
Maneuvering Target Tracking 

with Colored Noise 

WEN·RONGWU 

DAH.CHUNG CHANG 
National Chiao Thng University 

Thiwan 

It is known thai colored noise may degrade the performance of 

a tracking algorithm. A common remedy is to model colored noise 

as an autoregressive (AR) process and apply the measurement 

difference method. One problem with the approach is that the 

AR parameters are usually unknOWIL In this work, we propose a 

new method to adaptively estimate the AR parameters. It is shown 

that this method is simple and practically feadble. We incorporate 

our method into the interacting multiple model (IMM) tracking 

algorithm and _how that the performance is almost as good as that. 

in the known parameters case. 
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I. INTRODUCTION 

A white noise observation model is widely 
used in tracking problem formulation. In practice, 
the measurement noise may not be white. This 
phenomenon is due to the scintillation of the target. 
Typically, the bandwidth of measurement noise 
is on the order of several hertz [3, 12]. When the 
measurement frequency is much lower than the 
noise bandwidth, the successive samples of the 
noise are approximately uncorrelated, and it can be 
seen as white. However, in many radar systems, the 
measurement frequency is high enough so that the 
correlation cannot be ignored without degrading the 
tracking performance. 

The conventional method that alleviates the effect 
of colored noise is the state augmentation approach 
[1]. But this may cause the covariance matrix to be 
ill·conditioned. Bryson [2] proposed the measurement 
difference approach to prevent the problem. Rogers 
[3] modeled the colored noise as a lst·order AR 
process and applied the measurement difference 
approach to the a-f3 filter. Guu and Wei [4] extended 
Rogers' method in [3] to maneuvcring target tracking 
problem using the interacting multiple model (IMM) 
method. Besides descrete·time approaches, some 
researchers also investigated the continuous-time 
Kalman tracker under the colored noise environment. 
Rogers [6] derived closed· form solutions for the 
tracker with exponentially correlated velocity (ECV) 
and exponentially correlated acceleration (ECA). 
Arcasoy [7] used the spectral factorization method 
to develop cxprcssions of the Kalman gains for the 
ECV and ECA tracking problems. In aforementioned 
approaches, they all assumed that the autoregressive 
(AR) coefficients are known. However, this may 
not be possible in the real applications. GUll and 
Wei [5] then further developed a method to estimate 
the AR parameters. Unfortunately, this method is 
computationally intensive and only applicable to the 
Makovian acceleration model. It cannot be used in 
some advanced tracking algorithms such as IMM. 

We propose a new method to estimate the AR 
parameters. We first remove the state variables from 
measurements by passing them into a moving average 
(MA) filter and this results in an autoregressive 
moving average (ARMA) signal. it is found that 
the z-transform of the signal has two zeros on the 
unit circle. In order to obtain the AR coefficient 
from the ARMA signal, we further introduce an 
AR filter to cancel the zeros. The AR parameters 
are then calculated from the statistics of the output 
signal. However, when the target is maneuvering, the 
estimates will be biased. From theoretical analysis, 
we derive a closed·form solution to remove the bias. 
OUf method can be implemented adaptively and is 
suitablc for on·line processing. Simulations show that 
our method can estimate the parameters precisely. The 
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proposed algorithm and the measurement difference 
method are used in the IMM algorithm and significant 
improvement is obtained. 

II. DECORRElATION PROCESS 

In this section, we describe the decorrelation 
process in [3]. For simplicity, we assume that states of 
target motion are defined in the spherical coordinate 
sueh that the state equations can be decoupled into 
three independent channels. Then, the tracking filter 
can work independently on each channel [9]. The state 
equations in a particular channel can be described as 
follows 

Xk+1 = ¢Xk + GWk 

Yk =HXk +Vk 

(1) 
(2) 

where Xk is state vector, ¢ is state transition matrix, Yk 
is the measurement, Wk and Vk are the state and the 
measurement noise, respectively. If the measurement 
frequency is high, the correlation of Vk cannot be 
ignored. Rogers [3J modeled the continuous colored 
noise as a first-order AR process, which can be 
described as 

