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Current demand for multiband and multifunctional
nano-based semiconductor devices stimulates the
development of novel nano-scale semiconductor
components (nano-objects). Impressive progress in
semiconductor technologies makes it possible to
fabricate semiconductor nano-objects with very
sophisticated shapes and material compositions:
quantum dots, quantum dot molecules, quantum dot
posts, and quantum rings, etc. The semiconductor
nano-objects demonstrate unique properties those are
very promising for modern optics, optoelectronics,
quantum information processing, bio and medical
imaging, etc. Unfortunately, the inherent dispersion
of parameters (shape, size, material composition)
leads to fluctuations (some time almost
uncontrollable) of the physical properties of macro-
systems combined from the nano-objects. To achieve a
proper quantitative description and address the
controllably of macro characteristics of ensembles of
the semiconductor nano-objects in this study we have
proposed and developed a general theoretical
description of the physical response of dispersive
ensembles made from the semiconductor nano-objects of
complex geometries and material compositions. The
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description is based on the multivariate distribution
function, which cumulatively reproduces variations of
the objects’ parameters.

In this report we present and discuss our method of
multivariate simulation of physical properties of
ensembles of semiconductor nano-objects with
dispersion in geometry, material parameters, and
spatial distributions. Using the mapping method
(recently derived by us) we are able to very
efficiently compute energy states and wave functions
of electrons and holes confined in the nano-objects
within a wide range of sizes, shapes, and
compositions. Thus, using the hybrid multiscale
(hierarchical) method we are able to simulate
ensembles of nano-objects with multiparametric
(multivariate) distributions. To demonstrate our
method efficiency we simulated the absorption cross
section of ensembles of ZnTe/CdSe core/shell quantum
dots and the unusual diamagnetic response (magnetic
susceptibility) of ensembles of wobbled InAs/GaAs
quantum rings. We have theoretically obtained the
actual optical spectra and magnetic susceptibility in
a very good agreement with experimental data.

We have proven that our multivariate statistical
approach can be useful for optimization of the
averaged physical characteristics of the dispersive
ensembles of nano-objects.

magnetism, magneto-optics, semiconductor, nano-
objects, multivariate dispersion
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Magnetic and magneto-optical properties of dispersive ensembles of semiconductor nano-
objects

1. Introduction (Purpose and Brief Literature Review)

Advances in modern semiconductor technologies make it possible to produce semiconductor
nano-objects within a wide range of geometrical shapes and material parameters (quantum dots,
nano-rings, quantum dot molecules, quantum dot posts, nano-rods, etc.), investigate their properties
in details, and use them for various applications (see for instance [1-3] and references therein).
Those nano-objects are thought to be very promising candidates for practical use in optics [4],
quantum information processing [5], nano-biology, nano-medicine [6]. Nano-structured
semiconductor meta-materials [7-9] also offer a very promising direction of the future development
of novel semiconductor device components and subsystems. All unique and useful properties of the
systems assembled form nano-objects are derived from properties of the constituent elements.
Therefore, incorporating controllable and tunable nano-objects into nano-structured systems and
meta-materials leads to tunable (on the quantum level) properties of them. It is well known, that to
perform large-scale quantum information processing systems assembled form many all uniform and
regular nano-sized elements are required. The same requirements are of the paramount impotence in
nano-optics and nano-medicine. But, the inherent dispersion of the semiconductor objects'
geometrical parameters (shapes, sizes, material compositions) leads to fluctuations (some time
almost uncontrollable) in the demanded in practice parameters and properties of macro-systems
combined from the nano-objects. For instance in optics, the dispersion in the nano-objects
parameters leads to inhomogeneous broadening in optical spectra, which can drastically decrease
applicability of the integrated optical systems. In quantum information processing the fluctuations
result in non-controllable decoherence in the quantum bits' entanglement.

