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Current manufacturing industries have increased their level of out-sourcing and
relied more heavily on their supply chain as a source of competitive advantage.
Supplier selection decisions have become an important component of production
management. Those decisions have a significant impact on a firm’s marketing
competition, and suppliers may account for a large portion of the production
cost. Production quality is one of the key factors in supplier evaluation. The
manual of supplier certification includes a discussion of process capability
analysis, which recommends a procedure for evaluating the most prevalent
process capability index Cpk. However, the recommended procedure is applicable
only when evaluating an individual supplier’s performance. In this paper, we
apply the bootstrap method to the supplier selection problem. We construct lower
confidence intervals for the capability difference and ratio between two given
suppliers. Performance comparisons are made among various bootstrap methods
in terms of error probability and selection power. For convenience of
applications, the sample sizes required for various designated selection power
are also tabulated.

Keywords: Bootstrap resampling; Error probability; Lower confidence bound;
Production yield; Supplier selection

1. Introduction

Manufacturers purchase components from suppliers or hire contract manufacturers
to produce necessary parts, and they assemble these parts to deliver the finished
products to customers. The major considerations when choosing a supplier or a
contract manufacturer include quality, cost, goodwill, service, delivery, and so on.
According to research conducted by Dickson (1966), quality and delivery are two of
the most demanded items by component suppliers. Twenty five years after Dickson’s
research, Weber et al. (1991) still considered quality to be of ‘extreme importance’
and delivery to be of ‘considerable importance’. According to Weber’s research on
the just-in-time (JIT) model, the importance of quality and delivery remains the
same. Pearson and Ellram (1995) surveyed 210 members of the National Association

*Corresponding author. Email: workman@cc.kuas.edu.tw

International Journal of Production Research

ISSN 0020–7543 print/ISSN 1366–588X online � 2008 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/00207540701278414

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
12

 2
5 

A
pr

il 
20

14
 



of Purchasing Management (NAPM), who were randomly selected from the listings

of electronic firms in the two-digit SIC code 38, and they indicated that quality is

the most important criterion in the selection and evaluation of suppliers for both the

small and large electronic firms that were surveyed. Moreover, according to the

survey of current and potential outsourcing end-users by the Outsourcing Institute

(2003), the top 10 factors in vendor selection are commitment to quality, price,

reference/reputation, flexible contract terms, scope of resources, additional value-

added capability, cultural match, existing relationship, location, and others. Quality

is still the most important factor of all. Furthermore, Olhager and Selldin (2004)

investigated supply chain management strategies and practices in a sample of 128

Swedish manufacturing firms and concluded that many aspects are important when

companies choose supply chain partners, but quality is the single most important

criterion. Kane (1986) stated that the quantification of the process mean and

variation is central to understanding the quality of the units produced from a

manufacturing process. Process capability indices (PCIs) can also be used to measure

process potential at the initial stage of the production setting. These facts bring the

issue of supplier selection based on PCIs into the main focus.
The first PCI appearing in the literature was the precision index Cp and it is

defined as (see Juran 1974 and Kane 1986):

Cp ¼
USL� LSL

6�
, ð1Þ

where USL is the upper specification limit, LSL is the lower specification limit, and �
is the process standard deviation. The index Cp measures process precision (product

quality consistency), and does not consider whether the process is centred. To

measure the degree of process centring, Pearn et al. (1998) introduced the following

accuracy index Ca:

Ca ¼ 1�
j��mj

d
, ð2Þ

where � is the process mean, d ¼ USL� LSLð Þ=2, and m ¼ USLþ LSLð Þ=2. The
index Ca measures the centring tendency, which alerts the user if the process mean

deviates from its midpoint. The Cpk index considers process variation and the

location of process mean,

Cpk ¼ min Cpu,Cpl

� �
¼ min

USL� �

3�
,
�� LSL

3�

� �
¼

d� j��mj

3�
: ð3Þ

Obviously, we have Cpk¼Cp�Ca. Taguchi, on the other hand, emphasizes the

product loss when one of its characteristics departs from the target value T. Hsiang

and Taguchi (1985) introduced the index Cpm, which was also proposed

independently by Chan et al. (1988). The index Cpm incorporates the variation of

production items with the target value and the specification limits preset in the

factory. It is defined as:

