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® ~ 4 & . Ve propose an open-source malware tool chain includes
malware collection, detection, and analysis. It
actively collects malware through three channels: e-
mail, web-links, and peer-to-peer. The experimental
results show the differences between the passive
approach and our active mechanism in the aspects of
quantity, timeliness, distribution, and activeness of
captured malware. Our mechanism captures 800 malware
programs in one month, while the passive approach
collects 354 malware programs. Furthermore, 16% of
actively captured malware were still not defined in
the databases of anti-virus products, while none of
them had been captured by the passive approach. 79%
of the captured malware in the passive approach are
bots and 59% of the captured malware in our mechanism
are Trojan horses. The passive collection and active
collection have more malware with strong activeness
and weak activeness, respectively. In addition,
mobile devices security becomes highly desirable.
Adversaries can easily repackage the malicious code
into the different benign applications for
distribution. The work of detecting and analyzing the
malicious application becomes a challenge of Android.
We propose a behavior-based detection mechanism based



on system call sequences. We extract the common
system call subsequences of malicious applications
and purpose a comparison approach to deal with
multiple threads produced by the applications. We
also utilize the Bayes probability model to filter
subsequences which have lower probability of
appearance in the repackaged applications. Finally,
we can detect repackaged applications by those
extracted subsequences. The detection result
demonstrates that our approach has 97.6% high
accuracy.
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Abstract

We propose an open-source malware tool chain includes malware collection, detection,
and analysis. It actively collects malware through three channels: e-mail, web-links,
and peer-to-peer. The experimental results show the differences between the passive
approach and our active mechanism in the aspects of quantity, timeliness, distribution,
and activeness of captured malware. Our mechanism captures 800 malware programs
in one month, while the passive approach collects 354 malware programs.
Furthermore, 16% of actively captured malware were still not defined in the databases
of anti-virus products, while none of them had been captured by the passive approach.
79% of the captured malware in the passive approach are bots and 59% of the
captured malware in our mechanism are Trojan horses. The passive collection and
active collection have more malware with strong activeness and weak activeness,
respectively. In addition, mobile devices security becomes highly desirable.
Adversaries can easily repackage the malicious code into the different benign
applications for distribution. The work of detecting and analyzing the malicious
application becomes a challenge of Android. We propose a behavior-based detection
mechanism based on system call sequences. We extract the common system call
subsequences of malicious applications and purpose a comparison approach to deal
with multiple threads produced by the applications. We also utilize the Bayes
probability model to filter subsequences which have lower probability of appearance
in the repackaged applications. Finally, we can detect repackaged applications by
those extracted subsequences. The detection result demonstrates that our approach has
97.6% high accuracy.

Keyword: open-source, malware collection, tool chain, Android, system call



1. Introduction

Malware is a collective term for a variety of nefarious-purpose software that enters a
system without a user’s authorization. Examples of malware include worms, viruses,
Trojan horses, rootkits, backdoors, and more recently, bots. Malware can come from
many different sources. For instance, a malware can be downloaded to a computer
when a user clicks on a malicious URL, or it could arrive at a computer as an e-mail
attachment or files acquired from P2P file sharing network.

In order to know how to prevent malware attacks, malware collection is
necessary. Herein, we present an open-source tool chain [1], Honey-Inspector, which
actively collects malicious software from emails, Web-links, and P2P file sharing
software. In addition, we detect malware using anti-virus software and design analysis
tools to analyze the behavior of malware. Most works collect malware through emails
or Web-links. Recently, P2P file sharing software is another critical path of malware
infection [2-5]. Our analysis tools focus on analyzing host and network behaviors of
malware. In our mechanism, we combine and automate malware collection, detection,
and analysis into the tool chain. It would speed up malware collection and analysis.

As cloud-based applications become popular, preventing damages by malware is a
major security challenge in the mobile environments [6]. Since Android is one of the
most popular mobile operating system, we propose a behavior-based analysis
mechanism to identify malicious applications on Android. Our proposed scheme is a
novel behavior-based detection version which relies on system call sequences. The
key idea is to observe the system call sequences that are trigger by applications, i.e.,
although a malicious code can camouflage into a benign application, the malicious
behavior still appears in the system call sequences. To filter out the benign behaviors,
we also employ the Bayes probabilistic model for evaluating the appearance
probability of extracted system call sequences to find the significant malicious
sequences. Through this approach, the repackaged malware can be detected with high
accuracy and the false positive rate can be reduced significantly.