The knowledge of the physical properties of semiconductor nano-sized objects with respect
to their transport, magnetic and optical properties has increased considerably recently. However, we
should conclude, that the important issue of impacts of the parameters' dispersions in ensembles of
semiconductor nano-objects on the ensembles' collective properties was much less emphasized,
realized, and investigated so far. Unfortunately, among all consequences of the dispersion in the
physical characteristics of ensembles of nano objects only optical properties called some attention
in the theory. For instance, simple descriptions of the inhomogeneous broadening in the optical
absorption spectra of ensembles of semiconductor quantum dots with primitive spherical or cubic
shapes are known in literature (see for instance [10,11] and references therein). For semiconductor
nano-objects with primitive shapes the broadening was modeled only as a result of the primitive
dispersion of the sizes (volumes): volume's variations for cubes and radius' variations for spheres.
Such basic approximations for geometries allow us to investigate the broadening using simple
analytical expressions, or simple numerical simulations. This "retardation" in the theoretical studies
of the collective properties of dispersive ensembles of nano-objects originates from a demand of
massive and severe computational tasks to be performed. Most of the present theoretical studies in
this domain still focus upon a primitive description of the objects and ensembles. The
corresponding knowledge about possible methods and means to insure predictable and controllable
magneto and magneto-optical parameters of random and dispersive ensembles of semiconductor
nano-objects is particularly weak. It is the central aim of this project to fill in the gap for this
emergent research field.

The general approach to the realistic theoretical description of dispersive ensembles of
semiconductor nano-objects with complex material parameters and geometrical shapes is to
consider a multivariate (multidimensional) distribution function [12,13] including dispersions of all
appropriate physical parameters. This requires computational methods those can optimize extensive
simulations of the physical properties of semiconductor nano-objects within wide ranges of
variations of their parameters. We recently developed two efficient computational methods. The fist
one is the hybrid multiscale (hierarchical) method which allows us to simulate and analyze
electrical, magnetic, and magneto-optical characteristics of complex semiconductor nano-structures
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[14-17]. The second is the mapping method with which we are able in a very efficient
computational manner obtain the energy states and wave functions of the electrons and holes
confined in nano-objects with very sophisticated shapes and material content [18,19]. A proper
combination of those two methods makes it possible to simulate and study physical properties of
dispersive ensembles of semiconductor nano-objects within a wide range of changes in geometry,
material parameters, and spatial distributions.

The purpose of this one-year theoretical project was to address most important problems in
this emergent research field and to develop a combined computational procedure of simulations of
the static magnetic and electro-dynamic characteristics of three-dimensional semiconductor nano-
objects of geometries and material content changes within a wide range. This includes an
implementation of the mapping method to formulate statistical description of the dynamic electric
polarizability and magnetic susceptibility for single and few quasi-particle (electrons, holes, and
excitons) confined in semiconductor nano-objects (such as quantum dots and nano-rings).
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2. General description of the dispersive ensembles of semiconductor nano-objects.
Multivariate approach.

Up to now most of simulations of the statistical physical characteristics of dispersive
ensembles of semiconductor nano-objects were devoted to the inhomogeneous broadening in optics
of ensembles of semiconductor quantum dots. The simulations were performed for simple spherical
or cubic shapes of the dots and the broadening was attributed to the dot-size (volume) primitive
univariate (single-parameter, for instance the dot radius) dispersion. This approach allows for
simple analytical expressions and non-extensive numerical simulations. However, it is obviously
not applicable to most of the nano-objects. The general approach to the realistic theoretical
description of dispersive ensembles of semiconductor nano-objects with complex material
parameters and geometrical shapes is to consider a multivariate (multidimensional) distribution
function including dispersions of all appropriate physical parameters (subsets of parameters of
interest). This requires computational methods those can optimize extensive simulations of the
physical properties of semiconductor nano-objects within wide ranges of variations of their
parameters.

The spatial, geometrical, material parameters’ dispersions in ensembles of nano-objects can
be described by a multivariate (multidimensional) joint distribution function P({x;, x5, . . ., Xx}).
The objects' spatial distribution (the actual positions within the ensembles) can be presented by a
sub-set of discrete parameters {p;} (objects' coordinates). The structural (geometrical and material)
characteristics of the dots are presented by a sub-set of appropriate continuous parameters {7;}.
Then function P({p;};{n;}) presents the dispersions of all appropriate parameters {x;}. This gives
the number of nano-objects dN; with the values of {p;} and {7;} inside the domain (p; ;{n; n; + dn;})

" averl e,

The cumulative expectatlon (meaningful average) of a physical quantity O({p:},{n;}) characterizing
the ensemble then is written as

0= Zj i, Q({pi};{nj})Hdnj

17,
Most of the ensembles can be characterized satisfactorily when only a subset of the
parameters in {x;} is of any interest. Therefore, we can consider the conditional distributions for

subsets of the parameters of interest: {x; }¢ S {xi}. Accordingly, when it is possible to neglect

dispersions of the other (“nuisance”) parameters we can define the appropriate conditional
expectation as

