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Abstract 
An eigenfunction expansion approach is combined with a power series solution technique to 
establish the asymptotic solutions for geometrically induced electroelastic singularities in 
piezoelectric bodies of revolution and wedges, with arbitrary direction of polarization. The 
asymptotic solutions are obtained by directly solving the three-dimensional equilibrium and 
Maxwell’s equations in terms of displacement components and electric potential. Since the 
direction of polarization can be arbitrary in space, the in-plane components of displacement 
and electric field are generally coupled with the out-of-plane components, and the coupling 
substantially complicates the solutions. The correctness of the proposed solutions are 
confirmed by comparing the present results with the published results obtained by assuming 
axisymmetric deformation or generalized plane deformation. The numerical results related to 
singularity orders are shown for bodies of revolution and wedges that comprise a single 
material (PZT-4 or PZT-5H) or bonded piezo/piezo (PZT-4/PZT-5H) or piezo/isotropic elastic 
(PZT-4/Al or PZT-5H/Al) materials. The numerical results concerning the order of the 
singularity are expressed in graphic form, and are shown herein for the first time.  
 
Key words:  electroelastic singularities, piezoelectric bodies of revolution, piezoelectric 
wedges, three-dimnsional asymptotic solutions, eigenfunction expansion approach 
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摘要 

本研究透過特徵函數展開法配合級數解建立電磁彈性迴轉體與楔形體之三維電磁彈奇

異性漸近解。直接求解於以位移與電勢表示的三維力平衡與馬克斯威爾(Maxwell) 方程

組之漸近解。由於考慮材料具任意之極化方向，造成面外與面內之位移與電場彼此耦合，

導致求解之困難度。透過與文獻中假設軸對稱變形或廣義平面變形所得結果比較，驗證

本研究所得解之正確性◦根據漸近解，將探討有關於極化方向、幾何形狀、材料種類與

邊界條件對於電磁彈性與壓電迴轉體與楔型體奇異性階數之影響；其中迴轉體與楔形體

可為單一壓電材料(PZT-4 與 PZT-6B) 、壓電/各向同向性彈性材料(PZT-4/Si 或

PZT-6B/Si)或雙壓電材料(PZT-4/PZT-6B)。所得數值結果以圖表示，本研究所得均首見

於文獻◦ 
 
關鍵詞：奇異性、壓電迴轉體、壓電楔形體、三維漸近解、特徵函數展開法 
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I. Introduction 
 

1.1 Literature Review 
Piezoelectric material is a widely used, smart or intelligent material, because of the 

intrinsic effects of coupling between electric fields and mechanical deformation. Piezoelectric 
materials have been extensively applied in actuators, resonators, oscillators, conductors and 
sensors. The most interesting feature of piezoelectric materials is that they can serve not only 
as actuators, providing driving signals, but also as sensors for smart structures. In the 
practical applications, electroelastic singularities are commonly observed at a sharp corner or 
because of discontinuity in material properties. Accordingly, either local mechanical failure 
or dielectric failure can occur at a sharp corner. Understanding of the electroelastic singularity 
behaviors of piezoelectric wedges is essential to optimize the design of piezoelectric devices 
and further advance smart material technology. Furthermore, an accurate numerical analysis 
of problems that involve stress singularities depends on knowledge of such stress singularity 
behaviors. The two typical geometries that are commonly considered in the literature on 
geometrically induced stress singularities are wedges and bodies of revolution. 

The stress singularities in a wedge have been comprehensively examined. Since Williams 
(1952a) pioneered the investigation of stress singularities of plates under extension, many 
studies of stress singularities in wedges of a single material or multiple materials have been 
carried out, based on the plane strain or stress assumption (e.g. Williams, 1952b; Hein and 
Erdogan, 1971; England, 1971; Bogy and Wang, 1971; Dempsey and Sinclair, 1981; Ying 
and Katz, 1987) or three-dimensional elasticity theory (e.g. Hartranft and Sih, 1969; 
Chaudhuri and Xie, 2000). Geometrically induced stress singularities in plates of a single 
material and multiple materials have also been extensively studied using classical thin plate 
theory (e.g. Williams, 1952c; Williams and Owens, 1954), first-order shear deformation plate 
theory (e.g. Burton and Sinclair, 1986; Huang, 2002a; Huang, 2003; Saidi et al., 2010; 
McGee and Kim, 2005), and third–order plate theory (Huang, 2002b).  