2. Research Objective and Methods

Existing malware collection techniques usually rely on honeypots [7], or other
methods. Honeypots are one of the major techniques used to gain malware. A
traditional honeypot [8] usually provides vulnerabilities of publicly known systems or
unpatched system software to lure attackers. Nevertheless, this type of honeypot
cannot discover malicious events from client-side attacks [9] that download malicious
programs to victims’ hosts when victims browse emails or websites. As a result,
server honeypots are slow in collecting malware, and might not detect malware
1



programs with client-side attacks at all. Our mechanism is a high-interaction client
honeypot and executes malware in a virtual machine. Our virtual machines can
imitate applications’ behavior and respond in such a way that each malware perceives
it is in a real system.
e In the proposed framework, we utilize multiple A/V tools to determine if a
collected binary is malicious or not in order to obtain a low false negative (FN)
rate. Overall, there are two different types of malware detection strategies [10]:
Behavior-based detection: This detection method can detect zero-day attacks
which are unknown to malware detectors. The difficulty of this technique is
determining what features to memorize. And signature-based detection: This
technique tries to define the behavior or characteristics of malware (signature),
and then stores these definitions in a database. Then, it can detect if a
program/process is malicious according to the signature database.

The purpose of the proposed mechanism is to collect new malware and analyze the
behavior of malware. Our mechanism collects malware from malicious URLSs, emails,
and P2P file sharing software. We have also designed tools to analyze the host and
network behaviors of the captured malware. We present the tool chain,
Honey-Inspector, which includes Proactive Malware Capture and Detection (PMC&D),
Host Behavior Analysis (HBA), and Network Behavior Analysis (NBA). The
architecture and process of Honey-Inspector are shown in Figure 1 and the number in
Figure 1 is the order of our system workflow.

First, PMC&D proactively collects suspicious files from existing network
applications, including URLs, emails, and P2P file sharing techniques. It searches for
malicious keywords using the P2P file sharing technique or on websites. Then,
PMC&D divides the downloaded files into benign and malicious categories using
multiple A/V software programs. Once a suspicious program is identified as malicious
software by one of multiple A/V software, the module classifies the malware and
stores it in the database. HBA and NBA run the malware program on the virtual
machine based on the Microsoft Windows XP platform. After the malware is executed,
it may modify the file system and the registry of the virtual machine. HBA takes a
snapshot of the file system and the registry of the virtual machine before the malware
is executed, and then compares this to the infected file system and registry after
running the malware. On the other hand, the module in NBA traces the network traffic
when malware is executed. The goal of the HBA and NBA is to analyze the host and
the network behavior of the malware, respectively. When a malware program runs on
a virtual machine, it may change the file system or the registry, or launch network
attacks, such as a Denial of Service (DoS) attack. HBA and NBA can analyze the
behavior of the malware in the infected virtual machine.

2
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Figure 1: The architecture and process of Honey-Inspector

In Figure 1, PMC&D gets attached files and parses suspicious URLSs or keywords
from email servers. Then, PMC&D downloads malicious files from websites or P2P
file-sharing software by keyword searching. Whenever PMC&D finds suspicious files,
it stores them in the database. Then, PMC&D detects suspicious software by four A/V
tools. At present, our mechanism uses four A/V tools, namely Kaspersky, Avast, Avira
AntiVir, and Nod32. If a suspicious file is identified as malware by one of the A/V
tools, PMC&D stores the malware and detection results in the database. The detection
is not perfect. It may not be able to detect unknown malware or malware with evasion
capabilities such as the multi-process malware design [11]. However, if storage
space is not an issue, PMC&D can be set to keep every collected file regardless of the
detection result by the A/V tools. We assume that some malware programs do modify
the contents of file systems and registries. In Figure 1, HBA sets up a new virtual
machine based on Microsoft Windows XP platform and makes a copy of the clean
registry and the file system. Then, HBA runs a malware program. Once the malware
has modified the registry and/or the file system of the virtual machine, HBA uses the
DiffReg module to detect the infected registry and the DiffFS module to identify the
file system in the infected virtual machine. The above modules can find what the
malware modified. Finally, HBA stores the comparison results of the malware
execution in the database. We also assume that some malware programs would
generate the network traffic. In Figure 1, NBA sets up new virtual machines and
executes a malicious program on individual virtual machine for a period of time. The
Netsniff module monitors the network traffics of virtual machines. If a malware
program generates network traffic, such as sending an email or ICMP packet
transmission, the Netsniff module finds out malicious network links and stores the
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traces of network traffic in the database. Finally, NBA removes the malware from the
infected virtual machines.