0=, [ Plossin,folle i, })ljdn.f

O

In our consideration we assume that the parameters in a typical nano-objects’ ensemble follow the
non-correlated normal distribution which is presented by

) =[1P0x)

where P(x;) is a distribution for the particular parameter x;.
4



Now to simulate the spatial disorder in ensembles of nano-objects we create a compact
cluster consisting of N cubic cells within a certain volume. N; cells of the cluster are occupied by a
single nano-object in each (N; < N). We randomly locate the occupied cells within the cluster and
calculate the physical quantity of our interest Q. Then we randomly relocate occupied cells again
and again. Notice that the dots density (N, /N) remains the same for all tries. We can repeat the
procedure many times and obtain the conditional average (when a sub-set {7} 1s fixed):

QC = IZP({pi })Q({pz })’

where the discrete uniform distribution is presented by the number of dot relocations Z as P{p;} =
1/Z.

The structural dispersion rises from variations of the individual nano-objecs' parameters
when we stick with a certain set of the dots' locations in the ensemble (cluster). This multi-
dimensional distribution is presented by

Plin, f)= [~ (n,)

where the standard normal distribution for each parameter 7; is written as

Ps(n)=4- G{%}

A is the normalization coefficient, 770 is a mean value, An is the standard deviation of the
parametern, and G(n) is the Gaussian function.

Oc = . j} Q({nj }C )H B (’7.f )H dn,

3. Spectral characteristics of dispersive ensembles of semiconductor core-shell quantum dots.

One of the most exciting meeting points of the semiconductor nanophysics and nano-
biology is the use of semiconductor quantum dots for "in vivo" biomedical imaging. The robust
identification of targeting biomolecules conjugated with QDs requires for a very high recognition
accuracy of the photoluminescence spectral characteristics of QDs' ensembles. At the same time the
inherent property of semiconductor QDs is their geometrical and material parameters’ dispersions.
This generates disorder in the quantum confinement of the dots and leads to non-homogenous
broadening in the absorption and emission spectral lines of the dots. The broadening obviously
obscures the biomedical imaging. In addition the broadening can be enhanced by the random spatial
locations of the dots in bio-tissues.

We use our hybrid discrete/continuous model (L. M. Thu and O. Voskoboynikov, Phys. Rev.
B 80, 15542, 2009) to describe the optical response of the ensembles (systems) of the dots by
means of polarizabilities of effective discrete dipoles d; embedded into a continuous transparent
dielectric medium with the dielectric constant ¢, . We can assume that a dipole d;is located in the
center of the /th cell of the ensemble (cluster) like it was described above. In the linear discrete
dipole approximation (DDA) the dipole is characterized by the excess bare polarizability tensor
o) of a single QD, which at the near of optical resonance transition can be written as:

. .S | =D
oy (w)=a; +a; (o),



where o is the incident light frequency, a*(w) is the static part and o”() is the dynamic part of the
polarizability.
The light absorption cross section defined as the following:

dr e, k Y . .
Cun )= 5  ma, - [a )] -a;

[Eo|”
2 *
- §k3d/ ’ dl }a

where

- - _ - |-l

i (@)= {la (@] -7

is the dressed polarizability, t° is the full electromagnetic self-interaction tensor for the QDs, k = @
/c and E, stand for the wave vector and electric field amplitude of the incident light, c is the light

speed in the vacuum.
The dipole strength d; should be found from the following system of equations

> 1,4, =E,,
T
where

Tu' =6y (&E} - Ez )"' (1- 51/*)F11' )

3
- NERO »
_ 7S, m
t, =t +i I,

3
6, C

and Fy is the vacuum intercellular (inter-dipole) transfer tensor (the dyadic Green’s function in the
DDA).

The dynamic part is described by means of Kramers/Heisenberg type of polarizabilities.
Ignoring quantum nonlocal effects the dynamic part of the tensor of the bare embedded
polarizability (which has been derived by us) can be written in terms of the electro-hole overlap
integrals and transition energies. To find the static part of the polarizability tensor we implemented
an appropriate boundary-value problem for a local electrostatic potential in a complex three-
dimensional cubic domain of the host material including one nano-object.

