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Based on the bilinear relation approach, we show that the hermitian one-matrix
model at finite N can be embedded into Id Toda chain and (modified) KP hierarchy
respectively with the same Wronskian-type tau function. We also point out that which
hierarchy to take depends on the choice of the wave function for constructing the bilinear
relation.

PACS. 04.60.N~ - Lattice and discrete methods
PACS. 02.30.Jr  - Partial differential equations.

I. Introduction

Recently it has been noticed that the integrability of the matrix models [I] is main-
tained even at discrete level (finite N) before taking the double scaling limit. Progress in
this direction is originally due to three independent papers, by Gerasimov et al. [2],  by Mar-
tinec [3],  and by Alvarez-Gaume et al. [4]. In particular, the Lax pair and zero-curvature
condition have been derived and the underlying integrable system has been identified with
Id Toda lattice hierarchy (TLH) for one-matrix model which becomes the KdV hierarchy in
the scaling limit [6],  2d TLH and 2d Toda multi-component hierarchy [5] for the two-matrix
model and for the general multi-matrix models, respectively. The partition functions are
the r-functions of these integrable systems.

In Ref. [8],  we have shown that the hermitian one-matrix model can also be embed-
ded into KP hierarchy which is different from the previous result [2] for Id TLH. However,
the partition function turns out to be a particular Wronskian-type tau function for both
hierarchies. Therefore, it seems that there are some relationships between these two hierar-
chies through matrix model. In the present letter, we will show that this is indeed the case.
Inspired by previous studies on twomatrix model and 2d TLH [7],  we show that these two
hierarchies (Id Toda and (modified) KP) can be related to each other via a bilinear relation
which is constructed from matrix model, thus connecting these two integrable systems in
hermitian one-matrix model.
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II. Integrability in one-matrix model

Let us briefly summarize the integrability structures in hermitian one-matrix model.
The main object of interest in the one-matrix model is the partition function, defined to be

with M an N x N hermitian matrix, which can be reduced to [g-11]

If we introduce a set of orthogonal polynomials {Pn(X)}, defined by [lo-121

P,(X) = A”  + O(Yy,

J dXev(x)P,(X)P,(X)  = h,6,,, rz,m = 0,1,2;..

where V(t, A) E ~~E1  tkXk, then 2:’ in (2) can be evaluated to become

2,(ëI  = hN_lhN_2 . . . ho

From (3) and (4), it can be shown [2] that

m=O

where the elements of the matrix y are given by

din h,
Yn,n+1  --1, -Ynn=-----at, ’

hn-_Yn,n-1 - h,_l  >
all other ynrn = 0.

Thus,

(3)

(4

(5)

(6)

(ëi)

%+1@) = (A - Ynn)cL(V - -h,n-led4 (S)

is a characterizing recursion relation of the orthogonal polynomials. It is easy to show [*I
that the orthogonal polynomials can be expressed as

P,(X) = det[Xl - rlnxn. (9)

By differentiating (4) one can derive [2]
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dln h,
___ = (YQ)nn,

at,

and

@I( Jq 7X-l

___ = - ~(7%mPm(X).
at, TlL=O

Then combining (6) and (ll), one obtains [2]

87
dt, = &,71> P, = (Yî)+.

1213

PO)

(11)

(12)

where we define A+(A_)  is the upper (strictly lower) triangular part of A such that A+ +
A._ = A.

Eq. (12) is of the form of a standard Lax equation for integrable hierarchy systems
[13,14], since it implies the Zakharov-Sabat equations (or the zero-curvature conditions):

ap, ?4
4 P

- -g + [P,,Pql = 0. (13)

Moreover, it seems that the hermitian one-matrix model at finite N has the same
integrability structure as the Id TLH, because it follows from (7) and (12) that

dílnh,  h,+l h,
~ = h, - h,_l ’atq

and if we let h,(t) = eînct)  then (14) can be rewritten as

~ = e"ntl(t)-un(t)
Ií%

atq
- eîn(t)-un-l  (t)

(14)

(15)

which is nothing but the one-dimensional Toda lattice equation, which describes a nonlinear
coupled oscillator with exponential type potential, and also the simplest equation among
the Id TLH.