Cpm ¼
USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� TÞ2

q : ð4Þ
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In practice, process mean � and process variance �2 are usually unknown. Since
sample data must be collected to calculate the index value, sampling errors are
introduced into the capability assessments. Consequently, lower confidence bounds
(LCBs) or capability testing must be performed using their sampling distributions.
Many authors have promoted the use of various PCIs for evaluating a supplier’s
process capability. Examples include Boyles (1991), Pearn et al. (1992), Kushler and
Hurley (1992), Kotz and Johnson (1993), Vännman and Kotz (1995), Vännman
(1997), Kotz and Lovelace (1998), Pearn et al. (1998), Kotz and Johnson (2002),
Spiring et al. (2003), Pearn and Shu (2003), Pearn et al. (2005), and references
therein. However, one area that has received little attention in the literature is the
comparison between two suppliers’ PCIs. In a review of the problem of selecting
the best manufacturing process based on PCIs, Tseng and Wu (1991) considered the
problem for multiple available manufacturing processes based on the precision index
Cp under a modified likelihood ratio (MLR) selection rule. Chou (1994) developed a
test for comparing two one-sided processes and choosing a better supplier when the
sample sizes are equal. Hubele et al. (2005) applied a Wald statistic for testing the
equality of multiple Cpu or Cpl indices. Huang and Lee (1995) considered the supplier
selection problem based on the index Cpm, and developed a mathematically
complicated approximation method for selecting a subset of processes containing the
best supplier from a given set of processes. The method essentially compares the
average loss of a group of candidate processes and selects a subset of these processes
with smaller process loss �2þ (��T)2, which, with certain level of confidence,
contains the best process. Pearn et al. (2004) provided additional useful information
regarding the sample size required for various designated selection power. A two-
phase selection procedure was developed to select a better supplier. Chen and Chen
(2004) offered four approximate confidence interval methods, one based on the
statistical theory given in Boyles (1991) and three based on the bootstrap method, for
selecting the better one of two suppliers. A comparison of the coverage percentage of
the four methods was investigated by simulation. Although statistical tests have been
developed to compare two Cp, Cpm, Cpu, and Cpl capability indices of normal
processes, a statistical test for comparing two Cpk values has not been developed due
to the complexity of the sampling distribution of Ĉpk2 � Ĉpk1 or Ĉpk2=Ĉpk1. In this
paper, we apply the bootstrap method to compare two processes based on Cpk in
terms of error of probability and selecting power. The obtained confidence intervals
provide information regarding actual process performance, which is useful in making
reliable decisions for capability testing (H0: Cpk1�Cpk2 versus H1: Cpk15Cpk2).

2. Process yield measure based on Cpk

2.1 Fraction of nonconformities (NC)

Process yield is traditionally defined as the percentage of the product units that pass
the inspections. Units are inspected according to specification limits placed on
various key product characteristics and sorted into two categories: passed
(conforming) or rejected (non-conforming). Process yield has long been the most
common and standard criteria used in the manufacturing industries for judging
process performance. In the past, fraction nonconforming were calculated by

Bootstrap approach for supplier selection based on production yield 5213
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counting the number of nonconforming items in a sample, then extrapolating the
results. With the fraction nonconforming now commonly less than 0.01%, often
expressed in parts per million (ppm), traditional methods for calculating the fraction
nonconforming no longer work since all reasonably sized samples will probably have
no defective items. Capability indices are alternatives for measuring fraction
nonconforming.

Suppose that the proportion of conforming items is the primary concern then the
most natural measure is the proportion itself called the yield, which we define as:

Yield ¼

Z USL

LSL

dFðxÞ ¼ FðUSLÞ � FðLSLÞ ð5Þ

where F(x) is the cumulative distribution function (CDF) of the measured
characteristic X. If the process characteristic X follows N(�, �2), then the fraction
of nonconformities NC is:

NC ¼ 1��
USL� �

�

� �
þ�

�� LSL

�

� �
, ð6Þ

where �(�) is the CDF of the standard normal distribution N(0, 1).

2.2 Yield assurance based on Cpk

The index Cpk can be used to fill such a purpose for normally distributed processes.
Given a fixed value of Cpk, we have 2�(3Cpk)� 1� yield��(3Cpk). For Cpk¼ 1.00,
one would expect that the fraction of defectives, is no more than 2700 ppm. The exact
number of non-conformities can be expressed as a function of Cpk and Ca or Cpk and
Cp together as follows:

NC ¼ � �3Cpk

� 	
þ� �3Cpkð2� CaÞ=Ca

� 	
, NC ¼ � �3Cpk

� 	
þ� �3ð2Cp � CpkÞ

� 	
:

For most manufacturing factories, reducing the fraction of non-conformities is
the primary concern and the guiding principle for quality improvement.
Montgomery (2001) recommended some minimum capability requirements for
processes running under certain designated quality conditions. In particular,
Cpk� 1.33 is for existing processes, and Cpk� 1.50 is for new processes; Cpk� 1.50
is also for existing processes on safety, strength, or critical parameter, and Cpk� 1.67
is for new processes on safety, strength, or critical parameter. Finley (1992) also
found that required Cpk values on all critical supplier processes are 1.33 or higher
and Cpk values of 1.67 or higher are preferred. Many companies have recently
adopted criteria for evaluating their processes that include more stringent process
capability objectives. Motorola’s Six Sigma program essentially requires the process
capability to be at least 2.0 to accommodate the possible 1.5� process shift (see Harry
1988), and no more than 3.4 ppm are defectives.

3. Selecting a better supplier by comparing two Cpk

We investigate the selection problem for cases with two candidate processes based on
the Cpk index. Let �i be the population assumed to be normally distributed with

5214 C.-W. Wu et al.
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mean �i and variance �2i , i¼ 1, 2, and xi1, xi2, . . . , xini are the independent random
samples from �i, i¼ 1, 2. In most applications, if a new supplier no. 2 (S2) wants to
compete for the orders by claiming that its capability is better than the existing
supplier no. 1 (S1), then the new S2 must furnish convincing information justifying
the claim with a prescribed level of confidence. Thus, the decision of supplier
selection would be based on the hypothesis testing comparing the two Cpk values,
H0: Cpk1�Cpk2 versus H1: Cpk15Cpk2. If the test rejects the null hypothesis
H0: Cpk1�Cpk2, then one has sufficient information to conclude that the new S2 is
superior to the original S1, and the decision of the replacement would be suggested.
Equivalently, this test hypothesis problem can be rewritten as H0: Cpk2�Cpk1� 0
versus H1: Cpk2�Cpk140 (difference testing), or H0: Cpk1/Cpk2� 1 versus H1:
Cpk2/Cpk141 (ratio testing). Thus, if the LCB for the difference between two PCIs
Cpk2�Cpk1 is positive, then S2 has a better process capability than S1. Otherwise, we
do not have sufficient information to conclude that the S2 has a better process
capability than S1. In this case, we would believe that Cpk1�Cpk2� 0 is true, i.e.
Cpk1�Cpk2. Similarly, if the LCB for the ratio between two PCIs Cpk1/Cpk2 is greater
than 1, then S2 has a better process capability than S1. Otherwise, if the LCB of the
ratio statistic is less than 1, then we conclude that S1 has a better process capability
than S2.

The assessment of values requires knowledge of �i, and �i. From the definition
of Cpk expressed in equation (3), the natural estimator Ĉpki is obtained by replacing
the process mean �i and the process standard deviation �i by their conventional
estimators �xi and si, which may be obtained from a process that is demonstrably
stable (under statistical control).

Ĉpki ¼ min
USL� �xi

3si
,

�xi � LSL

3si

� �
¼

d� j �xi �mj

3si
¼ 1�

j �xi �mj

d

� �
Ĉpi, ð7Þ

where �xi ¼
Pni

j¼1 xij=ni, si ¼
Pni

j¼1 ðxij � �xiÞ
2=ðni � 1Þ

h i1=2
and Ĉpi ¼ d=3si.

Numerous methods for constructing approximate confidence intervals of Cpk

have been proposed. Examples include Chou et al. (1990), Zhang et al. (1990),
Franklin and Wasserman (1992a, b), Kushler and Hurley (1992), Nagata and
Nagahata (1994), Tang et al. (1997), Hoffman (2001), and many others. Under the
assumption of normality of the estimated particular Ĉpki defined in equation (7), Ĉpi

is distributed as ðni � 1Þ1=2Cpið�
�1
ni�1
Þ, and n1=2i �xi �mj j=�i is distributed as the folded

normal distribution with parameter n1=2i �i �mj j=�i (see Leone et al. 1961 for details
about this distribution). Thus, single Ĉpki is a mixture of ��1ni�1

and the folded normal
distribution (Pearn et al. 1992). Furthermore, using the integration technique similar
to that presented in Vännman (1997), an exact and explicit form of the CDF of the
individual natural estimator Ĉpki can be expressed as (see Pearn and Lin 2003):

