.
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[ think that we had done a good job in presenting the work of my group. Given the
limited time for each presentation, we managed to post questions in the beginning
of our talk to best motivate the need of our work. And we presented, in the outset,
a summary of our work, which will appear again at the end of the talk. This helped
registering in the audience the take-home main messages of our work. The main message
1n every powerpoint page has to be stated explicitly. A lot of work and time has been
done to organize our powerpoint, and to make the presentation of equations as friendly
as possible. I think going through this painstaking process and the experience of
presenting to an audience of close to hundred physicists has had important impact
to my postdoc and my Ph. D. student. And allowing younger generation to present their
work in such an international event is worth the cost of supporting their trip.
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More generous support for serious Ph.D. students and post-docs to present their work
in important international conferences.
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A paper Phy.Rev. B 85, 155444 (2012) has been included into
the Virtual Journal of Nanoscale Science and Technology -May 7,
2012 (Vol. 25, Issue 19).
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Impact on academic research:
1. On the topological physics:
A. Edge-state generation on an armchair-graphene open boundary
B. Effects of structural-inversion asymmetry and bulk-inversion asymmetry
on the
topological physics in HgTe quantum well structures
C. Topological physics in a 2D muffin-tin potential triangular lattice

2. Nonuniversality of the intrinsic inverse spin-Hall effect in diffusive
systems

Impact on society:

Both topological physical systems and graphene are important systems for future

electronic technology and for energy saving technology.