III. Wronskian expressions for partition function

Using (5), the normalization constant h, can be expressed in terms of the partition
function by

h

n
(t) = z!$l(t)

.2$)(t)  ’

then (14) can be reduced to

(16)



1214 A NOTE ON INTEGRABILITY IN MATRIX MODELS

If we impose the boundary conditions

$1) = 1
0 , 22) = 0 for n < 0,

then by iteration, we get

VOL. 34

(17)

(18)

and we find that the solution of Eq. (19) turns out to be a Wronskian

$ = W(Z~ë),dlZ~l),...,d~ì-ë)ZIí))
(20)

= det ,fíj  zií), (0 5 i,j 5 n - 1).

Therefore, the finite N matrix model can ultimately be expressed in terms of one single

function, Zir) (or ho(t)). Note that (19) can be rewritten as

(21)

where -Di is the Hirotaís  bilinear differential operator defined by

wdf(4 . !7(4 = p (( & - &/)  7 (-& - &) 7.. -) f(4d4Ld
1

(22)

= fv*)(f(~ + +(z - z)I*=o

It is well known that all the equations of the hierarchy share the same solution called
r-function, and can be expressed in terms of the r-function through the Hirota bilinear
differential operators [14].  So (21) indicates that the partition function may be a r-function
of the truncated one-dimensional TLH. 1

1V:The partition function as a tau-function

Now let us define

Ql,(t,A]u)  = Pn(t,X)eav(f~X), 0 2 a 5 1. (23)

’ Because the discrete time variables 1, are semi-infinite.
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which is different from [8] by introducing a parameter a which will play a crucial role later
on. From (11) we have

a*
- =at, [(a - qyq + P,p

(24)
= [art + (a - l)y!J@

Furthermore, we have from (6)

7Q = XQ.

Then, the compatibility conditions for (24) and (25) give

(25)

87
dt, =  [(a- I)79 +Pq,7]

= [P,771
which is independent of a.

Now we define a sort of adjoint  of qln(X) by (compare with (23)) [8]

Q;(tí,  X/u) E lqtí,  X)PV(tíJ) (26)

where PG(t, A) = A-”  det[(l-7/x)-r],,, (compare with (9)). Then the following bilinear
relation holds for all t and tí,n = 0,1,2,...,m = 1,2,3,*...

f

hn (4
= h,_l(t') f g$;+l(t,  Xlu)!P,-1(tí,  Xla)e(2î-ë)v(t-tîx),

(27)

here we take an integration contour as a small circle around X = co. A detailed calculation
to arrived at (27) is shown in appendix A. The bilinear relation (27) is a generalization
of the previous result [8]. We also note that (27) is an one-dimensional reduction of the
bilinear relation for the 2d TLH [13] such that m(z,y) only depend on {CC;  - y;} z {t;}
where {z;} and {y;} are two time flows in 2d TLH. In fact, the parameter a defined in (23)
can be realized from the following identifications

{z;} = {ati}, {yi} = {(a- l)ti}, (0 I a L 1). (28)

Applying a theorem [13] in the theory of the 2d TLH, (27) ensures that there exists a
r-function, called ~~(z,y)  = m(z - y) = r,(t), such that

P&,X)  = A” G(2 - ++>,Y>  = +(t - +w
rn(? Y> rn (4

lgt, A) = A-” m(z + +q,Y> = pG(t + 4w>
?Ln(?  Y> m(t)

Xh,P,+,(t,  A) = A-” %+1(?Y  - q-l)) = p%+l(t  + 4q)
%bb  Y> rn (t>

Xh;A--Pn_l  (t,  A) = A” -(; ?;x+;;h-l)) = A” Tn-l(;-c;;h-l))
n 7 n

(29)

-_
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where 6(X-r)  f (i, &-;..).  Then from (29), it

T&) = hn-lhn_-2  . - 1 ho = Z;)(t). (31)
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is easy to show that

(30)

Hence, the partition function is a r-function of the one-dimensional reduction of the 2d
TLH.