Considering o in the vicinity of the ground state excitonic resonant optical transition of the
dot (which generates a peak in an optical spectrum), we can write the dynamic part of the
polarizability as the following [10]:

* T
&D(a)) — i Eex rehrehfex
h\ho )E, —ho-il’

where f,, = |<®.(r)>]* is the squared electron-hole overlap integral, ®..(r) and E., stand for
excitonic wave function and energy, I represents the homogeneous (temperature) broadening of the
peak, and r.; is the semiconductor bulk interband optical matrix element.

For the dynamic part of the polarizability we computed the transition energies and wave
functions of electrons and holes confined in the semiconductor nano-object. Our general method
allows us to simulate the nano-objects of arbitrary shapes. The electron states are described by
means of the effective one-band Hamiltonian with the energy and position dependent effective mass.
The valence-band hole states in semiconductor nano-objects (preferably III-V semiconductor
compounds) we describe with multiband (4x4) k-p Hamiltonian that allowed for valence subband
mixing. The electrostatic characteristics, energy states and wave functions of electrons and holes
confined in the quantum dot molecules are obtained numerically form solutions of the Schrédinger
equation with the appropriate effective Hamiltonians (we use realistic semiconductor material
parameters for strained semiconductor heterostructures, with corrected to the strain condition band
parameters, etc.) by the nonlinear iterative method using COMSOL multiphysics package.

We applied the approach described above to ensembles of type-1I ZnTe/CdSe core/shell
QDs in the toluene solution (the ensembles those were experimentally investigated, see Fig. 1)
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Figure 1. (a) ZnTe/CdSe core/shell QDs.
(b) Potential profiles for electrons and holes.

We first consider the spatial disorder and choose # =1.2 nm for all dots within the cluster.
According to our simulation experience, for several tries of the dot random relocations, the
averaged absorption cross section barely differs from an individual try's result. The homogeneous
broadening (variations of I') does not affect this finding. When we repeated the procedure choosing
different h we found the same stable behaviour of the averaged absorption cross section. Therefore,
we conclude that the spatial disorder has a weak influence on the broadening. This suggests a weak
interaction between the semiconductor dot dipoles in the cluster (in contrast to the clusters of
metallic nano-particles).

We model the structural dispersion within the dot ensembles using our numerical solutions
for few different values of 4. Then we fit the results of those simulations to the excitonic energy E..
and the squared overlap £, as functions of the shell thickness / using the following guesses: E..(/)
=1.923-1%" eV and fu(h) = -0.001+0.98- (h+1.3)" - 0.42-(h+1.3)? (h is presented in nm).
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Figure 2. FWHM for (a) uniform (inset: E,
marks the peak position) and (b) non-uniform

Figure 2a shows results of our simulations of the full width at half maximum (FWHM) of the
excitonic spectral peaks at the room temperature (7= I'/kz= 300 K, kp is the Boltzmann constant)
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when the relative standard deviation of the shell thickness (RSDST) Ah/hg is chosen to be of 0.15
(uniform) for all ensembles. We should notice that at the present time an actual value for the
RSDST cannot be clearly restored from experimental data. Therefore, in this study we can only
speculate that the RSDST can vary within a range of 0.1 + 0.3. Clearly (see Figure 2a), the
proposition of the uniform RSDST cannot explain the general tendency of the experimental data.
To comprehend the experimental results we should impose an increase of Ah/hy (when the shell
thickness increases) as the following: Ah/hy= 0.1 for hy = 1.2 nm, Ah/hy= 0.13 for hy = 1.8 nm,
Ah/hy= 0.16 for hy = 2.4 nm, and Ah/hy= 0.20 for hy = 3.6 nm. Figure 2b shows the FWHM for the
ensembles with the RSDST corrected as it was proposed above. The tendency demonstrates a very
good agreement with the experiment.

1.4

8= Ah/h(=0.05
Ah/hg=0.10
-<-- Ah/hg=0.20

1.0 {oe=em=="

100 200

Figure 3. Normalized FWHM for different
relative standard deviations and 4=3.6 nm .

In addition, in Figure 3 we demonstrate the accumulated impacts of the structural dispersion
and temperature on the FWHM of excitonic peaks. We present a normalized value: W(T) =
FWHM(T)/FWHM(7=100 K). Clearly, the homogeneous broadening plays a minor role when the
structural dispersion is large. At the same time, at higher temperatures and moderated structural
dispersions the temperature influence becomes significant.