None of our active collection mechanism ever invokes the execution of a collected
sample. The connection rate of the URL crawling process is rate-controlled. As a result,
the active collection mechanism itself will not cause any kind of damage to the Internet.
The behavior analysis modules (NBA and HBA) do require putting a collected sample
into execution. However, the analysis environment is a closed network environment.
The malware will not be able to damage the Internet either.

In mobile environments, to disseminate malware to users, attackers usually
embed their malicious codes into the normal applications, and then publish these
repackaged applications to the official Android market or the third-party market [12].
This dissemination path is simple, efficient, and effective because the repackaged
applications are like benign applications to fool users into obtaining the secret
information [13]. In order to detect the malicious repackaged applications, the
proposed mechanism observers the behaviors during the execution period of
repackaged applications rather than the outward appearance of repackaged
applications. The key idea is that, even attackers can embed the malicious codes into
varies applications, the behaviors of executing applications are consistent with the
barely malicious code instructions. Hence, the proposed mechanism observes the
execution behaviors of application and then extracts the common behavior patterns to
distinguish malware.

For collecting application behaviors, we utilize the kernel-based system calls [14]
which provide interact between processes and the operating system kernel for
receiving service or resource requests. All service and resource requests can be
observed by monitoring the system call interface, and the sequential requests form up
a sequence of system calls. The observed system call sequence can be regarded as the
request behaviors during the application executing. Although function calls of higher
layers also provide the similar functionality to form up call sequences, it would lead
ambiguous because of its multi-interfaces. Hence, compared with other methods
[15-19], the proposed mechanism used system calls not only simply indicate the
running behavior of applications, but also record the behavior of malicious codes
completely than using high level function call.

Therefore, for detecting malicious repackaged applications, we initially collect a
set of same type repackaged applications M. Let M; denotes the i-th repackaged
application in the set M. Then, for each M;, we record the corresponding S; as a set
of system call sequences. After that, we can extract the common system call
subsequences Sg;q, from the set {S;, S;, S3, ..., Sjm} to derive the common
behavior patterns. Finally, for those undiscovered repackaged applications E,,,; with
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the same malicious codes, we can detect them from a set of applications to be
inspected E by Sg;4n. Figure 2 shows the overview of our approach. For extracting
the common behavior patterns, three phases, including recording phase, extraction
phase, and evaluation phase, are involved in the proposed approach. In the following,
we first describe these phases, respectively.

Recording Phase

In this phase, for all of applications in M, we sequentially select an application
M; from M, and then execute the M; individually to record the system call requests
during the Android system runtime. Next, we extract S; from all of system call data by
the process ID of M; and the corresponding child thread IDs. After all of S;
extracting, we can obtain S in the recording phase.

Extraction Phase

The extraction phase aims to extract a set of common system call subsequences
C from all of S;. Since the same malicious code can trigger same system call
sequences, we extract C by Longest Common Substring (LCSs) algorithm for
comparing system call sequences of different repackaged applications. In addition, to
improve the efficiency, we also present a mechanism for reducing the time cost of
extracting within multi-thread system call sequences. Finally, C is obtained and each
common system call subsequence in C is denoted as C;, where j is the index of
subsequences in C. It needs to address clearly that we extract substring in the system
call sequences. The substring is a consecutive part of system call sequences, but we
still denote it as subsequences since a substring is always a subsequence and most
works use subsequences to call their system call combinations.

Start

Initialize i to one Recording Phase
|
M exist? Yesr] Execute M; and Ex‘truct S;
record system call and 7 plus one
No Initialize i 10 one Extraction Phase
[
|
Extract commen Store extracted system
system call -
Yes—» - . call subseq s Into
subsequence with K
y C and i plus one
Sp~Siq
5 No Evaluation Phase
| ;
More Count numbers of Count numbers of Store the high
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.]'\
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A'HFJJ)'EEJ'MCHC'E.\'
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Figure 2. Flowchart of System Call Sequence Processing
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Evaluation Phase
However, it is impossible for all of the extracted subsequence to be used as the
detection patterns. This is because some system call subsequences not only appear in
repackaged applications, but also in benign applications. To overcome this problem,
we leverage the Bayes probabilistic model to calculate the probability of C; by
counting the number of each subsequence appearance in a set of benign applications
B and M. After that, we can indicate those non-discriminating subsequences in C
and filter out them because they have the lower probability. After filtering, we can get
Ssign, Which has the higher probability, appearance in malware applications but have
a lower probability appear in benign applications at the end of this phase. If an
application matches the same system call subsequence pattern of S, in execution
time, we can claim that the application is repackaged with the same malicious code.
We have to evaluate the extracted subsequences in terms of the probability of
appearance under the Bayes probability model. The probability formula is calculated
as
P(C;|M)-P(M)