V. Toda and (modified) KP hierarchy

Now let us derive the integrable hierarchies from (27). Substituting (29) into (27),
the bilinear relation can be expressed as

!Jpb(t - (A-l))Qt’  + ,(X-ë))eîv(ë-fîA)
(32)

II! ~Xî-ì-2Tn+, (t + +4-1))Tm_l(t’  - ,(X_ë))e(ì-ë)ì(f-~ëX).

Now we can derive the bilinear differential equations of the Hirota-type satisfied by m(t)
Let us consider the 1.h.s. of (32) firstly.

Under a change of variables:

i-+X-Y, t’  --+ z + y,

the 1.h.s.  of (32) becomes

Res (Xî-ìeí(-2îYíx)ev(a,,Xl)(r,(z  - y)Q

Let pj(X)(j = O,l;. *) be a polynomial introduced

cc
eV(ì~X)  = CP,(S)Xj.

j=o

More explicitly,

where we use the abbreviations

+ Y))) *

through

llcyll  = )p(i), Za = J-Jp, a! = J-J+)!.

i i I

(331

(34)

(353

(36)

(37)
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Now Eq. (34) can be cast into the form

Res ~~-~(CXíP~(-~UY))CX-ëP~(~,)(~,(~  - Y)rm(x + Y))
1 i

c tx (-2a)lal
= YY o!p! PI14+n-m+lm~P %(d . m(4

Y a+P=-f 1

where D, = (01, $02, ;Ds, ...) and ]CX]  = Cia(i).
Similarly, for the r.h.s. of Eq. (32), the final form read

c kYY
(-2(u - 1))lîl

ff!P! Plla,l+m-n-1(-m4 ?n-1(4~  ~n+lW
Y a+P=r 1

1217

(38)

(39)

Thus, for each multi-index 7 = (7(1),7(a),  se.) an in ices (m, n), there is a correspondingd ’ d’
bilinear differential equation for r-function:

( c (-2uYa’ Pll~ll+n-m+0)0'0 44 .44
cr+fl=-y

,,p,
. . )= ( c k2@ - l))lîëp,,  ,,+ (40)

a+P=r
cY!P! a _ _l(-Qofl

77% n 1 5n-l(g. %+&).

There are two different cases to be discussed:
Case I: 0 < a < 1. In this case, the first few equations of (40) for the case m = n

become

DlT, . r, = 0, y = (O,O,O,-) (41)

+:7-n . 7, = Tn_lTnn+l, 7 = (l,O,O;..) (42)

&J&T,  * ?-, = -D~(r,-~ *?L+1), 7  =  (O,l,O,*+ (43)

where (41) is an identity and Eqs. (42) and (43) are just the Lax equations (12) for q = 1
and 2 respectively. In particular, Eq. (42) is the Id Toda chain equation. This means
that the bilinear relation (27) or (32), for 0 < a < 1, characterizes the Id TLH. Thus, the
hermitian one-matrix model can be embedded into Id TLH [2-41.

Case II: a = 1 (or a = 0). In this case, the r.h.s. (or 1.h.s.)  of Eq. (32) is equal to
zero for the case n 2 m, i.e.

Ip $yt - +4-1))Tm(t’  + ,(A-l))ev(t-tíJ)  = 0.

These are sometimes called the (n - m)-th modified KP hierarchy [17]. If we set n = m,
then Eq. (44) reduce to
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(45)

The whole system of non-linear equations (45) is termed the original KP hierarchy (for n
fixed). For instance the coefficient of y; in (45) gives an equation

(0; - 40103  + 3@)r,  . 7, = 0, y = (4,0,0,.  . .) (46)

or in terms of the dependent variable ~(tr , t2, t3) = 28: In r,(tr , tar t3,0,0,. . .)

d3u
-4dî+6U*+G

8x3 3x1

=.
1

(47)

which is a typical example of 2+ 1 dimensional soliton equations, known as the Kadomtsev-
Petviashvili (KP) equation [14] in the ordinary form. Thus, for each 72, the partition function
of the hermitian one-matrix model can be identified with a particular Wronskian-type 7
function of the (modified) KP hierarchy [8].