FĈpki
ðyÞ ¼ 1�

Z bi
ffiffiffi
ni
p

0

G
ðni � 1Þðbi

ffiffiffiffi
ni
p
� tÞ2

9niy2

 !
�ðtþ �i

ffiffiffiffi
ni
p
Þ þ �ðt� �i

ffiffiffiffi
ni
p
Þ

� 	
dt, ð8Þ

for y40, where bi¼ d/�i, �i¼ (�i�m)/�, G(�) is the CDF of the chi-square
distribution with degree of freedom ni� 1, �2ni�1, and �ð � Þ is the probability density
function (PDF) of the standard normal distribution N(0, 1). Based on the CDF of
Ĉpki, Pearn and Lin (2003) implemented the statistical theory of the hypotheses
testing. Pearn and Shu (2003) further developed an efficient algorithm with the
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Matlab computer program to find the reliable LCBs conveying critical information
regarding the true process capability. However, their investigations are all developed
for evaluating whether a single supplier’s process conforms to a customer’s
requirements. Due to the complexities of the sampling distributions of Ĉpk2 � Ĉpk1

or Ĉpk2=Ĉpk1, constructions of exact confidence intervals for Cpk2�Cpk1 or Cpk2/
Cpk1 are difficult.

3.1 Bootstrap methodology

The bootstrap, a data-based simulation technique for statistical inference introduced
by Efron (1979, 1982), is a non-parametric, computationally intensive, but also
effective, estimation method. It can be applied whenever the construction of
confidence intervals for parameters using the standard statistical techniques becomes
intractable. An overview of this topic in bootstrap confidence intervals can be found
in Hall (1988), Efron and Tibshirani (1993). Moreover, traditionally, statistical
research work has relied on the central limit theorem and normal approximations to
obtain standard errors and confidence intervals. These techniques are valid only
when the statistic, or some known transformation of the statistic, is asymptotically
normally distributed. Unfortunately, many real world processes are not normally
distributed and this departure from normality could potentially affect these
estimates. The bootstrap approach is far more general. It does not rely on any
distributional assumptions about the underlying population. The more ambiguous
the information is to the researcher regarding the underlying population distribution,
the more likely it is that the bootstrap may prove useful. Rather than using
distribution frequency tables to compute approximate probability values, the
nonparametric bootstrap method generates a unique sampling distribution based
on the actual sample rather than the analytic methods. Due to the advantage of the
bootstrap simulation technique, many studies of process capability analyses used the
bootstrap approach to calculate confidence intervals for process capability indices,
dating back at least to Franklin and Wasserman (1992). Also see Choi et al. (1996),
Chen and Chen (2004), and the references therein. Most of them concluded that the
performance of such bootstrap confidence limits is quite satisfactory in the majority
of the cases. Therefore, we apply bootstrap re-sampling method to construct
confidence intervals on Cpk2�Cpk1 and Cpk2/Cpk1 for selecting a better supplier,
which has never been done in the literature.

In the following, four bootstrap confidence limits are employed to determine the
LCBs of difference and ratio statistics and the results are used to select the better
supplier of the two candidates. For n1¼ n2¼ n, let two bootstrap samples of
size n drawn with replacement from the two original samples be denoted by
fx�11, x

�
21, . . . , x�1ng fx

�
21, x

�
22, . . . , x�2ng. The bootstrap sample statistics �x�1, s

�
1, �x�2, and s�2

are computed, as well as Ĉ�pk1, and Ĉ�pk2. A random sample of nn possible re-samples
is drawn, the statistic is calculated for each of these, and the resulting empirical
distribution is referred to as the bootstrap distribution of the statistic. Due to the
overwhelming computation time, it is not of practical interest to choose nn such
samples. Empirical work (Eforn and Tibshirani 1986) indicated that a minimum of
roughly 1000 bootstrap re-samples is usually sufficient to compute reasonably
accurate confidence interval estimates for population parameters. For the purpose
of accuracy, we consider B¼ 5000 bootstrap re-samples (rather than 1000). Thus, we

5216 C.-W. Wu et al.
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take B¼ 5000 bootstrap estimates �̂� ¼ ðĈ�pk2 � Ĉ�pk1Þ or ðĈ�pk2=Ĉ
�
pk1Þ of

�¼Cpk2�Cpk1 or Cpk2/Cpk1, respectively, then order them from the smallest to

the largest �̂�ðlÞ¼ðĈ
�
pk2�Ĉ

�
pk1ÞðlÞ or ðĈ

�
pk2=Ĉ

�
pk1Þðl Þ where l¼ 1, 2, . . . ,B.