Numerous analyses of stress singularities for elastic bodies of revolution are also 
available. Making an assumption of axisymmetric deformation, Zak (1964) utilized the Love 
stress approach (Love, 1927) to investigate geometrically induced stress singularities in 
bodies of revolution that were made of a single material, while Li et al. (1998, 2000) adopted 
the Love stress approach and Boussinesq's solution (Timoshenko and Goodier, 1970) 
respectively, to obtain the stress field near the bond edge of a bi-material body of revolution. 
Ting et al. (1985) presented eigenfunctions at a singular point of a body of revolution made 
of transversely isotropic material. Without assuming axisymmetric deformation, Huang and 
Leissa (2007) presented three-dimensional sharp corner displacement functions for bodies of 
revolution, and further studied the geometrically induced stress singularities in bimaterial 
bodies of revolution (Huang and Leissa, 2008). 
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A few studies of the geometrically-induced electroelastic singularities at the vertex of a 

piezoelectric wedge (Fig. 2.1) are based on the assumption that all physical quantities under 
consideration depend on the planar coordinates. Based on the plane strain assumption ( zzε ,

zyε , zxε , and zE , which are defined in Chapter 2, equal zero), Xu and Rajapakse (2000) 

extended Lekhnitskii’s complex potential functions for in-plane stresses and electric 
displacement components to examine the electroelastic singularities at the vertex of a 
piezoelectric wedge that has a direction of polarization on the x-y plane (see Fig. 2.1). Based 
on an assumption of generalized plane deformation, Chue and Chen (2002) presented a 
decoupled formulation of piezoelectric elasticity and applied it to examine the stress 
singularities near the apex of a rectilinearly polarized piezoelectric wedge, considering its 
direction of polarization in the x-y plane or along the z-axis. Hwu and Ikeda (2008) proposed 
an extended Stroh formulation in an (x, y) coordinate system by considering a generalized 
plane strain and short circuit ( 0zzε =  and 0zE = ) and presented numerical results for the 
electroelastic singularities at the vertices of piezoelectric wedges and multi-material wedges 
with the directions of polarization in the x-y plane. Because different plane assumptions were 
made in these three cited papers, they employed different constitutive laws in their solutions. 
Notably, Xu and Rajapakse (2000) treated the piezoelectric material as transversely isotropic 
material as they began to develop solutions while Chue and Chen (2002) and Hwu and Ikeda 
(2008) treated piezoelectric material as generally anisotropic. The solutions of Xu and 
Rajapakse (2000) include only in-plane physical quantities, while those of Chue and Chen 
(2002) and Hwu and Ikeda (2008) included in-plane and out-of-plane physical quantities. 
Following the assumptions in Chue and Chen (2002), Chen, Chu and Lee (2004) employed 
the extended Lekhnitskii formulation to determine the eletroelastic singularity behaviors near 
the apex of a piezoelectric wedge that was polarized in the radial, circular, or axial direction. 
Chu and Chen (2003) applied the Mellin transform to determine anti-plane stress singularities 
in a bonded bi-material piezoelectric wedge. Neglecting all out-of-plane physical quantities, 
Shang and Kitamura (2005) utilized a modified version of the general solution that was 
developed by Wang and Zheng (1995) and Shang et al. (2005) to investigate the stress 
singularities at the interface edge of a wedge made of two piezoelectric materials with the 
direction of polarization parallel to the x-axis.  

A review of the literature reveals only two investigations that considered eletroelastic 
singularities in a piezoelectric body of revolution, based on axisymmetric deformation 
assumptions. To perform stress singularity analysis of axisymmetric piezoelectric bonded 
structures, Xu and Mutoh (2001) adopted the general solutions for coupled equations for 
piezoelectric material that was developed by Ding et al. (1996), while Li and Sato (2002) 
extended the method proposed by Ting et al. (1985) for an elastic material. These solutions 
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consist of four and three quasi-harmonic functions, respectively. In these two works, the 
direction of polarization of the piezoelectric material was assumed to be along the axis of 
revolution.  
 
1.2 Purposes of Research 

The main purpose of the present research is to develop an asymptotic solution for the 
eletroelastic singularities in a piezoelectric body of revolution and wedge without any 
restrictions on the direction of polarization of the material. When a piezoelectric material is 
considered to be transversely isotropic, and the axis of material symmetry is not parallel to 
the axis of revolution, the assumption of axisymmetric deformation is no longer valid. Since 
the direction of polarization can be arbitrary in space, the in-plane components of 
displacement and electric field are generally coupled with the out-of-plane components.  An 
eigenfunction expansion approach combined with a power series method is adopted to solve 
the equilibrium and Maxwell’s equations in terms of mechanical displacement components 
and electric potential. The correctness of the proposed solution is confirmed by comparing 
the present results with the published results in cases in which the direction of polarization is 
along some special directions. Analyses are performed on bodies that comprise a single 
piezoelectric material (PZT-4 or PZT-5H), bonded piezo/piezo (PZT-4/PZT-5H) or 
piezo/isotropic elastic (PZT-4/Al or PZT-5H/Al) materials. The effects of geometry of body, 
polarization orientation, material type(s) and boundary conditions on the singularity orders 
are comprehensively examined. The numerical results concerning the order of the singularity 
are expressed in graphic form, and are shown herein for the first time.  
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II Asymptotic Solutions for a Wedge 
2.1 Basic Formulation 

Consider a rectilinearly anisotropic piezoelectric wedge that is polarized in the ẑ
direction, as presented in Fig. 2.1. The constitutive equations of the piezoelectric material are 
expressed in the material coordinate system ( )ˆ ˆ ˆx, y,z , as 

{ } [ ]{ } [ ] { }T ˆˆˆ ˆ ˆc e Eσ ε= − , (2.1a) 