(/(t) = -).,u(t) + fJ(t). (3) 

Sampling u(t) with a period T, we obtain a difference 
equation which is 

where 0: = e->'T and 17k is zero-mean white 
Gaussian noise with variance O'�. To decorrelate the 
measurement noise, a new measurement Yk, called 
"artificial measurement," is generated 

where 

_ 6-
Yk =Yk - O:Yk-l 

= H(Xk - O'Xk-l) + (JJk - O:Vk-l) 

= HXk +fik 

H = H(1- o:¢-l) 

fik = O'r1Gwk_l + fJk· 

In practical applications, the first term of right-hand 
side in (7) is usually small and can be neglected. So, 
we have 

T hus, fik can be treated as white. Now, the new 
measurement equation (5) and the original state 
equation (1) can be used in the Kalman filtering. 

III. ESTIMATION OF AR PARAMETERS 

In the previous section, we sec that if the AR 
parameters (0: and 0',/) are known, the colored noise 

(4) 

(5) 

(6) 

(7) 

can be decorrelated. However, it is difficult to know 
thc parameters in the real application. Here, we 
propose a method that can effectively estimate the 
parameters. For the ease of description, we assume 
that thc measurement is the position of the target. Let 
Xk "" [Xb Vbakf where Xb Vk, and ak are position, 
velocity, and acceleration of the target, respectively, we 
then have the measurement equation 

(9) 

Since measurements contain state variable Xk, the 
direct estimation of AR parameters is difficult. It will 
be very helpful if we can remove state variable Xk. 
From the Newton's law, we have 

(10) 

We now use the following operation to obtain a new 
. signal lh that does not involve Xk 

Uk = Yk - 2Yk-l + Yk-2 = (Yk - Yk-l) - (Yk-l - Yk-2) 

= (Uk - 2JJk_l + Vk_2) + (Xk - Xk-l) - (Xk-l - Xk_2) 

= (Uk - 2Uk_1 + Uk-2) + !Cak-l + ak_2)T2. (11) 

A close look reveals that the operation is essentially 
a MA filtering and it can completely null a linear 
function (ak = 0). When the measurement frequency is 
high, the measurement (without noise) is approximately 
linear in a short period of time (in our case, two T8). 
T hus, this simple filtering operation enables us to 
extract the measurement noise with little distortion. 
To investigate the effect of the filtering, we go to the 
transform domain. Taking the Z -transform of (11), we 
have 

where 

U(Z) = (1- 2z-1 + z-2)v(Z) + m(z) 

= (1- [1)2u(z) + m(z) (12) 

(13) 

Note that JJk is an AR process. From (4), we find its 
transfer function is 

1 
JJ(z) = 1-- o:z-ll)(Z). 

Thus, we can represent u(z) as 

(1- Z-1)2 u(z) = 1-
ar 1 7/(Z) + m(z). 

(14) 

(15) 

When the target is nonmaneuvering, the acceleration 
is zero and m(z) is zero. From (15), we know Uk is 
an ARMA process. Since there are two zeros on the 
unit circle, it is difficult to use the general system 
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identification methods to estimate the AR coefficients. 
To overcome this problem, we further introduce a filter 
to cancel the zeros. Consider the filter described by its 
transfer function as follows 

1 F(z) - -:-:---� - (1- prl)2 (16) 

where 0 s: p s: 1. Passing u(z) through F(z), we obtain 
the output (denoted as u(z» 

(1- z-I)2 _ 
u(z) = (1- prl)2 u(z) (17) 

1 (1- Z-Ip m(z) 
1- o:rl (1- pZ-l)21J(Z) + (1- pr1)2' 

(18) 

For nonmaneuvering cases, the second term of the 
right-hand side in (18) is zero. If we let p = 1, zeros 
are completely canceled. From (18), we sec that Uk is 
just the colored noise vb i.e., 