Four types of bootstrap confidence intervals, including the standard bootstrap
confidence interval (SB), the percentile bootstrap confidence interval (PB), the biased
corrected percentile bootstrap confidence interval (BCPB), and the bootstrap-t (BT)
method introduced by Efron (1981) and Efron and Tibshiraniwill (1986) are

conducted in this paper. The generic notations �̂ and �̂� will be used to denote the
estimator of � and the associated ordered bootstrap estimate. Construction of a two-
sided 100(1� 2�)% confidence limit will be described. We note that a lower

100(1� �)% confidence limit can be obtained by using only the lower limit. The
formulation details for the four types of confidence intervals are displayed as follows.

A. Standard bootstrap (SB) method. From the B bootstrap estimates �̂�ðlÞ,
l¼ 1, 2, . . . ,B, the sample average and the sample standard deviation can be
obtained as

�̂
�
�
¼

1

B

XB
l¼1

�̂�ðlÞ, S�� ¼
1

B� 1

XB
l¼1

½�̂�ðlÞ�
�̂
�
�
�
2

 !1=2

:

The quantity S�� is an estimator of the standard deviation of �̂ if the distribution
of �̂ is approximately normal. Thus, the 100(1� 2�)% SB confidence interval
for � can be constructed as ½

�̂
�
�
� z�S

�
� ,

�̂
�
�
þ z�S

�
� �, where �̂ is the estimated � for

the original sample, and z� is the upper � quantile of the standard normal
distribution.

B. Percentile bootstrap (PB) method. From the ordered collection of �̂�ðlÞ,
l¼ 1, 2, . . . ,B, the � percentage and 1�� percentage points are used to obtain
the 100(1� 2�)% PB confidence interval for �, ½�̂�ð�BÞ, �̂�ðð1� �ÞBÞ�.

C. Biased-corrected percentile bootstrap (BCPB) method. While the percentile
confidence interval is intuitively appealing, it is possible that due to sampling

errors, the bootstrap distribution may be biased. In other words, it is possible
that the bootstrap distributions obtained using only a sample of the complete
bootstrap distribution may be shifted higher or lower than would be expected.

A three-step procedure is suggested to correct for the possible bias (Efron 1982).
First, using the ordered distribution of �̂�, we calculate the probability
p0 ¼ P½�̂�� �̂0�. Second, we compute the inverse of the CDF of a standard

normal based upon p0 as z0¼��1(p0), pL¼�(2z0�z�), and pU¼�(2z0�z�).
Finally, we execute these steps to obtain the 100(1� 2�)% BCPB confidence
interval, ½�̂�ðpLBÞ, �̂

�ðpUBÞ�.
D. Percentile-t bootstrap (PT ) method. By using bootstrapping to approximate the

distribution of a statistic of the form ð�̂ � �Þ=S�̂, the bootstrap approximation in

this case is obtained by taking bootstrap samples from the original data values,
calculating the corresponding estimates �̂� and their estimated standard error,
and hence finding the bootstrapped T-values T ¼ ð�̂���̂Þ=S�� . The hope is
then that the generated distribution will mimic the distribution of T.

The 100(1� 2�)% PT confidence interval for � may constitute as
½�̂� � t��S

�

�̂
, �̂� � t�1��S

�

�̂
�, where t�� and t�1�� are the upper � and 1� � quantiles

of the bootstrap t-distribution respectively, i.e. by finding the values that satisfy

Bootstrap approach for supplier selection based on production yield 5217
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the two equations P½ð�̂���̂Þ=S�� > t��� ¼ � and P½ð�̂���̂Þ=S�� > t�1��� ¼ 1� �, for
the generated bootstrap estimates.

4. Performance comparisons of four bootstrap methods

4.1 Simulation layout setting

When focusing on the capability of a process, there are two important
characteristics, the process location relative to its specification limits and the process
spread. The closer the process output is to the mid-point of the specification limits
and the smaller the process spread, the more capable the process. Based on the
relationship Cpk¼Cp�Ca, it is worth noting that there are several combinations of
Cp and Ca for an equivalent Cpk value by trading-off between the degree of process
centring and the magnitude of process variation. Table 1 displays various Ca values
and the corresponding ranges of the departure magnitude of �.

Figure 1 plots four processes with different combinations of (Ca,Cp) with
Cpk¼ 1.00, i.e. (Ca,Cp)¼ (0.25, 4) for process A, (Ca,Cp)¼ (0.50, 2.00) for process B,
(Ca,Cp)¼ (0.75, 4/3) for process C, and (Ca,Cp)¼ (1.00, 1.00) for process D (from
left to right in plot). These four processes are equivalent according to Cpk

Figure 1. Four processes with Cpk¼ 1.00.

Table 1. Ca values and ranges of �.