{ } [ ]{ } [ ]{ }ˆ ˆˆ ˆˆD e Eε η= + , (2.1b) 

where { } { }T
ˆˆ ˆ ˆ ˆ ˆ ˆˆˆˆ ˆ ˆxx yy zz yz zx xyσ̂ σ σ σ σ σ σ=  is the stress vector;  

{ } { }2 2 2
T

ˆˆ ˆ ˆ ˆ ˆ ˆˆˆˆ ˆ ˆxx yy zz yz zx xyε̂ ε ε ε ε ε ε= is the strain vector; { } { }T
ˆ ˆ ˆx y zD̂ D D D= is 

the electric displacement vector; { } { }T
ˆ ˆ ˆx y zÊ E E E= is the electric field vector, and [ ]ĉ , 

[ ]ê  and [ ]η̂  are the mechanical elastic constant matrix, the piezoelectric constant matrix 

and the dielectric constant matrix, respectively.  
It is easy to solve for the eletroelastic singularities at the vertex of the wedge in the 

cylindrical coordinate system (r,θ , z ) given in Fig. 2.1. In the cylindrical coordinate system, 

the equilibrium and Maxwell’s equations in terms of stress components ( ijσ ) and electric 

displacements ( iD ) without body force and charges are  

( )1 0,rrrrr rz

r r z r
θθθ σ σσσ σ

θ
−∂∂ ∂

+ + + =
∂ ∂ ∂

 (2.2a) 

1 2 0,r z r

r r z r
θ θθ θ θσ σ σ σ

θ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

 (2.2b) 

1 0,zrz zz rz

r r z r
θσσ σ σ
θ

∂∂ ∂
+ + + =

∂ ∂ ∂
 (2.2c) 

( )1 1 0,r zrD D D
r r r z

θ

θ
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (2.2d) 

The constitutive equations of the piezoelectric material in the cylindrical coordinate 
system are  

{ } [ ]{ } [ ]{ }c e Eσ ε= − , (2.3a) 

{ } [ ] { } [ ]{ }TD e Eε η= + , (2.3b) 

where { } { }T
rr zz z zr rθθ θ θσ σ σ σ σ σ σ= , { } { }2 2 2 T

rr zz z zr rθθ θ θε ε ε ε ε ε ε= ,  
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{ } { }T
r zD D D Dθ= , { } { }T

r zE E E Eθ= , 

[ ]

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

c c c c c c
c c c c c c
c c c c c c

c
c c c c c c
c c c c c c
c c c c c c

 
 
 
 

=  
 
 
 
  

 ,  [ ]
11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

e e e e e e
e e e e e e e

e e e e e e

 
 =  
  

, 

[ ]
11 12 13

12 22 23

13 23 33

η
η η η
η η η
η η η

 
 =  
  

. (2.4) 

The components of [ ]c , [ ]e  and [ ]η  are related to the components of [ ]ĉ , [ ]ê  and [ ]η̂ , 

respectively; and are functions of θ  and depend on the direction cosines between ( )ˆ ˆ ˆx, y,z  
and (x, y, z). These relations are given in Appendix I.  

Substituting strain-displacement relations and electric field-potential relations into Eqs. 
(2.3) and (2.4) enables the stress components and electric displacements to be expressed in 
terms of mechanical displacement components ( ru ,uθ  and zu ) and electric potential (ϕ ), 
given in Appendix II. Substituting those expressions into Eqs. (2.2) yields the governing 
equations in terms of mechanical displacement components and electric potential as  

2 2 2 2
16 56 66

11 55 11 15 16 562 2 2 2 2c c cc c c c c c
r z r r r z r r r r zθ θ θ θ θ θ

 ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

2 2 2 2
26 66

15 22 66 16 45 262 2 2 2

12 r
c cc c c u c c c

r z r r z r rθ θ θ
  ∂ ∂∂ ∂ ∂ ∂ ∂ + + − + + + + + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

( ) ( )
2 2

46 26
14 24 56 22 66 12 66 25 462

c cc c c c c c c c c
r z r r r r zθ θ θ θ θ

∂ ∂∂ ∂ ∂ ∂   + − − + + − − + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

( )
2 2 2 2

66 56
14 56 26 26 15 35 15 252 2 2 2

1c cc c c c u c c c c
r z r r z r rθθ θ θ

  ∂ ∂∂ ∂ ∂ ∂ ∂ + + + − + + + + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

( ) ( )
2 2

36 46
13 23 24 14 56 36 452

c cc c c c c c c
r z r r r r zθ θ θ θ θ

∂ ∂∂ ∂ ∂ ∂   + − + + − + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

( )
2 2 2 2

16
13 55 46 11 35 11 122 2 2 2z

ec c c u e e e e
r z r r z r rθ θ

  ∂∂ ∂ ∂ ∂ ∂ + + + + + + − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  
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( ) ( )
2 2

36 26
31 32 22 16 21 25 362

e ee e e e e e e
r z r r r r zθ θ θ θ θ

∂ ∂∂ ∂ ∂ ∂   + − + + − + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

( )
2 2

31 15 26 2 2 0e e e
r z r

ϕ
θ

∂ ∂
+ + + =∂ ∂ ∂ 

, (2.5a) 