(19) 
Denote the autocorrelation function of Uk as reo). The 
0: can then be estimated by 

, r(l) 
0: "" r(O)' (20) 

Here, we use an adaptive method to estimate the 
autocorrelation function. By the fading memory 
technique [151, we have 

i'k(O) = f:Jh-l(O) + (1- f:J)u� (21) 

(22) 

where 0 < (3 < 1 is the forgetting factor. If (3 is 
large, the convergence of PO is slow and it cannot 
response to the change of 0: quickly. The advantage 
of using large f3 is the small estimation variance. On 
the contrary, small f3 will let PO converge fast and 
response quickly. However, the estimation variance is 
large. 

When the target is maneuvering, m(z) is not 
negligible. In this case, we cannot choose p as one, 
otherwise the low frequency components of m(z) will 
be greatly amplified. It is easy to see this from the 
Fourier transform of F(z) 

IF(eiW)1 = \1-:e-jw r 
1 

(1 + p2) - 2pcosw . (23) 

The magnitude in (23) will become huge if p = 1 and 
w is small (infinite for w = 0). This will breakdown 
the whole algorithm. Therefore, p cannot be one. 
From experience, we find that if p is 0.9 or less, the 
amplification effect is small compared with the first 
term of (18). With suitable choice of p, we can then 

Fig. 1. Algorithm of estimating AR coefficient of colored noise. 

ignore m(z). Thus, 

1 (1_Z-1)2 u(z)::::! 1- o:rl (1- pz-l)21J(Z). (24) 

However, the nonunity p raises another problem. From 
(24), it is clear that Uk is no longer equal to Vk and 

r(l) 
0: t= reO)" (25) 

The estimate of (20) is then biased. To correct the bias, 
we explore the relation of 0: and r(l)/r(O). Equation 
(24) can be rewritten as 

[1- (2p + O:)Z-1 + (2ap + p2)z-2 - o:p2z-3Ju(z) 
(26) 

Thus, u(z) is an ARMA process. Using the 
Yule-Walker equations [15], we can solve for its 
coefficients in terms of its autocorrelation function. 
Let 

b r(1) 
0: = 

reO) (27) 

6 = (p + Ii (28) 

6 = (_2p2 - lOp - 4) + (-6p - 2)o:b (29) 

(30) 
�o = (2p2 + 2p - 4) + (-2p - 6)o:h. (31) 

Then, 0: and (J� can be found as follows. We leave 
derivation details in Appendix A 

and 

-(6 + 6)- )(6 + 6)2_46(6 + 6 + �1) Q = 26 

[-2/0:2 + (1- p4)a + 2p]r(0) 

(32) 

+[(p2 + p4)0:2 + (2p3 _ 2p)0: _ (p2 + l)]r(l) 
(1 + p2)0: + (2p - 4) 

(33) 

Substituting o:b with its estimate <'ii, we can obtain <'ik 
and a-�,k' The block diagram of our proposed algorithm 
is shown in Fig. 1. 

In this paragraph, we estimate the computational 
requirement of our algorithm. Since the computational 

complexity of a multiplication/division is much higher 
than that of an addition/subtraction, we then ignore 
the operations of addition and subtraction in our 
complexity estimate. From Fig. 1, we know that 
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there are three stages in our algorithm. First, we 
use (17) to extract colored noise. Second, we use 
(21), (22), and (27) to calculate o:b. Finally, we use 
(28)-(33) to estimate 0: and O"�. Totally, we need 
26 multiplications, two divisions, and one square 
root operation for one cycle. It is shown that [13] 
a Kalman filter with scalar observations requires 
4n3 + 2.5n2 + 3.5n + 3 multiplications where n is the 
state dimension. The mixing operations in an IMM 
algorithm require 2:::1 (2nr + 2ni + 4) multiplications 
and m exponential operations where m is the number 
of models and n; is the dimension of the ith modeL 
For example, if we use two models in the IMM 
algorithm; one is 2-dimensional and the other one is 
3-dimensional, a complete IMM algorithm will require 
240 multiplications and two exponential operations. 
The computational complcxitics of the square root, 
division, and exponential operations are much higher 
than multiplications. It is difficult to have a precise 
evaluation. Roughly, we can say that the computational 
complexity of our algorithm is approximately one-tenth 
of the IMM algorithm. 

