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中 文 摘 要 ： 對於半導體元件多功能的日益需求促使了形狀複雜的半導體

奈米物件的發展，其展現出無論在光、電、量子資訊、生醫

影像的發展性。然而，奈米物件本身複雜的變異性(形狀、大

小、組成)造成其物理性質上的極大變異；為了對半導體奈米

物件有更深的了解和更精確的掌握，我們發展出一套一般性

的理論描述半導體奈米物件的物理響應，此理論根據多變異

分布函數可描述不同的物理性質的變異。 

在此報告中，我們計算了半導體奈米物件的能階和其對應之

電子電洞波函數，並考慮其形狀、物質參數和分布上的變

異。為了驗證我們的方法，我們對 ZnTe/CdSe 的量子點和

InAs/GaAs 量子環做光譜和磁化率的模擬，其結果和實驗所

得數據相符。 

因此我們的這一套理論方法將給予最佳化奈米物件的平均物

理特性很大的幫助。 

 

中文關鍵詞： 磁性,磁光,半導體, 奈米物件, 多變異離散 

英 文 摘 要 ： Current demand for multiband and multifunctional 

nano-based semiconductor devices stimulates the 

development of novel nano-scale semiconductor 

components (nano-objects). Impressive progress in 

semiconductor technologies makes it possible to 

fabricate semiconductor nano-objects with very 

sophisticated shapes and material compositions: 

quantum dots, quantum dot molecules, quantum dot 

posts, and quantum rings, etc. The semiconductor 

nano-objects demonstrate unique properties those are 

very promising for modern optics, optoelectronics, 

quantum information processing, bio and medical 

imaging, etc. Unfortunately, the inherent dispersion 

of parameters (shape, size, material composition) 

leads to fluctuations (some time almost 

uncontrollable) of the physical properties of macro-

systems combined from the nano-objects. To achieve a 

proper quantitative description and address the 

controllably of macro characteristics of ensembles of 

the semiconductor nano-objects in this study we have 

proposed and developed a general theoretical 

description of the physical response of dispersive 

ensembles made from the semiconductor nano-objects of 

complex geometries and material compositions. The 



description is based on the multivariate distribution 

function, which cumulatively reproduces variations of 

the objects’ parameters. 

In this report we present and discuss our method of 

multivariate simulation of physical properties of 

ensembles of semiconductor nano-objects with 

dispersion in geometry, material parameters, and 

spatial distributions. Using the mapping method 

(recently derived by us) we are able to very 

efficiently compute energy states and wave functions 

of electrons and holes confined in the nano-objects 

within a wide range of sizes, shapes, and 

compositions. Thus, using the hybrid multiscale 

(hierarchical) method we are able to simulate 

ensembles of nano-objects with multiparametric 

(multivariate) distributions. To demonstrate our 

method efficiency we simulated the absorption cross 

section of ensembles of ZnTe/CdSe core/shell quantum 

dots and the unusual diamagnetic response (magnetic 

susceptibility) of ensembles of wobbled InAs/GaAs 

quantum rings. We have theoretically obtained the 

actual optical spectra and magnetic susceptibility in 

a very good agreement with experimental data.  

We have proven that our multivariate statistical 

approach can be useful for optimization of the 

averaged physical characteristics of the dispersive 

ensembles of nano-objects. 

 

英文關鍵詞： magnetism, magneto-optics, semiconductor, nano-

objects, multivariate dispersion 
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Magnetic and magneto-optical properties of dispersive ensembles of semiconductor nano-
objects 