Ca value Range of �

Ca¼ 1.00 �¼m
0.755Ca51.00 05j��mj5d/4
0.505Ca50.75 d/45j��mj5d/2
0.255Ca50.50 d/25j��mj53d/4
0.005Ca50.25 3d/45j��mj5d
Ca¼ 0.00 �¼LSL or �¼USL
Ca50.00 �5LSL or �4USL
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(i.e. Cpk¼ 1.00 for all four processes) and all have yields exceeding 99.73%, but they
differ substantially with respect to centring. Hence, in order to make a comparative
study among four bootstrap confidence limits, a series of simulations are undertaken
to investigate the error probability and selection power of difference and ratio testing
statistics for the performance comparisons of the four bootstrap methods. The sets of
parameter values for two manufacturing suppliers used in the simulation study are
given in table 2. The selected parameters are chosen so as to investigate the
performance of the methods for a wide range of index values and for on-target or off-
target processes. For each combination, 5000 random samples are generated and, for
each of these samples, the corresponding bootstrap confidence intervals are assessed
in section 4.

4.2 Error probability analysis

The error probability is the proportion of times that the null hypothesis H0:
Cpk1�Cpk2 is rejected, when actually H0: Cpk1�Cpk2 is true. That is, we will
calculate the proportion of times that the LCB of Cpk2�Cpk1 is positive and the
LCB of Cpk1/Cpk2 is larger than 1. For each case given in table 2, a sample of size
n¼ 100 was drawn with B¼ 5000 bootstrap re-samples, and the single simulation
was then replicated N¼ 3000 times. Figures 2 and 3 show the error probability of
those four bootstrap methods for the difference and the ratio statistics, respectively,
with 16 combinations tabulated in table 2. Usually, it is required that the probability
of the error selection be less than a maximum value ��, generally referred to as the
��-condition. The frequency of error selection is a binomial random variable with
N¼ 3000 and ��¼ 0.05. Thus, a 99% confidence interval for the error probability is

�� � Z0:005 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð1� ��Þ

N

r
¼ 0:05� 2:576�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:05� 0:95Þ

3000

r
¼ 0:05� 0:0103:

Table 2. Parameter values for two manufacturing suppliers used in the
simulation study under Cpk1¼Cpk2¼ 1.00.

Cases Cpk1 Cp1 Ca1 Cpk2 Cp2 Ca2

1 1 4 0.25 1 4 0.25
2 1 4 0.25 1 2 0.50
3 1 4 0.25 1 4/3 0.75
4 1 4 0.25 1 1 1.00
5 1 2 0.50 1 4 0.25
6 1 2 0.50 1 2 0.50
7 1 2 0.50 1 4/3 0.75
8 1 2 0.50 1 1 1.00
9 1 4/3 0.75 1 4 0.25
10 1 4/3 0.75 1 2 0.50
11 1 4/3 0.75 1 4/3 0.75
12 1 4/3 0.75 1 1 1.00
13 1 1 1.00 1 4 0.25
14 1 1 1.00 1 2 0.50
15 1 1 1.00 1 4/3 0.75
16 1 1 1.00 1 1 1.00

Bootstrap approach for supplier selection based on production yield 5219
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That is, one could be 99% confident that a ‘true 0.05% error probability’ would have
a proportion of range from 0.0397 to 0.0610.

In fact, for the difference statistic, there are six occurrences out of the 16 cases
that are outside the interval (0.0397, 0.0610) for the SB, PB, and PT methods.
In contrast with the BCPB method, three out of the 16 cases are beyond these limits.
As for the ratio statistic, there are six occurrences out of the 16 cases that are outside

0 2 4 6 8 10 12 14 16
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UCL
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LCLE
rr
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Figure 3. The error probability of four bootstrap methods for ratio statistic under
Cpk1¼Cpk2¼ 1.00.
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Figure 2. The error probability of four bootstrap methods for difference statistic under
Cpk1¼Cpk2¼ 1.00.
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the interval (0.0397, 0.0610) for the SB and PB methods. For the BT method, there
are 13 occurrences out of the 16 cases outside the interval (0.0397, 0.0610). However,
the BCPB method has only three out of the 16 cases beyond these limits. In addition,
an average LCB and the standard deviation of the LCB are calculated based on the
N¼ 3000 different trials. Table 3 also displays the average LCB and the standard
deviation of the LCB for each of the four bootstrap confidence intervals.