Though Guu and Wei [5] also used the 
measurement difference method to decorrelate colored 
noise, their AR identification algorithm is different 
from ours. They assumed that the acceleration of 
the target, ak> is a first-order Markov process (AR 
process), i.e., 

where (k is a white Gaussian process, 0"; == E{fn 
is unknown, and T is assumed to be known. They 
define the innovation of the artificial measurement 

(34) 

Yk as 'ljJk == Yk � h; h is the prediction of Yk' Using 
the correlation functions of 1/Jk, f!j == E{1J;k1);k-j}, j == 
0,1, . .. , Guu and Wei derived the following relationship 

j == 0,1, ... (35) 

where fj is a scalar and gjO is a nonlinear function 
of 0:. To solve (35), a nonlinear algorithm was used to 
minimize a least-squares criterion 

where ih is an estimate of (! j based on the innovation 
sequence. T he problem of this approach is that many 
matrix and vector operations are required to obtain fj 
and gj{-); it is computationally intensive. In addition, 
the nonlinear minimization algorithm may converge to 
a local minimum. 

IV. SIMULATION RESULTS 

In this section, we carry out some simulations to 
demonstrate the effect of the proposed algorithm. 
For simplicity, we only consider a one-dimensional 

range tracker herein. The IMM is applied as the 
tracking algorithm, which is implemented by using a 
second-o�der model for the nonmaneuvering mode and 
two third�order models for the maneuvering mode, one 
is with process noise and the other is without process 
noise. They are described in the following equations. 

1) Nonmaneuvering mode: 

2) Maneuvering mode: 

[1, [�I In [1+ 
(38) 

where Wk and wk' are white noise�. The measurement 
equation is 

(39) 

The Markovian transition probability matrix in IMM is 
chosen as [0.99 0.01 0.00] 

[Pij] == 0.33 0.34 0.33 . 
0.00 0.01 0.99 

In this simulation, the sampling period is taken 
as 0.05 s. The total tracking interval is 60 s. In 

(40) 

other words, there are 1200 measurement samples. 
The maneuvering occurs on 20th s to 40th s with 
constant acceleration 40 m/s2 (about 4g). The state 
noise variances are E[WkWk] == 10-3 (m/s2)2 for the 
nonmaneuvering mode and E[wk'wk'] == a (m/s2)2, 
8002 (m/s2)2 for the maneuvering mode. We assume 
that the s tandard deviation of measurement noise is 
O"y == 100 m. Two AS are used in the simulations. One 
is 4 s-l and the other is 10 S-l. The corresponding 
0: values are 0.8187 and 0.6067, respectively. The 
simulation setup is the same as that in r4]. 100 Monte 
Carlo runs are carried out and the average results are 
shown under the root mean square error (RMSE) 
criterion 

RMSE(k) = ! texk - ri)2 
;=1 

k = 1,2, ... ,1200; m == 100 (41) 

where xie denotes state estimate of the ith Monte 
Carlo run for the kth sample. 

We first cxamine the behaviors of the roots in 
(32). Fig. 2 shows the plot of 0: versus o:b for different 
p values. Note that not all o:b is legitimate. The 
value inside the square root in (32) must be greater 
than or equal to zero. From Fig. 2, we sec that if p 
approximates to one, the corresponding curve will be 
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0.8 
0.6 
0.4 
0.2 

