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We proposed an electroencephalographic (EEG) signal analysis approach to investigate the driver’s cognitive response to traffic-
light experiments in a virtual-reality-(VR-) based simulated driving environment. EEG signals are digitally sampled and then
transformed by three different feature extraction methods including nonparametric weighted feature extraction (NWFE),
principal component analysis (PCA), and linear discriminant analysis (LDA), which were also used to reduce the feature dimension
and project the measured EEG signals to a feature space spanned by their eigenvectors. After that, the mapped data could be
classified with fewer features and their classification results were compared by utilizing two different classifiers including k nearest
neighbor classification (KNNC) and naive bayes classifier (NBC). Experimental data were collected from 6 subjects and the
results show that NWFE+NBC gives the best classification accuracy ranging from 71%∼77%, which is over 10%∼24% higher
than LDA+KNN1. It also demonstrates the feasibility of detecting and analyzing single-trial EEG signals that represent operators’
cognitive states and responses to task events.

Copyright © 2008 Chin-Teng Lin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Global urbanization, increases in urban populations, urban
sprawl, the growth of “mega-cities,” and the unrelenting
increases in traffic around the world have created renewed
concern about driving safety due to the growing number
of traffic fatalities. Among these incidents, the fatalities are
frequently caused by drivers’ failure to perceive changes in
traffic lights or unexpected conditions occurring on the
roads. Preventing such accidents is thus a major focus of
efforts in the field of active safety research and healthcare sys-
tems in vehicles. Early detection and recognition of driver’s
cognitive response could be helpful in giving precautious
alarms or providing some preventive actions.

In recent studies [1–3], many researchers proposed to
develop quantitative techniques for ongoing assessment of
cognitive effort, engagement, and workload, by investigat-

ing the neurobiological mechanisms underlying electroen-
cephalographic (EEG) brain dynamics. A way to determine
the relationship between different stimuli and human cogni-
tive responses accompanying correct, incorrect, and absent
motor responses is the use of event-related brain potential
(ERP) signals. ERP signals related to many different stimuli
such as audio, vision, pain, electric shock, emotion changes,
and so forth can be observed with some latency (e.g., P300)
as the stimulus event is given to or removed from a subject.
Such important ERP features can be extracted and detected
for the purpose of brain computer interface, for example, to
choose characters or move a cursor on a computer screen
[4–6]. Bayliss and Ballard [7, 8] designed an experiment to
recognize the existence of P300 ERP epochs at red traffic
lights and the absence of this signal at yellow traffic lights in a
virtual driving environment. They have shown that building
a brain computer interface using the P300 ERP would prove
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feasible. Based on Bayliss and Ballard’s experimental design
concept, we have also developed methods in our previous
paper [9] for analyzing single-trial electrical recordings from
the human scalp in traffic light experiments and have proved
the efficacy. In this paper, we further simplified and refined
the methodology for quantitative analysis for ongoing assess-
ment of driver’s cognitive responses by directly utilizing
electroencephalographic (EEG) signals to investigate the
neurobiological information underlying brain dynamics in
traffic-light experiments in a virtual-reality (VR)-based
simulated driving environment. Here, there is an important
discrepancy between these two papers: the data collection
process in this paper was modified by directly accessing brain
signals originating in one channel of the visual region of the
brain. Hence, we did not need to use blind source separation
technique like independent component analysis (ICA) as
adopted in our previous paper. This approach can eliminate
the necessity of offline manual selection of desired source
component such that online classification is possible and
desirable in the sense of practical applications.

In order to reduce the feature dimension of EEG signals,
some studies have shown that parametric feature extraction
methods are successfully applied to EEG signal analyses [10–
12] and nonparametric feature extraction method proposed
by one member of our research team is also proved the appli-
cation on the recognition of satellite images [13]. Hence,
after obtaining the EEG signals, refinement of analysis in
this paper was first achieved by comparing data produced
from three different feature extraction methods including
nonparametric weighted feature extraction (NWFE), princi-
pal component analysis (PCA), linear discriminant analysis
(LDA), which were applied to reduce the feature dimension
and project the measured EEG signals to a feature space
spanned by their eigenvectors. After that, the mapped data
could be classified with fewer features and their classification
results are compared by utilizing two different classifiers
including k nearest neighbor classification (KNNC) and
naive bayes classifier (NBC). It should be noted that since we
want to put emphasis on the efficacy comparison between the
nonparametric and parametric feature extraction methods,
we adopted two simple classifiers (KNNC and NBC) to avoid
the good prediction results obtained mainly owing to adopt-
ing a complicated classifier even though Garrett et al. show
that nonlinear classifiers produces slightly better prediction
results for the classification of spontaneous EEG signals [14].