4. Impact of size and shape dispersion on the averaged magnetic response of ensembles of
semiconductor quantum rings

Using the mapping method we address the issue of the statistical description of the static
magnetic response of dispersive ensembles of three-dimensional In,Ga; .As/GaAs self-assembled
quantum rings (SAQRs) - nano-objects with a very complex geometry. According to recent
experimental results the SAQRs demonstrate controllable flexibility of geometrical and material
characteristics. The most intriguing property of the SAQRs, that has attracted much attention, is
their three-dimensional nonsimply connected topology. The property enables topological quantum
effects for charged particles confined in the SAQRs (similar to the Aharonov-Bohm effect). This
results in a very specific static magnetic response of the rings: when the external magnetic field is
applied in the SAQR growth direction, the nonsimply connected topology enables the Aharonov-
Bohm oscillations of the ring’s magnetization and generates a positive peak in the differential
magnetic susceptibility. effect has to be addressed to the crossing between the two lowest-energy
states of the electron confined in the ring. The effect was recently experimentally confirmed at low
temperatures for In,Ga; As/GaAs self-assembled capped wobbled quantum rings. It was shown
that for one-electron rings the wobbling asymmetry can have a strong effect on the magnitude of the
first magnetization oscillation and susceptibility peak as well as their positions. However, the actual
experimental magnitude of the peak’s height and its temperature dependence remain in a
contradiction to the conventional expectations. Unlike the conventional simulations, the
experimental peak demonstrates a negligible temperature effect.

Using our mapping method we analyze conditional and simultaneous impacts of the
multivariate dispersion of different geometrical properties (parameters) of the SAQRs on the first

8



oscillation in the magnetic response of the rings’ ensembles. We show that our approach makes it
possible to verify which specific parameter can play a crucial role in the unusual magnetic response.
In addition, we address the issue of the temperature stabilization of the static magnetic response of
the dispersive ensemble of SAQRs. In our method we assume (this is a very standard condition)

Vix,0,2) (8V)
ViOyz) (V)

Figure 4. (a) Capped wobbled In.Ga;-.As/GaAs
self-assembled quantum ring. Two projections of
the electronic confinement potential on
(b) (x,0,z) and(c) (0,y,z) planes (R, = 11.5 nm,
£=0.2).

that the object was grown at a flat substrate parallel to (x,y) plane (Fig. 3). The height of the object

in z-direction (the system growth direction) is presented by a function 4(x,y). Using analysis of the

experimental structural and composition information obtained from AFM (atomic force microscopy)
and X-STM (cross-sectional scanning tunneling microscopy) measurement the function /4(x,y) can
be readily discovered and even analytically approximated for most of the objects.

2 2
X -y 2
hy |1+ —h
|:M{ §x2+y2j 0:|70.Rr2_r2(x’y) e

R )ty

h(x,y)=h, +

where R, is the ring’s rim radius; 4,4, , and A correspondingly stand for the height at the center of
the rings, at the rim, and far outside of the ring; yy and y., respectively, determine the inside and
outside slopes near the ring’s rim. The wobbling parameter & defines the anisotropy (asymmetry) of

the ring height on the x-y plane.
The three-dimensional confinement potential V(x,y,z) (Fig. 4) for electrons can be found

from the composition dependent band offset.

Vo(x,y,2) = AEC{1—1-{1+ tanh(iﬂ -{1 —tanh(—z_h(x’y)ﬂ}
4 a P



where AE( is the electronic band offset in the system. The mapped confinement potentials we use to
define the mapping functions

M(xa%z):l— Ve(x’y’Z)a
AE,.

This function accumulates all experimental information about geometrical shapes and compositions
of the rings and it allows us to present the position-dependent effective band parameters of
electrons (holes) (effective masses, band gaps, etc.) and dielectric constant of the system as well.
The energy of the electronic eigenstates E; and corresponding envelop wave functions of electrons
now can be found like it was described in Section 3 (see Fig. 5).

0.190
S
£ 0.185
w
0.180 | J
0 5 10 15 20
B(T)

Figure 5. Two lowest electron energy levels for the
ring with R = 11.5 nm and ¢ = 0.2. Inset: crossing region.