-0.2 
-0.4 

(1), P = 0 
(2), p - 0.1 
m 'P= 0.2 

(,I), p = 0,3 

(;)'p=0.4 

(6) 'P = 0.5 
(7): p = 0,6 
(8) :p=O.1 
(9) 'P = 0.8 
(10),p=0.9 

-0.4 -0.2 a 0.2 0.4 0.6 0.6 biased correlation coeff. 
Fig, 2. Behavior of correct root for different p, 

completely linear with unit slope. This implies that the 
estimator in (20) yields unbiased estimates. If p ::j: 1, 
the estimate is biased. Also note that for smaller p the 
slope of the curve is larger. This indicates that the 

O,5�-----
0.45 

o 200 

� P =0.97 ....-.... P =0.90 ---p =0.60 

400 

resolution for Cib is p oorer. This will adversely affect 
the Ci estimate. All the curves in Fig. 2 are above the 
line 0: = o:b and pass through (-1, -1). In addition, 
their slopes are increasing. Thus, we can say that the 
larger the Ci is, the more bias Ci will have. For 0: = -1, 
there is almost no bias. 

To further study the effect of p, we plot the 
estimates for the whole tracking interval. Here, we 
assume that Ci = 0.8187 for whole interval. Figs. 3 
and 4 show the results of O:k and (J ",k estimates for 
different p values. The (3 is taken as 0.99. Generally, 
we find that larger p will have better results. However, 
too large p will amplify the mk term in (18) when 
target is maneuvering. This results in poorer results. 
For p = 0.9, we see that the estimates are almost not 
affected by maneuvering. In the case, the estimate 
error of Ci and (J" is around 0.075 and 4, which is 
quite small «(J'I = 57.4). We also simulated another 
case that 0: = 0.6067. The results are similar to those 
obtained previously and is therefore not shown. One 

600 samples BOO 1000 1200 
Fig. 3. Relation of a estimation error and p (a = 0.8187, (3 = 0.99). 

30mrr------r-------�------._------,_------,_------� 

25 

5 

o 200 

-&-e- P =0.97 ........... P =0,90 
-- P=0.60 '-'-' p=O.20 

400 600 samples BOO 1000 
Fig. 4. Relation of 0',., estimation error and p (<Til = 100, (3 = 0,99). 
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-0.8 

In Fig. 5, we show the simulation result (single 
realization) for the estimation of O! with and without 
bias. Five O! values are used. They are 0.8, 0.4, 0, -0.4, 
and -0.8. We set p = 0.9 and f5 = 0.995. It is clear that 
for smaller 0:, the bias is smaller. This agrees with our 
induction from Fig. 2. 

As aforementioned, D:k is adaptively estimated and 
the convergence rate depends on the f5 value. Smaller 
f3 has better tracking property but the estimation 
error is larger. To investigate the tracking property, 

-10�----720�0----�40�O-----6=O�O----�8=O�O----�100�O----�12'OO 
samples 

we now let O!k "" 0.8187 for nonmaneuvering period 
and O:k "" 0.6067 for maneuvering period. Note that O!k 
experiences abrupt changes during the tracking period. 
Figs. 6 and 7 show the performance of estimates of O:k 
and (J",k for different f3 values. Here, we set p = 0.9. 
In this experiment, we initiate the tracker 40 s before 
the formal tracking period. The purpose is to 
investigate the steady state behavior of our algorithm. 
From the figures, we verify the statement made 

Fig. 5. Unbiased and biased estimations of Q = 0.8, 0.4, 0, -0.4, 
and -0.8 (p = 0.9). 

thing different is that for p = 0.97, the amplification of 
mk is more serious than that in 0: = 0.8187. However, 
for p = 0.9, the estimate is almost not affected. 

1316 

O.5'---�----�----�----r-___ _ --, ___ --, 
0.45 

0.4 
� 
80.35 � o 
i 0.3 8 
'00.25 
g � 0.2 o 
� .1'00.15 
i 

� G�0.995 
-- fJ�O.990 -- f3 �O.985 
- - ,3 =0.980 

°O�---�2�OO�-----4�O�O---6=O�O-----�80�0�--� 100�O-­samples 
Fig. 6. Relation of 0' estimation error and p (p = 0.9). 