 
1. Introduction (Purpose and Brief Literature Review) 
 

Advances in modern semiconductor technologies make it possible to produce semiconductor 
nano-objects within a wide range of geometrical shapes and material parameters (quantum dots, 
nano-rings, quantum dot molecules, quantum dot posts, nano-rods, etc.), investigate their properties 
in details, and use them for various applications (see for instance [1-3] and references therein).  
Those nano-objects are thought to be very promising candidates for practical use in optics [4], 
quantum information processing [5], nano-biology, nano-medicine [6]. Nano-structured 
semiconductor meta-materials [7-9] also offer a very promising direction of the future development 
of novel semiconductor device components and subsystems. All unique and useful properties of the 
systems assembled form nano-objects are derived from properties of the constituent elements. 
Therefore, incorporating controllable and tunable nano-objects into nano-structured systems and 
meta-materials leads to tunable (on the quantum level) properties of them. It is well known, that to 
perform large-scale quantum information processing systems assembled form many all uniform and 
regular nano-sized elements are required. The same requirements are of the paramount impotence in 
nano-optics and nano-medicine. But, the inherent dispersion of the semiconductor objects' 
geometrical parameters (shapes, sizes, material compositions) leads to fluctuations (some time 
almost uncontrollable) in the demanded in practice parameters and properties of macro-systems 
combined from the nano-objects. For instance in optics, the dispersion in the nano-objects 
parameters leads to inhomogeneous broadening in optical spectra, which can drastically decrease 
applicability of the integrated optical systems. In quantum information processing the fluctuations 
result in non-controllable decoherence in the quantum bits' entanglement. 

The knowledge of the physical properties of semiconductor nano-sized objects with respect 
to their transport, magnetic and optical properties has increased considerably recently. However, we 
should conclude, that the important issue of impacts of the parameters' dispersions in ensembles of 
semiconductor nano-objects on the ensembles' collective properties was much less emphasized, 
realized, and investigated so far. Unfortunately, among all consequences of the dispersion in the 
physical characteristics of ensembles of nano objects only optical properties called some attention 
in the theory. For instance, simple descriptions of the inhomogeneous broadening in the optical 
absorption spectra of ensembles of semiconductor quantum dots with primitive spherical or cubic 
shapes are known in literature (see for instance [10,11] and references therein). For semiconductor 
nano-objects with primitive shapes the broadening was modeled only as a result of the primitive 
dispersion of the sizes (volumes): volume's variations for cubes and radius' variations for spheres. 
Such basic approximations for geometries allow us to investigate the broadening using simple 
analytical expressions, or simple numerical simulations. This "retardation" in the theoretical studies 
of the collective properties of dispersive ensembles of nano-objects originates from a demand of 
massive and severe computational tasks to be performed. Most of the present theoretical studies in 
this domain still focus upon a primitive description of the objects and ensembles. The 
corresponding knowledge about possible methods and means to insure predictable and controllable 
magneto and magneto-optical parameters of random and dispersive ensembles of semiconductor 
nano-objects is particularly weak. It is the central aim of this project to fill in the gap for this 
emergent research field. 

The general approach to the realistic theoretical description of dispersive ensembles of 
semiconductor nano-objects with complex material parameters and geometrical shapes is to 
consider a multivariate (multidimensional) distribution function [12,13] including dispersions of all 
appropriate physical parameters. This requires computational methods those can optimize extensive 
simulations of the physical properties of semiconductor nano-objects within wide ranges of 
variations of their parameters. We recently developed two efficient computational methods. The fist 
one is the hybrid multiscale (hierarchical) method which allows us to simulate and analyze 
electrical, magnetic, and magneto-optical characteristics of complex semiconductor nano-structures 
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[14-17]. The second is the mapping method with which we are able in a very efficient 
computational manner obtain the energy states and wave functions of the electrons and holes 
confined in nano-objects with very sophisticated shapes and material content [18,19]. A proper 
combination of those two methods makes it possible to simulate and study physical properties of 
dispersive ensembles of semiconductor nano-objects within a wide range of changes in geometry, 
material parameters, and spatial distributions. 

The purpose of this one-year theoretical project was to address most important problems in 
this emergent research field and to develop a combined computational procedure of simulations of 
the static magnetic and electro-dynamic characteristics of three-dimensional semiconductor nano-
objects of geometries and material content changes within a wide range. This includes an 
implementation of the mapping method to formulate statistical description of the dynamic electric 
polarizability and magnetic susceptibility for single and few quasi-particle (electrons, holes, and 
excitons) confined in semiconductor nano-objects (such as quantum dots and nano-rings). 