2 2
25 2612

16 45 16 26 56 24 22 662 2 22 2 c ccc c c c c c c c
r z r r r z rθ θ θ θ

 ∂ ∂∂∂ ∂ ∂ ∂ ∂    + + + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 

( ) ( ) ( )
2 2 2 2

22
12 66 25 46 56 14 26 26 2 2

1
r

cc c c c c c c c u
r r r z r z rθ θ θ θ

 ∂∂ ∂ ∂ ∂
+ + + + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

2 2 2
26 24 22

66 44 66 46 262 2 2 2c c cc c c c c
r z r r r z r r rθ θ θ θ θ

 ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂     + + + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

2 2 2 2 2
26 25

24 46 66 22 56 34 562 2 2 2

12 2 2c cc c c c u c c c
r z r z r r zθθ θ θ θ

  ∂ ∂∂ ∂ ∂ ∂ ∂  + + + − − + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

( ) ( )
2 2

23 24
36 46 25 46 23 4422 c cc c c c c c

r r r z r r r r zθ θ θ θ θ
∂ ∂∂ ∂ ∂ ∂ ∂   × + + + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

( )
2 2 2 2

3212
36 45 24 16 34 16 362 2 2 2 2 2z

eec c c u e e e e
r z r r z r r r zθ θ θ

  ∂∂∂ ∂ ∂ ∂ ∂ ∂  + + + + + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

( ) ( ) ( )
2 2 2 2

22
26 12 26 24 32 36 14 222 2 2 0ee e e e e e e e

r r r r z r z r
ϕ

θ θ θ θ θ
∂ ∂ ∂ ∂ ∂ ∂ + + + + + + + + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

, 

 (2.5b) 

( )
2 2

45 4614
15 35 15 25 23 55 24 14 562 2 2

c ccc c c c c c c c c
r z r r r z rθ θ θ θ

 ∂ ∂∂∂ ∂ ∂ ∂ ∂    + + + + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 

( ) ( )
2 2 2 2 2 2

24
45 36 55 13 46 56 342 2 2 2

1
r

cc c c c c u c c
r r r z r z r r zθ θ θ θ

  ∂∂ ∂ ∂ ∂ ∂ ∂
× + + + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

( ) ( )
2

46 44 24
45 36 46 25 46 44 232

c c cc c c c c c c
r r r z r r rθ θ θ θ θ

∂ ∂ ∂∂ ∂ ∂ ∂     + + − + + − + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

( )
2 2 2 2 2

46 45
45 36 24 55 33 552 2 2 2

1c cc c c u c c c
r z r z r r z r rθθ θ θ θ

  ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ × + + + − + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
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2 2 2 2
34 44

35 45 34 35 442 2 22 2 2 z
c cc c c c c u

r z r r r r z r z rθ θ θ θ θ θ
∂ ∂∂ ∂ ∂ ∂ ∂ ∂   + + + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

( )
2 2 2

3414 24
15 33 15 35 25 142 2 2  ee ee e e e e e

r z r r r z r r rθ θ θ θ θ
 ∂∂ ∂∂ ∂ ∂ ∂ ∂ ∂    + + + + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 

( ) ( )
2 2 2

34 23 35 13 24 2 2 0e e e e e
r z r z r

ϕ
θ θ

∂ ∂ ∂
+ + + + + =∂ ∂ ∂ ∂ ∂ 

, (2.5c) 

2 2
25 2621

11 35 11 12 15 32 222 2 2

e eee e e e e e e
r z r r r z rθ θ θ θ

 ∂ ∂∂∂ ∂ ∂ ∂ ∂    + + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 

( ) ( ) ( )
2 2 2 2 2

22
16 21 25 36 15 31 26 162 2 2

1
r

ee e e e e e e u e
r r r z r z r rθ θ θ θ

  ∂∂ ∂ ∂ ∂ ∂
+ + + + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

( )
2 2

26 24 22
34 14 36 26 12 262 2

e e ee e e e e e
z r r r z r r rθ θ θ θ θ

∂ ∂ ∂∂ ∂ ∂ ∂ ∂     + + + − + + − + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

( ) ( )
2 2 2 2 2

26
24 32 14 36 22 15 332 2 2 2

1ee e e e e u e e
r z r z r r zθθ θ θ

  ∂∂ ∂ ∂ ∂ ∂
+ + + + + − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

( ) ( )
2 2

25 23 24
15 13 14 25 23 342

e e ee e e e e e
r r r z r r r r zθ θ θ θ θ θ

∂ ∂ ∂∂ ∂ ∂ ∂ ∂     + + + + + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

( )
2 2 2 2

12 22
13 35 24 11 33 112 2 2 2 2    ze e e u

r z r r z r r r
η ηη η η

θ θ θ θ
  ∂ ∂∂ ∂ ∂ ∂ ∂ ∂   + + + − + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 

2 2 2 2
23

13 12 23 13 22 2 22 2 2 0
r z r r r z r z r

ηη η η η η ϕ
θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ + + + + + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
. (2.5d) 