1200 

30,-
-----�----.-----_r---�-----r_---� --e--e-- B =0.995 

--f3�.990 
25 -- a �O.985 - - ,9 -0.980 

°O;----�2�OO�----4�0�O�--�60�0�---�8�O�O------,�O�070---�,200 samples 
Fig. 7. Relation of Ir� estimation error and p (p = 0.9). 
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-e-iT- Undecorrelated (cotored noise) 
- - Exactly decorrelated (known parameters) 

-- Our approac;h (unknown parameters) 

100 200 300 400 500 600 700 BOO 900 1000 1100 
samples 

Fig. 8. Performance of position tracking in colored noise (p = 0.9, f3 = 0.99). 

2i 
.§. 
g '" 
go 
:g 
� 
... . ., 
� 

120 -G--G- Und�c::ol'mlatAd (Colored noise) - - Exactly decorrelated (known parametera.) 

100 -- Our approach {unknown para.meters) 

BO 

60 

40 

20 

oL---�--�--�--�--�--�--�--�--�--���--� 100 200 300 400 500 GOO 700 900 000 1000 1100 samples 
Fig. 9. Performance of velocity tracking in colored noise (p = 0.9, (l = 0.99). 

before. For f3 == 0.99, we find that it provides a 
good compromise between convergence rate and 
estimation error. 

From the above result, we know that p should 
be used as large as possible. The main factor limit 

we show the tracking performances for cases 
without deeorrelation, with exact decorrelation 
(given the AR parameters), and with the proposed 
decorrelation scheme. We assume ak = 0.8187 for 
target nonmaneuvcring period and ak = 0.6067 for 
maneuvering period. The rest of the parameters 
are chosen as p = 0.9 and f3 = 0.99. This choice 

pis mk. From (13), we find mk is determined by 
target acceleration ak and sampling period T. If T is 
smaller, large p can be used. Thus, we can conclude 
that the higher the measurement frequency is, the 

better our algorithm will work. f3 determines the 
tracking property and should be chosen according to 
how fast a will change. For slow changing a, f3 can be 
large. It seems that negative a is easier to work with 
(sma ll bias). This can be explained by thc fact that 

can make the estimation of a and (J' n insensitive to 

maneuvering and abrupt changes of parameters. From 
these figures, we can dearly see that the performance 
of the decorrelated scheme is considerably better than 
that of undecorrelated one, specially in the velocity 

the position measurement is a low-pass signal while 
the colored noise is a high-pass signal (for negative a). 
Thus, it is easier to filter out the noise. 

Finally, our approach is applied to the maneuvering 
target tracking with colored noise. In Figs. &-10, 

and acceleration estimates. The perfor mance of the 
proposed algorithm is almost as good as that in the 
known paramcters casco Thc structure of the proposed 
algorithm is simple and practically feasible. Also, it can 

adaptively track the variation of the AR parameters. 

This makes our algorithm is suitable for real-time 
applications. 
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-e-e-- UndecorreJated (colored noise) - - Exactly dscorrglated (known parameters) 

50 -- Our approach (unknown parameters) 

100 200 300 400 500 600 700 800 900 1000 1100 
samples 

Fig. 10. Performance of acceleration tracking in colored noise (p = 0.9, f3 = 0.99). 

V. CONCLUSION 

We have proposed a new algorithm to identify the 
parameters of colored noise, which can be applied 
to maneuvering target tracking. Our algorithm is 
different from that of Guu and Wei [5]. We do not 
need the assumption of Markovian acceleration for 
the maneuvering target. Thus, the IMM algorithm 
can be used to achieve better tracking performance. 
From simulations, we find that our algorithm identifies 
the parameters properly such that the tracking 
performance is almost as good as that in the known 
parameters case. The simple structure of the algorithm 
makes it easy to be implemented. In (2), we assume 
that the only noise component is colored noise 1Jk 
which is modeled as a first-order AR process. If other 
kind of noise such as white noise also exists, the mixed 
noise will not be an AR process any more. It can be 
shown that an AR process plus a white process is 
an ARMA process [14]. In this case, our algorithm 
becomes a suboptimal approach. 