 
[1] Semiconductor nanostructures, Eds. D. Bimberg, Springer, Berlin (2008). 
[2] G. Konstantatos and E. H. Sargent, Nature Nanotechnonogy 5, 391 (2010). 
[3] B.C. Lee, O. Voskoboynikov, and C.P. Lee, Physica E 24, 87 (2004). 
[4] Optics of quantum dots, Eds. G. W. Bryant, G. S. Solomon, Artech House, MA (2005). 
[5] O. Voskoboynikov, Nonvolatile Quantum Memory, Chapter in the collective monograph 

“NONVOLATILE MEMORIES Materials, Devices and Applications”, Edited by Tseung-Yuen 
Tseng and Simon M. Sze, Chapter 15, Vol. 2, pp. 377-400, American Scientific Publishers, CA, 
USA, Jan. 2012. 

[6] Biomedical Nanostructures, Eds. K. E. Gonsalves et al., John Wiley & Sons, Inc., NJ, 2008. 
[7] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968). 
[8] W. J. Padilla, D. N. Basov, and D. R. Smith, Mater. Today 9, 28 (2006). 
[9] Electromagnetics of Metamaterials, A. K. Sarychev and V. M. Shalaev, World scientific, 2007. 
[10] V. I. Belyavskiy and S. V. Shevtsov, Semiconductors, 36, 821, 2002. 
[11] D. L. Ferreira and J. L. A. Alves, Nanotechnology 15, 975, 2004. 
[12] Methods of Multivariate Analysis, A. C. Rencher, 2nd ed., Wiley-Interscience, New York, 

2002. 
[13] Applied Multivariate Statistical Analysis, W. Härdle and L. Simar, 2nd ed.,Springer, Berlin, 

2002. 
[14] O. Voskoboynikov, C.M.J. Wijers, J.J. Liu and C.P. Lee, Phys. Rev. B 71,  245332 (2005). 
[15] O. Voskoboynikov, G. Dyankov and C.M.J. Wijers, Microelectronics Journal 36, 564 (2005). 
[16] O. Voskoboynikov, C.M.J. Wijers, and C.P. Lee, Europhys. Lett. 70, 656 (2005). 
[17] C. M. J. Wijers, J.-H Chu, L. J. Liu, O. Voskoboynikov, Phys. Rev. B 74, 035323 (2006). 
[18] L. M. Thu and O. Voskoboynikov, Phys. Rev. B 80, 15542 (2009). 
[19] L. M. Thu and O. Voskoboynikov, AIP Conf. Proc. 1233, 952, (2010). 
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2. General description of the dispersive ensembles of semiconductor nano-objects. 
Multivariate approach.  
 
 
 

Up to now most of simulations of the statistical physical characteristics of dispersive 
ensembles of semiconductor nano-objects were devoted to the inhomogeneous broadening in optics 
of ensembles of semiconductor quantum dots. The simulations were performed for simple spherical 
or cubic shapes of the dots and the broadening was attributed to the dot-size (volume) primitive 
univariate (single-parameter, for instance the dot radius) dispersion. This approach allows for 
simple analytical expressions and non-extensive numerical simulations. However, it is obviously 
not applicable to most of the nano-objects. The general approach to the realistic theoretical 
description of dispersive ensembles of semiconductor nano-objects with complex material 
parameters and geometrical shapes is to consider a multivariate (multidimensional) distribution 
function including dispersions of all appropriate physical parameters (subsets of parameters of 
interest). This requires computational methods those can optimize extensive simulations of the 
physical properties of semiconductor nano-objects within wide ranges of variations of their 
parameters. 

The spatial, geometrical, material parameters’ dispersions in ensembles of nano-objects can 
be described by a multivariate (multidimensional) joint distribution function P({x1, x2, . . . , xn}). 
The objects' spatial distribution (the actual positions within the ensembles) can be presented by a 
sub-set of discrete parameters {i} (objects' coordinates). The structural (geometrical and material) 
characteristics of the dots are presented by a sub-set of appropriate continuous parameters {j}. 
Then function P({i};{j}) presents the dispersions of all appropriate parameters {xk}. This gives 
the number of nano-objects dNi with the values of {i} and {j} inside the domain (i ;{i,i + di}) 
as  

  
j

jji dPdN  , .  