2. SYSTEM ARCHITECTURE

2.1. Virtual reality-(VR-) based driving environment

To explore brain activities in the safety-driving system, this
experiment was designed to detect and analyze the event
related potential (ERP) signals of brain activities related to
traffic light events (Red-Green-Yellow) since they are the
most frequent events when driving on the roads and highly
correlated to the traffic accidents. The overall experiment
environment included various simulated events shown in
Figure 1: (1) a visual display unit to provide the simulated
events, (2) EEG measurement system with 36-channel EEG

ERP data acquisition

Virtual reality scene
10-20 EEG electrode system

EEG (31 channels)
EOG (4 channels)

Reference (1 channel) Physiological signal recorder

Figure 1: Physiological signal measurement system in the VR-based
traffic-light simulation experiments.

head mounted sensors, and (3) spatial and temporal signal
processing technologies based on several kinds of feature
extraction and classification methods. Figure 2 shows the
flowchart of EEG signal processing and analysis. EEG signals
are digitally sampled and one among these channels is
selected for classification task. Each dataset for one subject
was shuffled and randomly divided into 4 subdatasets to
do 4-fold cross-validation. In each cross-validation stage it
includes 4 runs. Each run will use 3 subdatasets for training
and the remaining one subdataset for testing. Labeling the
subdatasets from 1 to 4, then the training data used in
each run would be {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, and {1, 2, 3},
respectively, while the test data are {1}, {2}, {3}, and {4},
accordingly. The average accuracy of the 4 runs is calculated
as the result of this cross-validation stage. Such processes
were repeated 10 times to get the average accuracy and
standard deviation to decrease possible bias caused by any
specific selected dataset. As shown in Figure 2, three dif-
ferent feature extraction methods including nonparametric
weighted feature extraction (NWFE), principal component
analysis (PCA), and linear discriminant analysis (LDA)
are used. After feature extraction process, the extracted
features are classified by two different classifiers: k nearest
neighbor classification (KNNC) and naive bayes classifier
(NBC). The classification results of different combinations
of features extraction approaches and classification methods
are evaluated and compared.

2.2. Subjects and EEG data collection

Six subjects (ages from 20 to 40 years) participated in the VR-
based traffic-light driving experiments, where EEG signals
were simultaneously recorded. The subject was asked to
decelerate/stop the car by pressing the right button of a
joystick using the right hand when he/she detected a red
light, to accelerate the car by pressing the left button using
the left hand when he/she saw a yellow light, and do nothing
(keep constant speed) when he/she saw a green light. Thirty-
six EEG/EOG channels (using sintered Ag/AgCl electrodes
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Figure 2: System flowchart for processing the EEG signals.

with a unipolar reference at the right earlobe), 2 ECG
channels (bipolar connection) were simultaneously recorded
by the Scan NuAmps Express system (Compumedics Ltd.,
VIC, Australia). All the EEG/EOG sensors were placed based
on a modified international 10–20 system. Before data
acquisition, the contact impedance between EEG electrodes
and scalp was controlled to be less than 5 kΩ. The EEG data
were recorded with 16-bit quantization level at a sampling
rate up to 1 KHz. Then, EEG data were preprocessed using
a simple low-pass filter with a cutoff frequency of 50 Hz to
remove the line noise (60 Hz and its harmonic) and other
high-frequency noise for further analysis.