@

where the C; is the system call subsequence that is used to evaluate. P(B) denotes
the probability that the given applications are benign applications. P(M) denotes the
probability that the given applications is a repackaged application. P(leB) denotes
the probability that the subsequences appear in benign applications, and P(leM)
denotes the probability that the subsequences appear in repackaged applications.
Finally, we can get the probability P(M|Cj) that an application is a repackaged
application, detected by the specific system call subsequence. In the first step of
evaluation phase, we count the number of sequences occurrence in benign
applications and malicious applications. Then, in the second step, we can calculate the
probability P(M|Cj) by the formula (1). We can obtain the subsequences that
appeared in the malicious application has the higher probability than that of benign
applications. And this information helps us to find Sg;4, which achieves the higher
accuracy for detecting repackaged applications.

3. Results and Discussions

The distributions of captured malware for Honey-Inspector and the NCHC system are

shown in Figure 3 (a) and (b). Here, we analyze the distribution of captured malware

from the passive system and Honey-Inspector. For the passive NCHC system, 79% of

the captured malware are bots and 21% are worms, Trojan horses, and other malware.

Because bots are able to perform active attacks, they can be easily captured by the

passive system. However, 59% of the malware captured by Honey-Inspector are Trojan
6



horses, and 41% are bots, worms, and other malware. Trojan horses usually hide inside
files [20]. As a result, Honey-Inspector will have a higher chance capturing Trojans as
it actively seeks for potential malware binary files from multiple sources. In
comparison, the passive NCHC honeypot system will have to wait till a Trojan
initiating a remote attack to have the chance of capturing the Trojan binary.

Honey-Inspector The System of NCHC

Worm
8%

S

(@) The distribution of captured malware for (b) The distribution of captured malware

Honey-Inspector for the NCHC’s system
Figure 3. The distribution of captured malware for Honey-Inspector ana tne NCHU

system
Table 1 shows the behavior analysis results of captured malware. The notations in
Table 1 are shown in the following:

A: (high activeness) malware that exhibits both host behavior and network behavior
B: (medium activeness) malware that exhibits network behavior only

C: (low activeness) malware that exhibits host behavior only
D: (no activeness) malware that exhibits no action

In Table 1 (a), we analyze the behavior of the captured malware by
Honey-Inspector and the NCHC system. Honey-Inspector can collect malware with
strong activeness, including malware that has both host behavior and network
behavior, or only network behavior such as 77% of captured malware in class A and
class B. Furthermore, Honey-Inspector can also capture malware with weak
activeness, such as 23% of captured malware in class C and D. However, the NCHC
system collects 2% of captured malware in class C and D. Therefore, compared to the
NCHC system, our mechanism can collect malware with strong or weak activeness.

In Table 1 (b), the percentages of captured bots in class A and B of
Honey-Inspector are the same with those of the NCHC system. A possible reason is
that most bots have strong activeness.

Due to the property difference of active and passive malware collection methods,
the activeness of captured malware in the proposed mechanism is different from that
in the NCHC system.



Table 1: The behavior analysis of captured malware (bots)

(@) The behavior analysis of captured (b) The behavior analysis of captured
malware bots
ltem stem Honey-Inspector | The system of NCHC m Honey-Inspector | The system of NCHC
A 48% 67% A 35% 67%
B 29% 31% B 63% 31%
C 12% 1% C 0 1%
D 11% 1% D 2% 1%

For evaluating our approach, we prepare five different repackaged application types:
Kmin [21], Geinimi [22], DroidDream [23], BaseBridge [24] and DroidDream Light
[25]. We also collect two sets of benign applications. The first set is used to evaluate
the appearance probability of common system call subsequences for excluding useless
subsequences, and the other set to evaluate the false positive of detection rate.