The cumulative expectation (meaningful average) of a physical quantity Q({i},{j}) characterizing 
the ensemble then is written as 
 

     
 
 

j
j
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Most of the ensembles can be characterized satisfactorily when only a subset of the 

parameters in {xk} is of any interest. Therefore, we can consider the conditional distributions for 

subsets of the parameters of interest: {xk }C ⊆ {xk}. Accordingly, when it is possible to neglect 

dispersions of the other (“nuisance”) parameters we can define the appropriate conditional 
expectation as 
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In our consideration we assume that the parameters in a typical nano-objects’ ensemble follow the 
non-correlated normal distribution which is presented by 
 
    

k
kk xPxP  

where P(xk) is a distribution for the particular parameter xk.  
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Now to simulate the spatial disorder in ensembles of nano-objects we create a compact 
cluster consisting of N cubic cells within a certain volume. Nd cells of the cluster are occupied by a 
single nano-object in each (Nd  < N). We randomly locate the occupied cells within the cluster and 
calculate the physical quantity of our interest Q. Then we randomly relocate occupied cells again 
and again. Notice that the dots density (Nd /N) remains the same for all tries. We can repeat the 
procedure many times and obtain the conditional average (when a sub-set {j} is fixed): 

 
     ,

i
iiC QPQ   

where the discrete uniform distribution is presented by the number of dot relocations Z as P{i} = 
1/Z.  
 The structural dispersion rises from variations of the individual nano-objecs' parameters 
when we stick with a certain set of the dots' locations in the ensemble (cluster). This multi-
dimensional distribution is presented by 
 
    ,j

j
Gj PP    

where the standard normal distribution for each parameter j is written as 
 

  ,0















 GAPG  

 
A is the normalization coefficient, 0 is a mean value,  is the standard deviation of the 
parameter, and G() is the Gaussian function. 
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3. Spectral characteristics of dispersive ensembles of semiconductor core-shell quantum dots. 
 

One of the most exciting meeting points of the semiconductor nanophysics and nano- 
biology is the use of semiconductor quantum dots for "in vivo" biomedical imaging. The robust 
identification of targeting biomolecules conjugated with QDs requires for a very high recognition 
accuracy of the photoluminescence spectral characteristics of QDs' ensembles. At the same time the 
inherent property of semiconductor QDs is their geometrical and material parameters’ dispersions. 
This generates disorder in the quantum confinement of the dots and leads to non-homogenous 
broadening in the absorption and emission spectral lines of the dots. The broadening obviously 
obscures the biomedical imaging. In addition the broadening can be enhanced by the random spatial 
locations of the dots in bio-tissues. 
 We use our hybrid discrete/continuous model (L. M. Thu and O. Voskoboynikov, Phys. Rev. 
B 80, 15542, 2009) to describe the optical response of the ensembles (systems) of the dots by 
means of polarizabilities of effective discrete dipoles dl embedded into a continuous transparent 
dielectric medium with the dielectric constant m . We can assume that a dipole dl is located in the 
center of the lth cell of the ensemble (cluster) like it was described above. In the linear discrete 
dipole approximation (DDA) the dipole is characterized by the excess bare polarizability tensor 
Bl() of a single QD, which at the near of optical resonance transition can be written as: 
 

),()(  D
l

S
llB ααα 
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where  is the incident light frequency, S() is the static part and D() is the dynamic part of the 
polarizability.  
The light absorption cross section defined as the following: 
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       11   S
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is the dressed polarizability, tS is the full electromagnetic self-interaction tensor for the QDs, k =  
/c and E0 stand for the wave vector and electric field amplitude of the incident light, c is the light 
speed in the vacuum. 
The dipole strength dl  should be found from the following system of equations 
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and Fll' is the vacuum intercellular (inter-dipole) transfer tensor (the dyadic Green’s function in the 
DDA). 

The dynamic part is described by means of Kramers/Heisenberg type of polarizabilities. 
Ignoring quantum nonlocal effects the dynamic part of the tensor of the bare embedded 
polarizability (which has been derived by us) can be written in terms of the electro-hole overlap 
integrals and transition energies. To find the static part of the polarizability tensor we implemented 
an appropriate boundary-value problem for a local electrostatic potential in a complex three-
dimensional cubic domain of the host material including one nano-object.  