3. FEATURE EXTRACTION AND
CLASSIFICATION METHODS

To analyze the relation between EEG signals and the subjects’
response, we apply the three different feature extraction
and classification methods on different channel signals.
According to several experimental test runs, we select Pz
as the target channel for classification. Though some other
channels may yield similar level of classification accuracy
such as Cz, however, our goal is focused on the sensory visual
processing signal rather than others, so we make the decision
to choose Pz channel. Figure 2 shows the system flowchart
for processing the EEG signals. The Pz channel EEG signals
are processed through one of feature extraction methods
among nonparametric weighted feature extraction (NWFE),
principal component analysis (PCA), or linear discriminant
analysis (LDA) to map the original data to feature vectors of
reduced dimension. After that, the reduced features are fed
into one of classifiers such as k nearest neighbor classifier
(kNNC) and naive bayes classifier (NBC) for comparison
of classification accuracy. Each analysis method is described
briefly in this section.

3.1. Nonparametric weighted feature
extraction (NWFE)

NWFE is a nonparametric feature extraction [13]. The main
ideals of NWFE are putting different weights on every
sample to compute the “weighted means” and compute
the distance between samples and their weighted means as

their “closeness” to boundary, then defining nonparametric
between-class and within-class scatter matrices which put
large weights on the samples close to the boundary and
de-emphasize those samples far from the boundary. The
between-class scatter matrix SNW

b and the within-class scatter
matrix SNW

w of NWFE are defined as
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where Ni denotes the training sample size of class i, L is the

number of classes, Pi is a prior probability of class i, x(i)
l is

the lth sample of class i, Mj(x
(i)
l ) denotes the weighted mean

of x(i)
l in class j, and dist(x, z) is the Euclidean distance from
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(i)
k ) is small, then

its weight λ
(i, j)
k will be close to 1; otherwise, λ

(i, j)
k will be close

to 0. The sum of the λ
(i, j)
k for class i is 1. The weight w

(i, j)
kl

for computing weighted means is a function of x(i)
k and x

( j)
l .

If the distance between x(i)
k and x

( j)
l is small then its weight

w
(i, j)
kl will be close to 1; otherwise, w

(i, j)
kl will be close to 0. The

sum of the w
(i, j)
kl for Mj(x

(i)
k ) is 1.

There are two advantages of using the nonparametric
scatter matrices. First, they are generally of full rank. This
provides the ability to specify the number of extracted
features desired and to reduce the effect of the singularity
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problem. This is in contrast to linear discriminant analysis
(LDA), which usually only can extract L − 1 (number of
classes minus one) features. In a real situation, this may
not be enough. Second, the nonparametric nature of scatter
matrices reduces the effects of outliers and works well even
for nonnormal datasets. NWFE provides greater weight to
samples near the expected decision boundary. This tends to
provide for increased classification accuracy.

3.2. Principlal component analysis (PCA)

The goal of PCA is to find a set of p ≤ d vectors in Rd space
containing the maximum amount of variance in the data.
Suppose that the data has been centered in the original space
and ν is an arbitrary normalized vector in Rd. The variance
of the projections of the all pixels xj onto this normalized
direction ν is

1
N

N∑

j=1

νTxjx
T
j ν = νT

(
1
N

N∑

j=1

xjx
T
j

)
ν = νTCν, (3)

where C is the d × d covariance matrix and defined by

C = 1
N

N∑

j=1

xjx
T
j . (4)

The first principal vector can be found by the following
equation:

ν = arg max
ν∈Rd , ‖ ν ‖= 1

νTCν. (5)

The solution of the above equation is the eigenvector
ν of C with respect to the largest eigenvalue. One can
seek for the direction of second largest variance in the
orthogonal subspace, by looking for the largest eigenvector
in the matrix obtained by deflating the matrix C with respect
to ν. Repeating this step shows that the mutually orthogonal
directions of maximum variance in order of decreasing size
are given by the eigenvectors of C.

3.3. Linear discriminant analysis (LDA)

LDA is often used for dimension reduction in classification
problems. It is also called the parametric feature extraction
method in [15], since LDA uses the mean vector and covari-
ance matrix of each class. Usually within-class, between
class, and mixture scatter matrices are used to formulate the
criterion of class separability. A within-class scatter matrix
for L classes is expressed by

SLDA
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where Pi denotes the prior probability of class i and Σi is
the class covariance matrix. A between-class scatter matrix
is expressed as
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where mi is the class mean and m0 represents the expected
vector of the mixture distribution and is given by

m0 =
L∑

i=1

Pimi. (8)

The optimal features are determined by optimizing the
Fisher criterion given by

JLDA = tr
[(
SLDA
w

)−1
SLDA
b

]
. (9)

This is equivalent to solve the following generalized eigen-
value problem and the extracted eigenvectors are formed the
transformation matrix of LDA,

SLDA
b ν = λSLDA

w ν. (10)

3.4. Classifiers

In this study, two types of classifiers are used.