4.3 Selection power analysis

To compare the performance of those four bootstrap methods, further simulations of
selection power analysis are conducted with sample sizes n¼ 10(10)200 for
Cpk1¼ 1.00 and Cpk1¼ 1.05(0.05)1.50. The selection power computes the probability
of rejecting the null hypothesis H0: Cpk1�Cpk2 while actually H1: Cpk15Cpk2 is true.
For the difference statistic, the selection power computes the proportion of times
that the LCB of Cpk2�Cpk1 is positive in the simulation. Similarly, for the ratio
statistic, the selection power computes the proportion of times that the LCB of
Cpk2/Cpk1 is larger than 1. Figures 4 and 5 display the power of the four bootstrap
methods for the difference and ratio statistic with sample size n¼ 10(10)200,
Cpk1¼ 1.00, Cpk1¼ 1.50, respectively.

According to figures 4 and 5, we find that the PB and BCPB methods have
smaller required sample size with fixed selection power. By contrast, the SB and BT
methods have larger required sample size with fixed selection power. In terms of
error probability analysis described above and selection power analysis, the BCPB
method has more correct error probability and better selection power with fixed
sample size. Therefore, we recommend that the best of those four bootstrap methods
in our approach is the BCPB method.

5. Supplier selection based on BCPB method

5.1 Sample size determination with designated selection power

In practice, if a new S2 wants to compete for the orders by claiming that its capability
is better than the existing S1, the new S2 must furnish convincing information
justifying the claim with a prescribed level of confidence. Thus, the sample size
required for designated selection power must be determined to collect actual data
from the factories. We investigate the BCPB method with B¼ 5000 bootstrap
re-samples, and the single simulation was then replicated N¼ 3000 times. For users’
convenience in applying our procedure in practice, we tabulate the sample size
required for various designated selection power¼ 0.90, 0.95, 0.975, 0.99. The
selection power computes the probability of rejecting the null hypothesis H0:
Cpk1�Cpk2 while actually H1: Cpk15Cpk2 is true. Tables 4 and 5 display the sample
size required of the BCPB method for the difference with Cpk1¼ 1.00 and
Cpk2¼ 1.10(0.05)1.50 and ratio statistic with Cpk2/Cpk1¼ 1.10(0.05)1.50. From
tables 4 and 5, it can be seen that the larger the value of the difference
	¼Cpk2�Cpk1 between two suppliers, the smaller the sample size required for
fixed selection power. For fixed 	 and Cpk1, the sample size required increases as
designated selection power increases. This phenomenon can be explained easily, since
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Figure 5. The selection power of the four bootstrap methods for the ratio statistic with
sample size n¼ 10(10)200.
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Figure 4. The selection power of the four bootstrap methods for the difference statistic with
sample size n¼ 10(10)200.
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the smaller the difference and the larger the designated selection power, the more
collected sample is required to account for the smaller uncertainty in the estimation.

5.2 Selecting the better supplier

In order to satisfy the user’s need and distinguish which supplier has better process
capability, the minimum required Cpk values for the two candidate processes and the
minimal difference 	 are determined, then the sample size required with designated
selection power need to be sampled. Thus, based on the BCPB method if the LCB of
Ĉpk2 � Ĉpk1 is positive or the LCB of Ĉpk2=Ĉpk1 is larger than 1, then we conclude
that the S2 is better than the S1. Otherwise, we would believe that the existing S1 is
better than the new S2 since we don’t have sufficient information to reject the null
hypothesis H0: Cpk1�Cpk2.

6. Application example: PCB supplier selection

Printed circuit boards (PCBs) are widely used in the microelectronic manufacturing
industry, making computers and peripherals, digital phones, fax machines, channel
switch devices, remote controls, and many others. Factories producing various PCBs
and related products generally are classified as ‘the PCB industry’ because the core
components inside those products are the PCBs. The PCB manufacturing process
mainly consists of a series of chemical related operations, and the chemical
operations determine the functions of a PCB. PCBs are laminates. This means that
they are made from two or more sheets of material stuck together, often copper and
fibreglass. Unwanted areas of the copper are etched away to form conductive lands

Table 5. Sample size required of BCPB method for the ratio statistics under �¼ 0.05, with
power¼ 0.90, 0.95, 0.975, 0.99, Cpk1¼ 1.00, Cpk2¼ 1.10(0.05)1.50.

Cpk1 1 1 1 1 1 1 1 1 1
Cpk2 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

90.0% 1045 475 289 191 139 101 84 63 55
95.0% 1340 625 358 239 170 126 107 84 73
97.5% 1600 738 424 286 203 161 122 94 84
99.0% 1975 895 549 391 268 211 162 124 105

Table 4. Sample size required of BCPB method for the difference statistics under �¼ 0.05,
with power¼ 0.90, 0.95, 0.975, 0.99, Cpk1¼ 1.00, Cpk2¼ 1.10(0.05)1.50.