Considering  in the vicinity of the ground state excitonic resonant optical transition of the 
dot (which generates a peak in an optical spectrum), we can write the dynamic part of the 
polarizability as the following [10]: 












iE
fEe

ex

ex
T
ehehexD






 rr
α

*2
)(           

where fex = ex(r)2 is the squared electron-hole overlap integral, ex(r) and Eex stand for 
excitonic wave function and energy,  represents the homogeneous (temperature) broadening of the 
peak, and reh is the semiconductor bulk interband optical matrix element. 

 For the dynamic part of the polarizability we computed the transition energies and wave 
functions of electrons and holes confined in the semiconductor nano-object. Our general method 
allows us to simulate the nano-objects of arbitrary shapes. The electron states are described by 
means of the effective one-band Hamiltonian with the energy and position dependent effective mass. 
The valence-band hole states in semiconductor nano-objects (preferably III-V semiconductor 
compounds) we describe with multiband (4x4) k·p Hamiltonian that allowed for valence subband 
mixing. The electrostatic characteristics, energy states and wave functions of electrons and holes 
confined in the quantum dot molecules are obtained numerically form solutions of the Schrödinger 
equation with the appropriate effective Hamiltonians (we use realistic semiconductor material 
parameters for strained semiconductor heterostructures, with corrected to the strain condition band 
parameters, etc.) by the nonlinear iterative method using COMSOL multiphysics package. 

We applied the approach described above to ensembles of type-II ZnTe/CdSe core/shell 
QDs in the toluene solution (the ensembles those were experimentally investigated, see Fig. 1) 
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Figure 1.  (a) ZnTe/CdSe core/shell QDs. 

(b) Potential profiles for electrons and holes.   
 

We first consider the spatial disorder and choose h =1.2 nm for all dots within the cluster. 
According to our simulation experience, for several tries of the dot random relocations, the 
averaged absorption cross section barely differs from an individual try's result. The homogeneous 
broadening (variations of ) does not affect this finding. When we repeated the procedure choosing 
different h we found the same stable behaviour of the averaged absorption cross section. Therefore, 
we conclude that the spatial disorder has a weak influence on the broadening. This suggests a weak 
interaction between the semiconductor dot dipoles in the cluster (in contrast to the clusters of 
metallic nano-particles). 

We model the structural dispersion within the dot ensembles using our numerical solutions 
for few different values of h. Then we fit the results of those simulations to the excitonic energy Eex 
and the squared overlap fex as functions of the shell thickness h using the following guesses: Eex(h) 
= 1. 923h-0.27 eV and fex(h) = -0.001+0.98 (h+1.3)-1  - 0.42(h+1.3)-2 (h is presented in nm). 
 

 
Figure 2.  FWHM for (a) uniform (inset: Ep 
marks the peak position) and (b) non-uniform   

Figure 2a shows results of our simulations of the full width at half maximum (FWHM) of the 
excitonic spectral peaks at the room temperature (T = /kB = 300 K, kB is the Boltzmann constant) 
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when the relative standard deviation of the shell thickness (RSDST) h/h0 is chosen to be of 0.15 
(uniform) for all ensembles. We should notice that at the present time an actual value for the 
RSDST cannot be clearly restored from experimental data. Therefore, in this study we can only 
speculate that the RSDST can vary within a range of 0.1 ÷ 0.3. Clearly (see Figure 2a), the 
proposition of the uniform RSDST cannot explain the general tendency of the experimental data. 
To comprehend the experimental results we should impose an increase of h/h0 (when the shell 
thickness increases) as the following: h/h0 = 0.1 for h0 = 1.2 nm, h/h0 = 0.13 for h0 = 1.8 nm, 
h/h0 = 0.16 for h0 = 2.4 nm, and h/h0 = 0.20 for h0 = 3.6 nm. Figure 2b shows the FWHM for the 
ensembles with the RSDST corrected as it was proposed above. The tendency demonstrates a very 
good agreement with the experiment.  

 

Figure 3.  Normalized FWHM for different 
relative standard deviations and h0=3.6 nm .  