(i) k nearest neighbor classification (kNNC) is a simple
and appealing approach in pattern recognition. k
nearest neighbor classifier finds the set of k nearest
neighbors in the training set to a testing sample, x,
and then classifies x as the most frequent class among
the k neighbors. The search of nearest neighbors
is a flexible classification scheme, and does not
involve any preprocessing or fitting of the training
data. Hence, k nearest neighbor classifier belongs to
nonparametric classifiers. The detailed definition of
nearest neighbor classification is described as in [15].
In this paper, the parameter k is set to 1 or 3 and
the classifiers are denoted as KNN1 or KNN3 in the
following paragraphs.

(ii) Naive bayes classifier (NBC) is also a simple approach
in pattern recognition. Based on Bayesian theorem
and assumption of independence of attributes, NBC
tries to appoint a sample x with attribute values
(A1 = ν1, A2 = ν2, . . . , An = νn) to class Ci
with maximum a posterior probability (MAP) for all
classes i,
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where P(νh | Ci) is the probability of the attribute
Ah = νh given the class Ci and P(Ci) is the number
of training samples belonging to class Ci. Due to
the precise nature of the probability model, we can
quickly finish the training process for NBC. And
in many research topics NBC has shown its better
performance than other kinds of classifiers.
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3.5. Performance measure

Two performance measures are used for the evaluation
of classification result. One is commonly used average
classification accuracy, which is defined as

Pa =
(
Ncorrect

Ntotal

)
, (12)

where Ncorrect is the number of correctly predicted samples
and Ntotal is the number of all testing samples.

The other performance measure is Kappa coefficient,
also known as Cohen’s Kappa or kappa statistic [16]. The
Kappa coefficient value is ranged between 1 and −1, which
corresponds to a perfect and a completely wrong classi-
fication, respectively. And Kappa coefficient with value 0
means random guess performance. Following the derivation
of Kappa [17], it can be calculated as follows;

K =
(
Po − Pe

)
(
1− Pe

) , (13)

where Po denotes the proportion of overall agreement and Pe
is the proportion of chance expected agreement.

4. EXPERIMENT RESULTS

In our experiment, a subject simulated driving a car using the
VR-based ERP experimental system described in Section 2.
The continuous EEG signals measured from the EEG sensors
were first separated into several epochs/trials. For this exper-
iment, an epoch or a trial was defined as containing the sam-
pled data from –200 millseconds to 1000 millisecondss when
a light event was given at 0 millisecond. The objective of this
experiment was to detect and evaluate cognitive responses of
the driver to traffic-light events by directly accessing brain
signals originating in one channel of the visual region of the
brain. Each EEG trial originally containing 1200 recorded
values taken at intervals of 1200 milliseconds was down-
sampled by picking up the first sample of every 3 data
points (3 milliseconds) to form one 400-dimension sample
vector. The down-sampled EEG trials of every participant
form the dataset for training and testing and each trial is
classified into one of the red, green, or yellow light events
(i.e., the number of class labels L = 3). Each dataset
for one subject was shuffled and randomly divided into
4 subdatasets to do 4-fold cross-validation. Such processes
were repeated 10 times to get the average accuracy and
standard deviation to decrease possible bias caused by any
specific selected dataset. Moreover, in order to increase
computational efficiency, we applied three different feature
extraction techniques to the dataset, including NWFE, PCA,
and LDA. After feature extraction, the 400-dimension sample
vectors for each participant were mapped to the feature space
and the top one to fifty transformed features were chosen
for testing optimal classification accuracy by observing the
Kappa coefficients.