Cpk1 1 1 1 1 1 1 1 1 1
Cpk2 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

90.0% 1045 478 285 185 133 103 79 65 55
95.0% 1328 601 357 233 168 130 103 81 72
97.5% 1567 757 432 283 204 156 127 98 84
99.0% 1972 875 497 356 233 191 156 124 104
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or tracks, which replace the wires carrying the electric currents in other forms of

construction.
Some parts of the side with copper tracks are coated with solder resist (usually

green in colour) to prevent solder sticking to those areas where it is not required.

This avoids unwanted solder bridges between tracks. The solder resist is an

important operation in the post-process for PCB manufacturing, which is

chemically unrelated. The effects of the solder resist are to protect the metal-

ingredients inside the circuits from oxidizing, and also to protect the board itself

from exterior damaging when embedding specific electronic components for

various applications. The uniformity smooth surface of the PCB is an essential

quality characteristic considered in all PCB quality control schemes. The

operation of the solder-resist is the key to surface coating in the PCB

manufacturing industry. The simple method to judge whether the PCBs satisfy

the uniformity flat requirement after the solder resist, is to measure its thickness.

It particularly checks the uneven parts including the caves and towers of a PCB.

By measuring the thickness, one can obtain the degrees of the uniformity for a

PCB’s surface, which is used for PCBs capability measures on thickness.
The example investigated is taken from a company, located in Tao-Yuan

Industrial Park in Taiwan. The company has two competing suppliers manufactur-

ing multi-layer PCBs for the company’s orders. The company would like to

determine which supplier provides better PCBs. The nominal-the-better character-

istic thickness is the key measurement for the comparison. For a particular model

of PCBs, the USL, LSL, and the target value of a PCB’s thickness are set to 28.5 mm,

13.5mm, and 21.0mm, respectively.

6.1 Data analysis and supplier selection

For the supplier selection problem, we begin by setting two factors, (1) the minimum

requirement of the Cpk value, and (2) 	, the minimal difference of Cpk between these

two suppliers, and then we can decide the required sample size for preset selection

power. In this example, the upper specification limit is 28.5, the lower specification

limit is 13.5, and the target value is 21.0. The minimum requirement for the PCB

product is 1.00 and 	¼ 0.30, with selection power 0.95. Then, we have to take 168

samples for the difference statistics and 170 samples for the ratio statistics

(by checking tables 4 and 5). In this study, we take 170 samples for S1 and S2

respectively.
The histogram and the normal probability plot of the 170 samples for S1 and S2

are used to check whether the sample data is normal. The statistic W of

Shapiro–Wilk test is found to be 0.9967 with p-value40.1 for S1, and 0.9965 with

p-value40.1 for S2. Thus, we conclude that the sample data for the two suppliers can

be regarded as taken from near normal processes. We calculate the sample means,

sample standard deviations, and the sample estimators Ĉpk for S1 and S2, as

summarized in table 6. Based on the selection procedure, we execute the Matlab

program and determine the LCB for the difference between the two processes

Ĉpk2 � Ĉpk1 to be 0.1821 and the LCB for the ratio Ĉpk2=Ĉpk1 to be 1.1479.

Therefore, we conclude that S2 is a better supplier than S1.
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7. Conclusions

Supplier’s performance variability is a key issue that needs to be considered in the
evaluation process. It provides the buyer with effective alternative choices within
suppliers. Process capability indices are useful management tools that provide
common quantitative measures on manufacturing capability and production quality.
The manual of supplier certification includes a discussion of process capability
analysis, which recommends a procedure for evaluating the most prevalent process
capability index Cpk. In this paper, we implemented the bootstrap re-sampling
approach and developed a practical procedure for practitioners to use in making
supplier selection decisions between two given suppliers. Performance of the various
selection methods is investigated in terms of the error probability and the selecting
power by using a simulation technique. For user’s convenience in applying our
procedure, we provide the sample size required with designated selection power.
To make the proposed method practical for in-plant applications, a real example
of PCB manufacturing processes is presented to demonstrate the applicability of the
proposed method.

The study of making reliable supplier decisions in comparing i� 2 available
production yields of manufacturing processes, the performance of the bootstrap
approach methods, and the sample size determination for various designed selection
power under different distributional assumptions that usually arise in applications,
would be an interesting issue for further research.
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