APPENDIX A 

The Yule-Walkcr equations of (26) are 

reO) - alr(l) - a2r(2) - a3r(3) = (ai - 4al + a2 + 6)0'; 
(42) 

-a1r(0) + (1- a2)r(1) - a3r(2) = (a1 - 4)()'� (43) 
-a,r(O) - (a, + a3)r(1) + r(2) = 0'; 

-a3r(0) - a2r(1) - alr(2) + r(3) = 0 
where 

al = 2p + 0: 
a2 = -(2po: + p2) 

a3 == p20:. 

(44) 
(45) 

(46) 

(47) 
(48) 

Substituting r(2) and r(3) in (42) and (43) by using 
(44) and (45), we have 

(a� + a1a2a3 + a� - l)r(O) 

+ (al + alal + 2alG3 + ara3 + ala�)r(l) 

+ (ai - 4al + 2a2 + ala3 + 6)O'� = 0 (49) 
and 

(al + Q2a3)r(O) + (a2 + a1a3 + a� -1)'(1) 

+ (al + a3 - 4)O'� = O. 

From (46)-(50), we have 

(50) 

[_2p30:3 + (4p2 - 4l)02 + (4p3 - 2p5)0: + l-l]r(O) 

+ [(p2 + p4)0:3 + (2p5 _ 2p)0:2 

and 

+ (2p4 -5p2 + 1)0 + (2p - 2p3)],(1) 

+ [(1 + p2)Q2 + (2p3 - 4)0: 

+ (2pl_ 8p + 6)]O'� = 0 

[_2p30:2 + (1-p4)0: + 2p]r(0) 

(51) 

+ [(p2 + l)a2 + (2p3 _ 2p)a _ (p2 + 1)],(1) 

+ [(1 + l)a + (2p - 4)JO'� = O. (52) 
From (52), we yield 

[_2p3o;2 + (1- p4)0: + 2p]r(0) 
0'2 = _ +[(p2 + l)a2 + (2p3 - 2p)0: - (p2 + 1)]r(1) 

1/ (1 + p2)0: + (2p - 4) 

Replacing O'� in (51) by (53) and simplifying the 
equation, we have 

(53) 

(54) 
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where 

6 = (p + 1)
3 

(55) 

6 = (_2p2 - 10p - 4) + (-6p - 2)oJ} (56) 

el = (_p3 - 3p2 + 5p + 7) + (8p + 8)ab (57) 

eo = (2p2 + 2p - 4) + (-2p - 6)ab• (58) 
Note that 6 + 6 + el + eo = O. It implies that a = 1 is 
one root of (54). But we know a f 1 and this root can 
be discarded. So, (54) is simplified as 

60:2 + (6 + 6) 0: + (6 + 6 + 6) = O. (59) 

There are two roots in (59):" They are 

0: =  

{ - (6 + �2) + vr7( �-;-3-+--:e-:C 2)"'2 -
---:-4e-=-3 (-:-:: e-3 +---=-e2---'+-e:-:-t) 

ze3 
-(6 +6)- )(6 +6) 2 -46(6 + 6 +6) 

26 
(60) 

From numerical evaluation, we find out that the first 
root in (60) is greater than one for 0'::; p < 1. Thus the 
second root is the correct solution. 

REFERENCES 

[1] Kalman, R. E. (1963) 
New method in Wiener filtering theory. 
In J. L. Bogdanoff and F. Kozin (Eds.), Proceedings ofrhe 
First Symposium on Engineering Applications of Random 
Function Theory and Probability. 
New York: Wiley, 1%3, 270--388. 

[21 Bryson, A. E., and Henrikson, L. J. (1968) 
Estimation using sampled data containing sequentially 
correlated noise. 
Journal of Spacecraft,S, 6 (1%8), 662-665. 

[3] Rogers, S. R. (1987) 
Alpha-beta filter with correlated measurement noise. 
IEEE Transactions on Aerospace and Electronic Systems ,  
AES-23, 4 (1987), 592-594. 