In addition, in Figure 3 we demonstrate the accumulated impacts of the structural dispersion 
and temperature on the FWHM of excitonic peaks. We present a normalized value: W(T) = 
FWHM(T)/FWHM(T=100 K). Clearly, the homogeneous broadening plays a minor role when the 
structural dispersion is large. At the same time, at higher temperatures and moderated structural 
dispersions the temperature influence becomes significant. 
 
 
4. Impact of size and shape dispersion on the averaged magnetic response of ensembles of 

semiconductor quantum rings 
 

Using the mapping method we address the issue of the statistical description of the static 
magnetic response of dispersive ensembles of three-dimensional InxGa1−xAs/GaAs self-assembled 
quantum rings (SAQRs) - nano-objects with a very complex geometry. According to recent 
experimental results the SAQRs demonstrate controllable flexibility of geometrical and material 
characteristics. The most intriguing property of the SAQRs, that has attracted much attention, is 
their three-dimensional nonsimply connected topology. The property enables topological quantum 
effects for charged particles confined in the SAQRs (similar to the Aharonov-Bohm effect). This 
results in a very specific static magnetic response of the rings: when the external magnetic field is 
applied in the SAQR growth direction, the nonsimply connected topology enables the Aharonov-
Bohm oscillations of the ring’s magnetization and generates a positive peak in the differential 
magnetic susceptibility. effect has to be addressed to the crossing between the two lowest-energy 
states of the electron confined in the ring. The effect was recently experimentally confirmed at low 
temperatures for InxGa1−xAs/GaAs self-assembled capped wobbled quantum rings. It was shown 
that for one-electron rings the wobbling asymmetry can have a strong effect on the magnitude of the 
first magnetization oscillation and susceptibility peak as well as their positions. However, the actual 
experimental magnitude of the peak’s height and its temperature dependence remain in a 
contradiction to the conventional expectations. Unlike the conventional simulations, the 
experimental peak demonstrates a negligible temperature effect.  

Using our mapping method we analyze conditional and simultaneous impacts of the 
multivariate dispersion of different geometrical properties (parameters) of the SAQRs on the first 
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oscillation in the magnetic response of the rings’ ensembles. We show that our approach makes it 
possible to verify which specific parameter can play a crucial role in the unusual magnetic response. 
In addition, we address the issue of the temperature stabilization of the static magnetic response of 
the dispersive ensemble of SAQRs. In our method we assume (this is a very standard condition) 

 
 

Figure 4. (a) Capped wobbled InxGa1−xAs/GaAs 
self-assembled quantum ring. Two projections of  

the electronic confinement potential on  
(b) (x,0,z) and(c) (0,y,z) planes (Rr = 11.5 nm, 

ξ = 0.2). 
 

that the object was grown at a flat substrate parallel to (x,y) plane (Fig. 3). The height of the object 
in z-direction (the system growth direction) is presented by a function h(x,y). Using analysis of the 
experimental structural and composition information obtained from AFM (atomic force microscopy) 
and X-STM (cross-sectional scanning tunneling microscopy) measurement the function h(x,y) can 
be readily discovered and even analytically approximated for most of the objects.  
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where Rr is the ring’s rim radius; h0,hr , and h∞ correspondingly stand for the height at the center of 
the rings, at the rim, and far outside of the ring; γ0 and γ∞, respectively, determine the inside and 
outside slopes near the ring’s rim. The wobbling parameter ξ defines the anisotropy (asymmetry) of 
the ring height on the x-y plane. 

The three-dimensional confinement potential V(x,y,z)  (Fig. 4) for electrons can be found 
from the composition dependent band offset.  
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where EC is the electronic band offset in the system. The mapped confinement potentials we use to 
define the mapping functions 
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This function accumulates all experimental information about geometrical shapes and compositions 
of the rings and it allows us to present the position-dependent effective band parameters of 
electrons (holes) (effective masses, band gaps, etc.) and dielectric constant of the system as well. 
The energy of the electronic eigenstates Ei and corresponding envelop wave functions of electrons 
now can be found like it was described in Section 3 (see Fig. 5). 
 