 
2.2. Construction of Asymptotic Solution 

To determine the asymptotic solution of Eqs. (2.5) as r approaches zero, the mechanical 
displacement components and electric potential in the double series can be conveniently 
expanded as follows; 

( ) ( ) ( )
0 0

ˆ, , ,m mn
r n

m n
u r z r U zλθ θ

∞ ∞
+

= =

= ∑∑ , (2.6a) 
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( ) ( ) ( )
0 0

ˆ, , ,m mn
n

m n
u r z r V zλ
θ θ θ

∞ ∞
+

= =

= ∑∑ , (2.6b) 

( ) ( ) ( )
0 0

ˆ, , ,m mn
z n

m n
u r z r W zλθ θ

∞ ∞
+

= =

= ∑∑ , (2.6c) 

( ) ( ) ( )
0 0

ˆ, , ,m mn
n

m n
r z r zλϕ θ θ

∞ ∞
+

= =

= Φ∑∑ , (2.6d) 

where the characteristic values mλ  are assumed to be constants and can be complex 
numbers. The real part of mλ  has to be positive to satisfy the regularity conditions for 
mechanical displacement components and electric potential at r=0 (such as finite 
displacement and electric potential at r=0). 

Substituting Eqs. (2.6) into Eqs. (2.5) and carefully arranging the resulting equations 
yields 

( )( ) ( ) ( ) ( )
( )

( )2 16 66
11 11 16

0 0

ˆˆ ˆ1 2m

m
m mn n

m m n m n m
m n

c c Ur c n n U c n U c nλ λ λ λ λ
θ θ θ

∞ ∞
+ −

= =

 ∂ ∂ ∂ + + − + + + + + + ×  ∂ ∂ ∂ 
∑∑  

( )
( ) ( ) ( ) ( ) ( ) ( )

2
26 66

22 66 16 262

ˆ ˆ ˆ ˆ1
m

m m mn
n m m n m n

U c cc c U c n n V c n Vλ λ λ
θ θ θ θ

 ∂ ∂ ∂∂  + − + + + + + − + − + +   ∂ ∂ ∂ ∂  
 

( )

( ) ( )
( )

( ) ( )
2

26 66
22 66 12 66 26 26 152

ˆ ˆ ˆ
m m

mn n
m n m

c V V cc c c c n c c V c nλ λ
θ θ θ θ θ

 ∂ ∂ ∂ ∂ ∂ + − − + + + + + − + + + ×  ∂ ∂ ∂ ∂ ∂   
 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

56 46
15 25 24 14 56

ˆ ˆˆ ˆ1
m m

m m n n
m n m n m

c c W Wn W c c n W c c c nλ λ λ
θ θ θ θ

∂ ∂ ∂ ∂   + − + − + + + − + + + +   ∂ ∂ ∂ ∂   
 

( )

( ) ( ) ( ) ( ) ( )
( )2

16 26
46 11 11 12 222

ˆ ˆˆ ˆ1
m m

m mn n
m m n m n

W e ec e n n e e n eλ λ λ
θ θ θ θ

∂ ∂ ∂ ∂Φ   + + + + − Φ + − + + Φ + − +   ∂ ∂ ∂ ∂   
 

( )( )
( ) ( ) ( ) ( )

( )
2 2

1 56
16 21 26 15 56 152

ˆ ˆˆ ˆ
2 2m

m m m m
nn n n n

m m
c U Ue e n e r c c c n

z z
λλ λ

θ θ θ θ
+ −∂Φ ∂ Φ  ∂ ∂ ∂ + + + + + + + + + ×  ∂ ∂ ∂ ∂ ∂ ∂ 

 

( ) ( )

( )
( )

( ) ( )
( )

( )
2

46
14 24 56 25 46 14 56 36 45

ˆ ˆ ˆ ˆm m m m
n n n n

m
U c V V Vc c c c c c c n c c

z z z z
λ

θ θ
∂ ∂ ∂ ∂ ∂ + − − + + + + + + + + × ∂ ∂ ∂ ∂ ∂ ∂ 

 

( ) ( )

( ) ( )
( ) ( )

( )
2

36 36
13 23 13 55 31 32 25 36

ˆ ˆ ˆ ˆm m m m
n n n n

m
W c W W ec c c c n e e e e

z z z z
λ

θ θ θ
∂ ∂ ∂ ∂ ∂ ∂Φ   + − + + + + + − + + + ×   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

( )

( ) ( )
( ) ( ) ( ) ( ) ( )2 2 2 2 2

31 15 55 45 35 352 2 2 2

ˆ ˆ ˆˆ ˆ ˆ
0m

m m m m m m
nn n n n n n

m
U V We e n r c c c e

z z z z z z
λλ

θ
+  ∂ Φ ∂Φ ∂ ∂ ∂ ∂ Φ

+ + + + + + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 

 (2.7a) 
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( )( ) ( ) ( ) ( )
( )

2 2612
16 16 26 22 66

0 0

ˆˆ ˆ1 2m

m
m mn n

m m n m n
m n

c Ucr c n n U c c n U c cλ λ λ λ
θ θ θ

∞ ∞
+ −

= =

∂ ∂ ∂   + + − + + + + + + +    ∂ ∂ ∂   
∑∑  

( )( )
( )