VI. Conclusion and discussions

In conclusion, several remarks are in order:
(a) We have shown that the hermitian one-matrix model can be embedded into Toda

and KP hierarchy respectively with the same Wronskian-type r-function with the properties

and

We also point out that which hierarchy to take depends on the choice of the wave function
for constructing the bilinear relation. In fact, Hirota  et al. [16] have shown that the tau
function of the KP hierarchy and those of the 2d TLH admit common Wronskian structure.
Therefore one-matrix model provids another example to illustrate this result.

(b) In our approach, the (modified) KP equation which is a differential equation
emerges naturally from the bilinear relation but difficult to obtain from the formulation
developed in sec. 2. That is a reason why original approach only obtain the Toda lattice
hierarchy. On the other hand, we must point out that the size of the Wronskian (r-function)
relates to the lattice site itself for case I (Toda lattice hierarchy) and to the number of
solitons for case II (KP hierarchy).

(c) In the continuum limit, it has been known that the Virasoro constraints L,r =
O(n > 0) are derived recursively from the string equation, which is equivalent to the lowest
order constraint L_lr = 0 in addition to the KdV (2-reduced KP) flow equation [18,19].
But, there is no proof the same situation for the case of finite N. However a recent paper
by Yoneya [2O] has shown that this issues can be formulated by using the bilinear relation





1220 A NOTE ON INTEGRABILITY IN MATRIX MODELS VOL. 34

References

[ 1 ] A. Morozov, Phys-Usp.  62, 1 (1994), and references therein.
[ 2 ] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, and A. Orlov, Nucl. Phys. B357,

565 (1991).
[ 3 ] E. Martinet, Commun. Math. Phys. 138, 437 (1991).
[ 41 L. Alvarez-Gaumi, C. Gomez, and J. Lacki, Phys. Lett. B253, a6 (1991).
[ 5 ] C. Ahn and K. Shigemoto, Phys. Lett. B263, 44 (1991).
[6] M.R.D ouglas, Phys. Lett. B238, 176 (1990).
[7] M.H.Tu,J.C.Sh aw, and H. C. Yen, Chin. J. Phys. 31, 631 (1993).
[ 8 ] J. C. Shaw, M. H. Tu, and H. C. Yen, Chin. J. Phys. 30, 497 (1992).
[ 9 ] E. Brezin, C. Itzykson, G. Parisi, and J. Zuber, Commun. Math. Phys. 59, 35 (1978).
[lo]  D. Bessis, Commun. Math. Phys. 69, 69 (1979).
[ll] C. Itzykson and J. Zuber, J. Math. Phys. 21, 411 (1980).
[12]  M. Metha, Commun. Math. Phys. 79, 327 (1981).
[13]  K. Ueno and K. Takasaki, Adv. Studies in Pure Math. 4, 1 (1984).
[14] E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, in Nonlinear Integrable Systems-Classical

Theory and Quantum Theory, eds. M. Jimbo and T. Miwa (World Scientific, Singapore,
1983),  p. 39.

[15] R. Hirota,  J. Phys. Sot. Japan 50, 3785 (1981).
[16]  R. Hirota,  Y. Ohta, and J. Satsuma, J. Phys. Sot. Japan 57, 1901 (1988).
[17] M. Jimbo and T. Miwa, Publ. RIMS, Kyoto Univ. 19, 943 (1983).
[18]  M. Fukuma, H. Kawai, and R. Nakayama, Int. J. Mod. Phys. A6, 1385 (1991).
[19]  R. Dijkgraaf, E. Verlinde, and H. Verlinde, Nucl. Phys. B348, 435 (1991).
[20]  T. Yoneya, Commun. Math. Phys. 144, 623 (1992); Int. J. Mod. Phys. A7, 4015 (1992).
[21]  J. C. Shaw and M. H. Tu, in preparation.