At low temperatures the magnetization

M(B, T)___:__ZﬁE B, ( Ekl-(lT?)]

and susceptibility

oM (B,T)

B.T)=
x(B.T) s

of a ring are defined by the magnetic-field dependencies of the lowest-energy states. It is known
that the first oscillation of the magnetization and correspondingly the first positive peak of the
susceptibility appear at the crossing of the ground Ey and first excited E; electron energy levels
(manifesting the Aharonov-Bohm effect). Therefore, for clarity in this study we concentrate on the
first oscillation of the magnetic parameters of the rings. At the neighborhood of the crossing point
Bc we can suggest that (see also as an illustration Fig.5)

EO,](B) ~ EO(BC) + CO,] (B - Bc)
_OE,,(B)
01 =
’ OB _
B—BC

Actual values of the electronic energies near the first crossing, amplitudes of the magnetization
oscillation, and susceptibility peak [defined by Bc and CO(1)] strongly depend on the actual
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geometrical and material parameters of the rings such as effective radii, heights, material content,
strain, etc. Therefore, in general, within our approach we can characterize them by a set of
parameters {x;} {R.,  ho, hy. .. ,M inou) - - - }. From an experiment one actually obtains values
of the magnetic characteristics averaged over an ensemble of the rings with dispersions of certain
selected parameters combined into the conditional set {x;}c.

We have to keep the parameters’ variations within certain bars to guarantee the appearance
of the crossing and oscillations. Therefore, in this paper we confine ourselves to a bivariate (two-
dimensional) distribution for the variations when only the parameters R, and ¢ vary (the conditional
subset {Rr,¢ } C). For this subset the meaningful averages for the magnetization and differential
magnetic susceptibility characterizing the ensemble can be written as

M(B.T)= [ [M(B.T.R,.&)P(R,.£)dR,dé

R.&

and

xB.1)= [ [£(B,T,R, .&)P(R,,E)dR,d¢.
R &

The energy states are obtained numerically from solutions of the full three-dimensional eigenvalue
problem. Values of Bc({R,,¢ }¢) and Cyr) ({R,,< }c) are reproduced from the calculation results for
the corresponding sets {Rr ,& }C (see Fig. 6).

(b}

Cy ("104 eVT 1)

G}
C, (104 eVT1)
L
.x

Uy, 185

Figure 6. Dependencies of the electronic energy
characteristics on the rim radius R» and wobbling parameter ¢: (a)
crossing point Bc, (b) coefficient Cy, and (c) coefficient C,. Dots,

simulation data; surface plots, appropriate fitting functions.

The results of those simulations we fit to the two-dimensional functions Bo({R, ,& }¢) and Cy)
({R,,¢ }o)Be({Rr & } C) using the following guess:
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Xi(R, &)= ap+ b + x>+ did® + e R*
where k= 0,1,c and Xi(R,,{) = (Co,C1,B.). According to our experience, the best fit can be achieved
with the fitting parameters given in Table I (in appropriate International System units).

TABLE 1. Fitting parameters.

k 0 l C
& 1.209 x 10— 2.131 x 1073 0
by —9.164 x 1074 1.659 = 1074 1.058
5 —4.743 % 1073 3.059 = 1072 36.96
ey 1.069 = 10— ~511 s 0
A —6.53M x 102 —1.247 x 1073 5222.2
B 0.722 0.206 —2.491

Using B(R,,¢ ) and Coy(R,,¢) from the fit we are now able to simulate the conditional meaningful
averages for the magnetization and differential magnetic susceptibility characterizing dispersive
ensembles of one-electron In,Ga; As/GaAds SAQRs and compare that with magnetic properties of
an individual ring and the actual experimental data. Figures 7 and 8 show results of our simulation
for the temperature-dependent magnetization and differential magnetic susceptibility of an
individual InxGal—xAs/GaAs ring with R, = 11.5 nm and ¢ = 0.2 and the same values averaged
within the ensembles of the rings with the mean values Rr = 11.5 nm, ¢ = 0.2 when the geometrical
parameter dispersions are taken to be 5% both for Rr and ¢ . Clearly, for the individual SAQR at
very low temperatures the magnetization rapidly oscillates [Fig. 7(a)] and the differential magnetic
susceptibility demonstrates a very sharp symmetrical positive peak [Fig. 8(a)] near the crossing
point.