In performing the experiments, first, we evaluated how
different EEG channels influence the classification accuracy.
In order to find the channel most related to visual cognitive
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Figure 3: Accuracy plot for different EEG channels.

response, channels such as O1, O2, Cz, CPz, P3, P4, and Pz
were tested. The average accuracy and standard deviation
using KNN1, KNN3, and NBC classifiers were plotted in
Figure 3 using the optimal feature number most suitable
for each channel. From the data in Figure 3 for the KNN1
classifier, it can be seen that data from the Pz channel
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Figure 4: Classification results for six different subjects based on EEG signals from Pz channel.

performed best overall in more accurately predicting the cog-
nitive response. For the NWFE and PCA feature extraction
methods, Figure 3 shows that the Pz channel consistently
performed best. Only for the LDA feature extraction method
did the P4 channel perform better, but such performance
was only marginally better. The same can be observed for
the KNN3 and NBC classifiers (with the exception for the Cz
channel for the KNN3 method, which performed on a par
with the Pz channel). Consequently, in the subsequent test
cases, we chose the measured signals of the Pz channel to be
the feature vectors for classification.

Figure 4 shows the classification results of the 6 subjects
using the different feature extraction methods and different
classifiers. The chart shows that the choice of feature
extraction methods and classifiers makes a significant dif-
ference. For instance, the NWFE feature extraction method
combined with any other classifier produced consistently
higher accuracy. Moreover, as shown in Figure 4, the NWFE+
NBC give the best classification accuracy for these subjects,
and in fact the improvement in classification accuracy is
10%∼24% higher than LDA + KNN1. Also for all of the
subjects, the LDA feature extraction method combined with
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any one of the classifiers produced the lowest accuracy,
and in some instances, substantially poorer accuracy. It is
possible that LDA itself can act as a classifier (e.g., use
Fisher’s classification functions) and its performance as a
classifier might be better than using the LD scores into
a different classifier. The PCA feature extraction method,
combined with any of the classifiers, produced results
consistently better than the LDA method, but less accurate
(and in some cases significantly less accurate) than the
NWFE method. Table 1 contains amplification of the data
from Figure 4, supplying in addition the standard deviation
for accuracy for each subject by each method,and also
the numbers of features used. Also as can be seen in
Table 1, the NWFE method effectively reduces the number
of features from 400 down to 2. Since the amplitudes of
single-trial ERP signals are far weaker than the ongoing
EEG signals, proper feature extraction before classification
can increase the accuracy and reduce the data dimension
to save the training and processing time for online analysis
system.

In order to confirm the efficacy of the NWFE feature
extraction method, when used with any classifier, the
same data was analyzed using an alternative index, Kappa
coefficient. Figure 5 shows the Kappa coefficient versus a
range of features for Subject 3 using different classifiers.
The x-axis ranging from 1 to 50 represents the number of
features used for classification after feature reduction, and
the y-axis represents the Kappa coefficient. A higher Kappa
coefficient indicates higher accuracy. Figure 5 offers further
corroboration that NWFE obtains better accuracy than
other methods, especially when using fewer features. It is
noted that as feature numbers increase, initially the accuracy
also increases, but after best accuracy achieved by using a
certain number of features, the accuracy begins to decrease
when more features are used. Also,different classifiers differ
somewhat in how the accuracy decreases [18].

In the previous VR-based stop light experiment without
the dynamic platform [7], the recognition results between
two lights (red/yellow) were 67% to 73% in average of five
subjects with different algorithms. In our past study, we
acquired 31-channel whole head EEG signals to recognize
traffic-light visual ERP [9]. The recognition sensitivity can
achieve 79% to 95% by combining independent component
analysis (ICA), PCA, and self-constructing neural fuzzy
inference network (SONFIN). In this study, we utilize NWFE
to extract features from one channel single-trial EEG data
and use NBC for classification. It can achieve up to 77%
accuracy in traffic-light visual ERP classification. Since only
one EEG channel is used, the preparation time for electrode
placement, skin preparation, and gel application as well
as the system complexity can be greatly reduced. It is
more convenient for practical applications. On the other
hand, the accuracy is possibly improved by some other
choices of classifiers. For instance, we have some preliminary
investigation by using the support vector machine (SVM)
with RBF kernel to classify the ERPs of Subject 3 as an
example. The accuracy of applying SVM to classify the
features extracted by NWFE, PCA, and LDA is 74.87%,
72.86%, and 59.6%, respectively. The NWFE + SVM can also
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Figure 5: Kappa coefficient versus the number of features (subject
3).
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Figure 6: Scatter-plot for Subject 3 using (a) NWFE, (b) PCA, and (c) LDA methods.

achieve the best performance and is slightly better than the
NWFE + NBC in this case.