After the extraction, we count the number of subsequences appearance in the
benign application set and the repackaged application set from which the
subsequences are extracted for the training of Bayes probability. At first, we prepare
300 benign applications as the benign application set. After the calculation by Bayes
probability model, Figure 5 shows the probability distribution of subsequences. We
calculate the probability in five different types of repackaged applications, and the
number of subsequences is the sum of five results. Most of subsequences are
distributed at the interval 10%~15% and 100%. The higher probability of
subsequences means if the subsequences are discovered in an application, it has
higher probability that the application is repackaged. We select higher probability
subsequences as the significant common system call subsequences.
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Figure 5. Probability Distribution of Subsequences

With regarding the detection accuracy, we also prepare 100 benign applications
to evaluate the false positive of detection rate. We put the significant common system




call subsequences which are extracted from different types independently of the five
type sets. Then, we take those subsequences as the pattern to match in the system call
sequences of the same type of repackaged applications. An application is detected as a
repackaged application if it has the same subsequence in its system call sequences.
Table 5 shows the detected result. Most of repackaged applications can be detected by
our approach, except the application DDL — 1.

Suppose that true positive ( TP ) denotes the percentage of repackaged
applications detected correctly, and false negative (FN ) denotes the percentage of
repackaged applications detected incorrectly; on the contrary true negative (TN)
denotes the percentage of benign applications which are not detected by any excluded
subsequences, and false positive ( FP ) be the percentage of benign applications which
are incorrectly detected as repackaged applications. B denotes the number of benign
applications. M denotes the number of repackaged applications. Table 2
demonstrates the true positive and true negative of detection rate that we evaluated
with prepared samples. And the Accuracy can be calculated as

Accuracy = ™-M+TN-B x100%. (2)
(TP+FN)-M +(TN+FP)-B

Our approach has a good accuracy rate to detect repackaged applications. It is
worth noting that, our approach has a very low false positive rate and a false negative
rate. For all of five type samples, we only miss one evaluated target in 25 repackaged
applications. For the 100 benign evaluation samples, our approach only has 2 false
positive of benign samples. The accuracy is 97%. Compared with other experimental
results, only the true positive rate of DroidDream Light is significantly lower than that
of our results, but we only miss one target. And this could be explained by an
insufficient training and evaluation samples of DroidDream Light.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Percentage

DroidDrea | BaseBridg | DroidDrea
m e m Light

@ Accuracy | 100.00% 98.13% 100.00% 100.00% 99.02%

Kmin Geimini

Figure 6. Accuracy of Detection



Table 2. True Positive and True Negative

Malware Type Kmin Geinimi DroidDream BaseBridge DroidDream Light

True Positive 100% 100% 100% 100% 50%
True Negative 100% 98% 100% 100% 100%

4. Conclusion

In this work, we propose an open-source malware tool chain, Honey-Inspector,
which performs active collection, detection, and analysis of malware. In our
experimental results, we find that our system can capture more malware than the
passive NCHC system. We also analyzed the distribution and activeness of captured
malware. Bots reflect the highest percentage of captured malware in the passive system,
whereas most of the captured malware in the proposed mechanism are Trojan horses.
Therefore, the proposed mechanism could collect them easily. In addition, we present
an approach with the concept on extracting the common behaviors of repackaged
applications in system call sequences. The detection only requires a few repackaged
applications with the same type to extract the common system call subsequences. In
addition, our approach does not need to collect and compare the original benign
applications with the repackages applications. We take those extracted common
system call subsequences as the behavior patterns to detect repackaged applications.
In our experiment, we use five different types of repackaged applications to evaluate
the accuracy rate. Our approach extracts 238 common system call subsequences from
training samples, and the detection result demonstrates that our approach has higher
true positive rate in detecting most repackaged applications. We evaluate 25
repackaged applications and only miss one evaluated target. Our approach also has
higher true negative rate in verifying benign applications. The accuracy of detection
rate is 97.6% in all of evaluation applications.

In future works, we shall extend the period of malware collection and find out the
possibly identical malware from NCHC’s system and Honey-Inspector. We also plan to
improve the disadvantages of a high-interaction honeypot. In addition, we shall add
new sources of malware collection and new tools for analyzing malware behavior in
order to capture more and newer malware programs. Simultaneously, we would study
application behaviors analysis. We need to design a tool to capture the complete
behaviors in the applications when they are triggered. Moreover, we also hope to
develop an on-device detector of system call sequences detection which can work like
the anti-virus software that directly detects repackaged applications on mobile
devices.
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