( ) ( ) ( ) ( )
( )2

22 22
12 66 26 26 662

ˆ ˆˆ ˆ1
m m

m mn n
m n m m n

U Vc cc c n c c U c n n Vλ λ λ
θ θ θ θ θ

 ∂ ∂∂ ∂∂  + + + + + + + + + − +   ∂ ∂ ∂ ∂ ∂  
 

( ) ( ) ( )
( )

( ) ( )
2

26 26
66 26 66 22 562

ˆˆ ˆ2
m

m mn
m n m n m

c V cc n V c n c c V c nλ λ λ
θ θ θ θ

 ∂ ∂ ∂ ∂ + + + + + + − − + + + ×  ∂ ∂ ∂ ∂   
 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

25 24
56 46 25 46

ˆ ˆˆ ˆ1 2
m m

m m n n
m n m n m

c W Wcn W c n W c c c nλ λ λ
θ θ θ θ

∂ ∂ ∂∂   + − + + + + + + + +  ∂ ∂ ∂ ∂  
 

( )

( ) ( ) ( ) ( ) ( )
( )2

12 22
24 16 16 262

ˆ ˆˆ ˆ1 2
m m

m mn n
m m n m n

W e ec e n n e n eλ λ λ
θ θ θ θ

∂ ∂Φ∂ ∂   + + + + − Φ + + + Φ + +   ∂ ∂ ∂ ∂   
 

( )( )
( ) ( ) ( )

( )
( )2 2

1 25
12 26 22 56 24 25 462

ˆ ˆˆ ˆ
2m

m m m m
nn n n n

m
c U Ue e n e r c c c c

z z
λλ

θ θ θ θ
+ −∂Φ ∂ Φ  ∂ ∂ ∂ + + + + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ 

 

( )( )
( ) ( ) ( )

( )
( )2

2324
56 14 46 24 46 36

ˆ ˆ ˆ ˆ
2 2 2

m m m m
n n n n

m m
U V V V ccc c n c c c n c

z z z z
λ λ

θ θ θ
∂ ∂ ∂ ∂ ∂∂   + + + + + + + + + + ×   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

( )

( )
( )

( ) ( )
( ) ( )

( )
( )2 2

32
23 44 36 45 36 24 32

ˆ ˆ ˆ ˆ ˆ
2

m m m m m
n n n n n

m
W W W ec c c c n e e e

z z z z z
λ

θ θ θ
∂ ∂ ∂ ∂ ∂Φ ∂ Φ + + + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

   

( )( )
( ) ( ) ( ) ( ) ( )2 2 2 2

36 14 45 44 34 342 2 2 2

ˆ ˆ ˆˆ ˆ
0m

m m m m m
nn n n n n

m
U V We e n r c c c e

z z z z z
λλ +  ∂Φ ∂ ∂ ∂ ∂ Φ

+ + + + + + + =   ∂ ∂ ∂ ∂ ∂  
(2.7b) 

( )( ) ( ) ( ) ( )
( )

2 4614
15 15 25 24

0 0

ˆˆ ˆ1m

m
m mn n

m m n m n
m n

c Ucr c n n U c c n U cλ λ λ λ
θ θ θ

∞ ∞
+ −

= =

∂ ∂ ∂   + + − + + + + + +    ∂ ∂ ∂   
∑∑  

( )( )
( )

( ) ( ) ( ) ( ) ( )
2

4624
14 56 46 562

ˆ ˆ ˆ1
m

m mn
m n m m n m

U ccc c n c U c n n V nλ λ λ λ
θ θ θ θ

 ∂ ∂∂ ∂  + + + + + + + + − + + ×   ∂ ∂ ∂ ∂  
 

( )
( )

( ) ( )
( )

( ) ( )
2

4624
46 25 46 24 552

ˆ ˆˆ ˆ
m m

m mn n
n m n m

V V ccV c c c n c V c nλ λ
θ θ θ θ θ

 ∂ ∂ ∂∂ ∂ + − + + + + + − + + + ×  ∂ ∂ ∂ ∂ ∂   
 

( ) ( ) ( ) ( )
( )

( )
( ) ( )2

45 44
55 45 44 2

ˆ ˆ ˆˆ ˆ1 2
m m m

m m n n n
m n m n m

c W W Wcn W c n W c n cλ λ λ
θ θ θ θ θ

∂ ∂ ∂ ∂∂   + − + + + + + + +  ∂ ∂ ∂ ∂ ∂  
 

( )( ) ( ) ( ) ( )
( )

( ) ( )
( )

14 24
15 15 25 14

ˆ ˆˆ ˆ1
m m

m m n n
m m n m n m

e ee n n e n e e nλ λ λ λ
θ θ θ θ

∂Φ ∂Φ∂ ∂   + + + − Φ + + + Φ + + + +   ∂ ∂ ∂ ∂   
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( ) ( )

( )
( )