[4] Guu, J. A., and Wei, C. H. (1991) 
Maneuvering target tracking using IMM method at high 
measurement frequency. 
IEEE Transactions on Aerospace and Electronic Systems, 
27, 3 (1991), 514-519. 

[5] Guu,1. A., and Wei, C. H. (1991) 
'fracking technique for maneuvering target with correlated 
measurement noise and unknown parameters. 
lEE Proceedings, PI. F, 138, 3 (June 1991), 278-288. 

[6] Rogers, S. R. (1990) 
Continuous-time ECV and ECA track filters with colored 
measurement noise. 
IEEE Transactions on Aerospace and Electronic Systems, 26 
(1990), 663-666. 

[7] Arcasoy, C. C., and Koc, B. (1994) 
Analytical solution for continuous-time Kalman tracking 
filters with colored measurement noise in frequency 
domain. 
IEEE Transactions on Aerospace and Electronic Systems, 30 
(1994), 1059-1063. 

[8] Singer, R. A. (1970) 
Estimating optimal tracking filter performance for manned 
maneuvering target tracking. 
IEEE Transactions on Aerospace and Electronic Systems, 
AES-6, 4 (1970), 473-483. 

[9] Gholson, N. H., and Moose, R. L. (1977) 
Maneuvering target tracking using adaptive state 
estimation. 
IEEE Transactions on Aerospace and Electronic Systems, 
AES-15 (May 1977),448-456. 

[10] Blom, H. A. P., and Bar-Shalom, Y. (1988) 
The interacting mUltiple model algorithm for systems with 
Makovian switching coefficients. 
IEEE Transactions on Automatic Control, 33 (Aug. 1988), 
780--783. 

[11] Bar-Shalom, Y., Chang, K. C, and Blom, H. A. P. (1989) 
'fracking a maneuvering target using input estimation 
versus the interacting multiple model algorithm. 
IEEE Iransactions on Aerospace and Electronic Systems, 25 
(Mar. 1989), 296-300. 

[12] Skolnik, M. l. (1990) 
Radar Handbook. 
New York: McGraw-lIill, 1990. 

[13] Grewal, M. S., and Andrews, A. P. (1993) 
Kalman Fillering: Theory and Practice. 
New York: Prentice-Hall, 1993. 

[14] Pagano, M. (1974) 
Estimation of models of autoregressive signal plus white 
noise. 
Annals of Mathematical Statistics (1974), 99-108. 

[15] Haykin, S. (1991) 
Adaptive Filler Theory. 
Englewood Cliffs, NJ: Prentice-Hall, 1991. 

WU & CHANG: MANEUVERING TARGET TRACKING WITH COLORED NOISE 1319 



1320 

Wen-Rong Wu was born in Taiwan, RO.C., in 1958. He received his B.S. degree in 
mechanical engineering from Tatung Institute of Technology, Taiwan, in 1980, M.S. 
degrees in mechanical and electrical engineering, and Ph.D. degree in electrical 
engineering from State University of New York at Buffalo in 1985, 1986, and 1989, 
respectively. 

Since August 1988, he has been a faculty member in the Department of 
Communication Engineering in National Chiao Tung University, Thiwan. His 
research interests include estimation theory, digital signal processing, and image 
processing. 

Dah-Chung Chang was horn in Chia-Yi, Taiwan on Junc 13, 1969. Hc received the 
B.S. degree in electronic engineering from the Fu-Jen Catholic University, Taipei, 
Thiwan, in 1991 and the M.S. degree in electrical engineering from the National 
Chiao Tung University (NCTU), Hsinehu, Taiwan, in 1993. 

He is currently with the image laboratory in the Department of 
Communication Engineering at NCTU and working toward the Ph.D. degree. 
His study interests include the area of detection and estimation theory, digital 
communications, signal processing, and radar tracking. 

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 32, NO. 4 OCTOBER 1996 