T (g T)

Figure 7. Dependence of the magnetization M on Figure 8. Dependence of the differential magnetic
the temperature and magnetic field for (a) individual ring (Rr = susceptibility ¥ on the temperature and magnetic field for (a)

11.5 nm, ¢=0.2) and (b) rings’ ensemble (Rr=11.5nm, =02,  individual ring (R-= 11.5nm, & = 0.2) and (b) ring ensemble
dispersion 5%).

The oscillation and peak become wider and disappear very rapidly when the temperature increases.

This is in contrast to the experimental data, where the relatively wide peak reveals itself even when

the temperature increases. The temperature stable magnetization oscillation and temperature stable
12



wide peak (inhomogeneous broadening) of the differential magnetic susceptibility indeed can be
explained only by the geometry dispersion in the ring ensembles even if the dispersions are taken to
be only 5%. To demonstrate that, in Figs. 7(b) and 8(b) we present the simulation results for the
conditional averages of the magnetization and magnetic susceptibility of the ensemble of the rings
with R, = 11.5 nm and ¢ = 0.2. Our conditional multivariate approach allows us to clarify which
parameter’s fluctuations are most relevant to the temperature stabilization of the differential
magnetic susceptibility of the chosen model of the geometry of the wobbled In.Ga; .As/GaAs
SAQRs. In Fig. 9 we show the temperature dependence of the conditional averages of the height of
the positive peak of the magnetic susceptibility (at the crossing point Bc) when two parameters (R,
and ¢) are varying separately and simultaneously while the mean values R, = 11.5 nm and ¢ = 0.2.
Clearly, within the low-temperature range, in this ensemble the broadening due to the ring’s rim
radius variation (the crossing point deviations) plays a crucial role in the overall inhomogeneous
broadening and temperature stability of the positive peak of the differential magnetic susceptibility.

25
! —— DRE
20 | b
i| L | 4
ol .5 N\
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2 4 —].'- s 5
e 1\ "ok -
5 I\, 0 ; :
~ 0 1 2 ?
s i< bz
u i ——-&-‘-‘F'-;-""lg;al--n.t\—i:au-—l-h—-

T (K)

Figure 9. Temperature dependence of the height of
the peak of the magnetic susceptibility (inset: small temperature
region). DRE, DR, D¢, and Ir correspondingly stand for conditional
bivariate dispersion of R, and ¢ (mean values: average R, = 11.5 nm, ¢ = 0.2, dispersion
5%), univariate dispersion of R» (mean value: Rr = 11.5 nm, dispersion 5%, &=
0.2), univariate dispersion of ¢ (mean values - R =11.5 nm, ¢= 0.2, dispersion
5%), and individual ring with R» = 11.5 nm, £=0.2.

In Fig. 10 we present a wider view of the R, and ¢ dispersions’ impact on the temperature
stabilization of the magnetic response of dispersive ensembles of the ring for conditional averages
R, =11.5 nm and ¢ = 0.2. For both 6R =AR,/R, and 6¢ = AZ/E the dispersion interval expansion
obviously stabilizes the temperature characteristics of the response.

Figure 10. Dependence of the height-to-height ratio
for the averaged peaks of the magnetic susceptibility at 1.2 K ( ;)
and 4.2 K (42) on R = ARt/ Rr and 6§ = A&/E (Rr=11.5nmand £ =0.2).

13



In general, for a large dispersion the stabilization is achieved at small values of the peak magnitudes.
At the same time an appropriate 6 can make the ensemble magnetic characteristics more tolerant to
the deviations of Rr (see Fig. 10). The optimization of the ensemble characteristics by a proper
control of R, and £ gives us an opportunity to design an ensemble of the rings with a large enough
and temperature stable peak in the collective magnetic response.

We should note that, using our multivariate approach, we are able to draw a conditional
“statistical portrait” of the magnetic response of the ensembles. This makes it possible to clarify the
important question of which geometrical parameters’ dispersions are crucial for the formation and
properties of the physical response of ensembles of self-assembled semiconductor quantum rings.
Therefore, our simulation results for the In,Ga; .As/GaAs SAQRs within a bivariate geometrical
dispersion model suggest directions to the optimization of the unusual static magnetic response for
dispersive ensembles of the rings. We suggest that the optimization of the rings’ characteristics can
help to design ensembles of the rings with large enough and temperature stable unusual collective
magnetic response. This can be potentially useful for further fabrication of composite systems
(metamaterials) with principally new magnetic properties.

14
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