To graphically visualize the difference of projected data
spread in a reduced feature space, training, and testing data
are projected into a 2-dimension feature space. Three scatter
plots are shown in Figure 6(a) through Figure 6(c), where
the left-hand side is the training data projection and the
right-hand side is the test data projection. Three colors are
used to indicate the three different EEG events (e.g., red,
green, and yellow lights) and each focus indicates the center
of each event distribution. From the Figures, NWFE and
LDA both separate projected training data better than PCA,
while NWFE also performs better than LDA for projected
test data separation. The distinct separation of the three

event signals for both training and testing patterns shows the
overall superiority of the NWFE method. That gives a visual
interpretation for the classification results.

5. CONCLUSIONS

In this study, we develop a simple and feasible algorithm for
single-trial classification of traffic-light stimuli experiments.
Using single channel to acquire EEG signal and utilizing
the fewer features are the advantages of the proposed
algorithm in practical applications. We present quantitative
and comparative techniques for ongoing assessment of
drivers’ cognitive responses by analysis of EEG signals in
3D virtual-reality-based dynamic driving environment. This
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Table 1: Classification results.

CL: classifier, Acc: accuracy, Fno: feature no. used

Feature extraction NWFE PCA LDA

Subject CL Acc Fno Acc Fno Acc Fno

Sub 1
KNN1 73.33% ± 0.97% 2 71.29% ± 1.18% 11 50.01% ± 2.73% 2

KNN3 76.51% ± 1.43% 3 73.78% ± 1.28% 11 52.04% ± 3.42% 3

NBC 77.37% ± 0.94% 2 76.26% ± 1.15% 3 50.95% ± 2.33% 8

Sub 2
KNN1 69.57% ± 1.89% 3 66.56% ± 1.62% 7 65.74% ± 2.10% 2

KNN3 72.50% ± 1.03% 2 68.13% ± 1.22% 32 66.60% ± 1.91% 2

NBC 75.50% ± 0.93% 2 69.54% ± 1.26% 11 68.77% ± 1.49% 1

Sub 3
KNN1 67.22% ± 0.98% 4 63.12% ± 1.49% 35 56.30% ± 5.16% 2

KNN3 70.69% ± 1.43% 2 68.61% ± 0.95% 7 57.81% ± 4.83% 2

NBC 73.84% ± 0.80% 2 69.63% ± 1.28% 8 61.92% ± 2.06% 4

Sub 4
KNN1 66.88% ± 1.50% 3 61.77% ± 1.77% 17 51.91% ± 2.42% 1

KNN3 69.02% ± 1.49% 3 64.91% ± 1.35% 20 51.57% ± 2.48% 1

NBC 71.66% ± 1.75% 6 67.28% ± 1.00% 4 53.05% ± 2.58% 1

Sub 5
KNN1 66.30% ± 1.27% 2 63.98% ± 1.04% 12 57.52% ± 1.64% 3

KNN3 70.25% ± 1.39% 2 67.03% ± 1.06% 22 57.03% ± 1.11% 2

NBC 74.53% ± 0.90% 2 67.60% ± 0.83% 13 60.79% ± 0.93% 1

Sub 6
KNN1 64.92% ± 1.71% 3 62.32% ± 0.93% 13 53.89% ± 1.90% 1

KNN3 67.41% ± 0.79% 2 65.73% ± 0.55% 12 54.80% ± 0.71% 3

NBC 71.40% ± 0.63% 2 68.21% ± 0.82% 7 57.14% ± 1.91% 1

environment consists of surrounded virtual reality scenes,
a driving motion simulator, and the EEG signal acquisition
system. Regarding comparison of classification results, we
combined three well-known feature extraction methods with
two different classifiers to classify the single-trial EEG signal
of driver’s cognitive responses corresponding to different
traffic-light events. Experimental results showed that NWFE
could extract the fewer features (almost in 2 features) in each
subject experiment to represent the EEG data distribution
and then using NBC as the classifier could reach the better
accuracy. In addition, since the proposed approach utilizes
only one EEG channel, the preparation time for electrode
placement, skin preparation, and gel application as well as
the system complexity can be greatly reduced. It is feasible
and desirable for practical applications.
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