 
Figure 5. Two lowest electron energy levels for the 

ring with Rr = 11.5 nm and ξ = 0.2. Inset: crossing region. 
 

 
At low temperatures the magnetization  
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of a ring are defined by the magnetic-field dependencies of the lowest-energy states. It is known 
that the first oscillation of the magnetization and correspondingly the first positive peak of the 
susceptibility appear at the crossing of the ground E0 and first excited E1 electron energy levels 
(manifesting the Aharonov-Bohm effect). Therefore, for clarity in this study we concentrate on the 
first oscillation of the magnetic parameters of the rings. At the neighborhood of the crossing point 
Bc we can suggest that (see also as an illustration Fig.5) 
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Actual values of the electronic energies near the first crossing, amplitudes of the magnetization 
oscillation, and susceptibility peak [defined  by Bc and C0(1)] strongly depend on the actual 
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geometrical and material parameters of the rings such as effective radii, heights, material content, 
strain, etc. Therefore, in general, within our approach we can characterize them by a set of 
parameters {xi} ⇒ {Rr , ξ, h0, hr, . . . ,m in(out) . . .}. From an experiment one actually obtains values 
of the magnetic characteristics averaged over an ensemble of the rings with dispersions of certain 
selected parameters combined into the conditional set {xi}C. 

We have to keep the parameters’ variations within certain bars to guarantee the appearance 
of the crossing and oscillations. Therefore, in this paper we confine ourselves to a bivariate (two-
dimensional) distribution for the variations when only the parameters Rr and ξ vary (the conditional 
subset {Rr ,ξ }C). For this subset the meaningful averages for the magnetization and differential 
magnetic susceptibility characterizing the ensemble can be written as 
 
 
 
and 
 
 
 
 
The energy states are obtained numerically from solutions of the full three-dimensional eigenvalue 
problem. Values of BC({Rr ,ξ }C) and C0(1) ({Rr ,ξ }C) are reproduced from the calculation results for 
the corresponding sets {Rr ,ξ }C (see Fig. 6).  

 
Figure 6. Dependencies of the electronic energy 

characteristics on the rim radius Rr and wobbling parameter ξ: (a) 
crossing point Bc, (b) coefficient C0, and (c) coefficient C1. Dots, 

simulation data; surface plots, appropriate fitting functions. 
 
 

The results of those simulations we fit to the two-dimensional functions BC({Rr ,ξ }C) and C0(1) 
({Rr ,ξ }C)Bc({Rr ,ξ }C) using the following guess: 
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Figure 7. Dependence of the magnetization M on 
the temperature and magnetic field for (a) individual ring (Rr = 

11.5 nm, ξ = 0.2) and (b) rings’ ensemble ( Rr = 11.5 nm, ξ = 0.2, 
dispersion 5%). 

 
Xk(Rr ,ξ ) = ak + bkξ + ckξ 2 + dkξ 3 + ekRβk 
where k = 0,1,c and Xk(Rr ,ξ ) = (C0,C1,Bc). According to our experience, the best fit can be achieved 
with the fitting parameters given in Table I (in appropriate International System units). 

 
 

Using Bc(Rr ,ξ ) and C0(1)(Rr ,ξ ) from the fit we are now able to simulate the conditional meaningful 
averages for the magnetization and differential magnetic susceptibility characterizing dispersive 
ensembles of one-electron InxGa1−xAs/GaAs SAQRs and compare that with magnetic properties of 
an individual ring and the actual experimental data. Figures 7 and 8 show results of our simulation 
for the temperature-dependent magnetization and differential magnetic susceptibility of an 
individual InxGa1−xAs/GaAs ring with Rr = 11.5 nm and ξ = 0.2 and the same values averaged 
within the ensembles of the rings with the mean values Rr = 11.5 nm, ξ = 0.2 when the geometrical 
parameter dispersions are taken to be 5% both for Rr and ξ . Clearly, for the individual SAQR at 
very low temperatures the magnetization rapidly oscillates [Fig. 7(a)] and the differential magnetic 
susceptibility demonstrates a very sharp symmetrical positive peak [Fig. 8(a)] near the crossing 
point.  

                         
 

Figure 8. Dependence of the differential magnetic 
susceptibility χ on the temperature and magnetic field for (a) 

individual ring (Rr = 11.5 nm, ξ = 0.2) and (b) ring ensemble  
 

 
The oscillation and peak become wider and disappear very rapidly when the temperature increases. 
This is in contrast to the experimental data, where the relatively wide peak reveals itself even when 
the temperature increases. The temperature stable magnetization oscillation and temperature stable 
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wide peak (inhomogeneous broadening) of the differential magnetic susceptibility indeed can be 
explained only by the geometry dispersion in the ring ensembles even if the dispersions are taken to 
be only 5%. To demonstrate that, in Figs. 7(b) and 8(b) we present the simulation results for the 
conditional averages of the magnetization and magnetic susceptibility of the ensemble of the rings 
with Rr = 11.5 nm and ξ = 0.2. Our conditional multivariate approach allows us to clarify which 
parameter’s fluctuations are most relevant to the temperature stabilization of the differential 
magnetic susceptibility of the chosen model of the geometry of the wobbled InxGa1−xAs/GaAs 
SAQRs. In Fig. 9 we show the temperature dependence of the conditional averages of the height of 
the positive peak of the magnetic susceptibility (at the crossing point Bc) when two parameters (Rr 
and ξ) are varying separately and simultaneously while the mean values Rr = 11.5 nm and ξ = 0.2. 
Clearly, within the low-temperature range, in this ensemble the broadening due to the ring’s rim 
radius variation (the crossing point deviations) plays a crucial role in the overall inhomogeneous 
broadening and temperature stability of the positive peak of the differential magnetic susceptibility. 
 

 
Figure 9. Temperature dependence of the height of 

the peak of the magnetic susceptibility (inset: small temperature 
region). DRξ, DR, Dξ , and Ir correspondingly stand for conditional 

bivariate dispersion of Rr and ξ (mean values: average Rr = 11.5 nm, ξ = 0.2, dispersion 
5%), univariate dispersion of Rr (mean value: Rr = 11.5 nm, dispersion 5%, ξ = 
0.2), univariate dispersion of ξ (mean values : Rr = 11.5 nm, ξ = 0.2, dispersion 

5%), and individual ring with Rr = 11.5 nm, ξ = 0.2. 
 
 

In Fig. 10 we present a wider view of the Rr and ξ dispersions’ impact on the temperature 
stabilization of the magnetic response of dispersive ensembles of the ring for conditional averages 
Rr = 11.5 nm and ξ = 0.2. For both δR =Rr/Rr and δξ = ξ/ξ the dispersion interval expansion 
obviously stabilizes the temperature characteristics of the response.  
 

 
Figure 10. Dependence of the height-to-height ratio 

for the averaged peaks of the magnetic susceptibility at 1.2 K ( χ1.2) 
and 4.2 K ( χ4.2) on δR = Rr/ Rr and δξ = ξ/ξ ( Rr = 11.5 nm and ξ = 0.2). 
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In general, for a large dispersion the stabilization is achieved at small values of the peak magnitudes. 
At the same time an appropriate δξ can make the ensemble magnetic characteristics more tolerant to 
the deviations of Rr (see Fig. 10). The optimization of the ensemble characteristics by a proper 
control of Rr and ξ gives us an opportunity to design an ensemble of the rings with a large enough 
and temperature stable peak in the collective magnetic response. 

We should note that, using our multivariate approach, we are able to draw a conditional 
“statistical portrait” of the magnetic response of the ensembles. This makes it possible to clarify the 
important question of which geometrical parameters’ dispersions are crucial for the formation and 
properties of the physical response of ensembles of self-assembled semiconductor quantum rings. 
Therefore, our simulation results for the InxGa1−xAs/GaAs SAQRs within a bivariate geometrical 
dispersion model suggest directions to the optimization of the unusual static magnetic response for 
dispersive ensembles of the rings. We suggest that the optimization of the rings’ characteristics can 
help to design ensembles of the rings with large enough and temperature stable unusual collective 
magnetic response. This can be potentially useful for further fabrication of composite systems 
(metamaterials) with principally new magnetic properties. 
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