( ) ( )
( )2 2

1 45
24 23 55 45 36 55 132

ˆ ˆ ˆˆ
m

m m m m
nn n n n

m
c U U Ue r c c c c c c n

z z z
λ λ

θ θ θ
+ −∂ Φ  ∂ ∂ ∂ ∂ + + + + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ 

 

( )

( )
( )

( ) ( )
( ) ( )2

3424
45 36 44 23 45 36 35

ˆ ˆ ˆ ˆm m m m
n n n n

m
V V V c Wcc c c c c c n c

z z z z
λ

θ θ θ
∂ ∂ ∂ ∂ ∂∂   + − + + + + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

( )

( )
( ) ( )

( )
( )

( ) ( )
2 2

34
34 35 35 34 23 35 13

ˆ ˆ ˆ ˆ
2 2

m m m m
n n n n

m m
W W ec c n e e e e e n

z z z z
λ λ

θ θ θ
∂ ∂ ∂ ∂Φ ∂ Φ + + + + + + + + + + × ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

( )ˆ m
n

z
∂Φ
∂ 

( ) ( ) ( ) ( )2 2 2 2

35 34 33 332 2 2 2

ˆ ˆ ˆ ˆ
0m

m m m m
n n n n nU V Wr c c c e

z z z z
λ +  ∂ ∂ ∂ ∂ Φ

+ + + + =  ∂ ∂ ∂ ∂ 
 (2.7c) 

 

( )( ) ( ) ( ) ( )
( )

2 2621
11 11 12 22

0 0

ˆˆ ˆ1m

m
m mn n

m m n m n
m n

e Uer e n n U e e n U eλ λ λ λ
θ θ θ

∞ ∞
+ −

= =

∂ ∂ ∂   + + − + + + + + +    ∂ ∂ ∂   
∑∑  

( )( )
( )

( ) ( ) ( ) ( ) ( )
2

2622
16 21 26 162

ˆ ˆ ˆ1
m

m mn
m n m m n m

U eee e n e U e n n V nλ λ λ λ
θ θ θ θ

 ∂ ∂∂ ∂  + + + + + + + + − + + ×   ∂ ∂ ∂ ∂  
 

( )
( )

( ) ( )
( )

( ) ( )
2

2622
26 12 26 22 152

ˆ ˆˆ ˆ
m m

m mn n
n m n m

V V eeV e e e n e V e nλ λ
θ θ θ θ θ

 ∂ ∂ ∂∂ ∂ + − + + + + + − + + + ×  ∂ ∂ ∂ ∂ ∂   
 

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )2

25 24
15 14 25 24 2

ˆ ˆ ˆˆ ˆ1
m m m

m m n n n
m n m n m

e W W Wen W e n W e e n eλ λ λ
θ θ θ θ θ

∂ ∂ ∂ ∂∂   + − + + + + + + + +  ∂ ∂ ∂ ∂ ∂  
 

( )( ) ( ) ( ) ( )
( )

( )
( )

12 22
11 11 12

ˆ ˆˆ ˆ1 2
m m

m m n n
m m n m n mn n n nη ηη λ λ η λ η λ

θ θ θ θ
∂Φ ∂Φ∂ ∂   − + + − Φ − + + Φ − − +   ∂ ∂ ∂ ∂   

 

( ) ( )

( )
( )

( ) ( )
( )2 2

1 25
22 15 32 25 36 15 312

ˆ ˆ ˆˆ
m

m m m m
nn n n n

m
e U U Ur e e e e e e n

z z z
λη λ

θ θ θ
+ −∂ Φ  ∂ ∂ ∂ ∂ − + + + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ 

 

( )

( )
( )

( ) ( )
( ) ( )2

2324
14 36 24 32 14 36 13

ˆ ˆ ˆ ˆm m m m
n n n n

m
V V V e Wee e e e e e n e

z z z z
λ

θ θ θ
∂ ∂ ∂ ∂ ∂∂   + − + + + + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

( )( )
( ) ( ) ( )

( )
( )2

23
13 35 13 23 13

ˆ ˆ ˆ ˆ
2 2

m m m m
n n n n

m m
We e n n

z z z z
ηλ η η η λ
θ θ

∂ ∂ ∂Φ ∂ Φ ∂Φ + + + − + − − +  ∂ ∂ ∂ ∂ ∂ ∂  
 

( ) ( ) ( ) ( )2 2 2 2

35 34 33 332 2 2 2

ˆ ˆ ˆ ˆ
0m

m m m m
n n n n nU V Wr e e e

z z z z
λ η+  ∂ ∂ ∂ ∂ Φ

+ + + − =  ∂ ∂ ∂ ∂ 
 (2.7d) 

To investigate the behaviors of the solutions around r=0, only the parts of the solutions 
with the lowest order of r have to be considered. That is the solution corresponding to n=0 in 
Eqs. (2.7). Accordingly, the following equations must be solved. 
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( )
( )

( )
( ) ( ) ( )

( )
( )

( )
( ) ( )m

mm
m

mm

VpVpVpUpUpU
05

0
42

0
2

302
0

12
0

2
ˆˆˆˆˆˆ

θ
θ

θ
θ

θθ
θ

θ
θ

+
∂

∂
+

∂
∂

++
∂

∂
+

∂
∂

 

( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( ) 0ˆˆˆˆˆˆ
011

0
102

0
2

908
0

72
0

2

6 =Φ+
∂
Φ∂

+
∂
Φ∂

++
∂

∂
+

∂
∂

+ m
mm

m
mm

pppWpWpWp θ
θ

θ
θ

θθ
θ

θ
θ

θ

 (2.8a) 
 
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )
2 2

0 0 0 0
1 2 0 3 4 5 02 2

ˆ ˆ ˆ ˆˆ ˆ
m m m m

m mV V U Uq q V q q q Uθ θ θ θ θ
θ θ θ θ

∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂
 

( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )
2 2

0 0 0 0
6 7 8 0 9 10 11 02 2

ˆ ˆ ˆ ˆˆ ˆ 0
m m m m

m mW Wq q q W q q qθ θ θ θ θ θ
θ θ θ θ

∂ ∂ ∂ Φ ∂Φ
+ + + + + + Φ =

∂ ∂ ∂ ∂
 

 (2.8b) 
 

( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )
2 2

0 0 0 0
1 2 0 3 4 5 02 2

ˆ ˆ ˆ ˆˆ ˆ
m m m m

m mW W U Ur r W r r r Uθ θ θ θ θ
θ θ θ θ

∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂
 

( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )
2 2

0 0 0 0
6 7 8 0 9 10 11 02 2

ˆ ˆ ˆ ˆˆ ˆ 0
m m m m

m mV Vr r r V r r rθ θ θ θ θ θ
θ θ θ θ

∂ ∂ ∂ Φ ∂Φ
+ + + + + + Φ =

∂ ∂ ∂ ∂
 

 (2.8c) 
 

( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )
2 2

0 0 0 0
1 2 0 3 4 5 02 2

ˆ ˆˆ ˆ ˆˆ
m m m m

m mU Us s s s s Uθ θ θ θ θ
θ θ θ θ

∂ Φ ∂Φ ∂ ∂
+ + Φ + + +

∂ ∂ ∂ ∂
 

( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )
2 2

0 0 0 0
6 7 8 0 9 10 11 02 2

ˆ ˆ ˆ ˆˆ ˆ 0
m m m m

m mV V W Ws s s V s s s Wθ θ θ θ θ θ
θ θ θ θ

∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂
 

 (2.8d) 
Appendix III defines ip , iq , ir , and is  in Eqs. (2.8). 

Equations (2.8) are a set of ordinary differential equations with variable coefficients that 
depend only on θ . The solutions to Eqs. (2.8) are independent of z. The exact closed-form 
solutions to Eqs. (2.8) are intractable, if they exist. The power series method can be directly 
adopted to develop a general solution for ordinary differential equations with variable 
coefficients. Very high-order terms must be considered to obtain an accurate solution and this 
requirement can cause numerical difficulties. To overcome these difficulties, a domain 
decomposition technique is used in conjunction with the power series method to establish a 
general solution of Eqs. (2.8). 

The range of θ  under consideration is first divided into a number of sub-domains (see 
Fig. 2.2). A series solution to Eqs. (2.8) is established in each sub-domain. Consequently, a 
general solution over the whole θ  domain is constructed from these series solutions in the 
sub-domains by imposing the continuity conditions between each pair of adjacent 
sub-domains. This process is a very convenient means of constructing solutions that can be 
used to analyze multi-material wedges, which are also considered in this work.  
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To establish the power series solution for sub-domain i of θ , the variable coefficients in 
Eqs. (2.8) are expanded in terms of the power series of θ  with respect to the middle point of 

the sub-domain, iθ : 

   
( ) ( )( ) ( )∑

=

−=
K

k

k
i

i
kjjp

0
θθµθ

, 
( ) ( )( ) ( )∑

=

−=
K

k

k
i

i
kjjq

0
θθςθ

, 

( ) ( )( ) ( )∑
=

−=
K

k

k
i

i
kjjr

0
θθξθ

, 
( ) ( )( ) ( )∑

=

−=
K

k

k
i

i
kjjs

0
θθϑθ

. (2.9) 
Similarly, the solutions of Eqs. (2.8) in sub-domain i are expressed as  

( ) ( )( )∑
=

−=
J

j

j
i

i
j

m
i AU

0
0

ˆˆ θθ
, 

( ) ( )( )∑
=

−=
J

j

j
i

i
j

m
i BV

0
0

ˆˆ θθ
, 

( ) ( )( )∑
=

−=
J

j

j
i

i
j

m
i CW

0
0

ˆˆ θθ
, 

( ) ( )( )∑
=

−=Φ
J

j

j
i

i
j

m
i D

0
0

ˆˆ θθ
 (2.10) 

Substituting Eqs. (2.9) and (2.10) into Eqs. (2.8) and carefully rearranging yields the 
following relations among the coefficients in Eqs. (2.10) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )(
1

2 3 2 6 2 9 2 3 20 0 0
0

1ˆ ˆˆ ˆ ˆ2 1
2 1

j
i i i ii i i i i

j j j j kj k
k

A B C D k k B
j j

µ µ µ µ
−

+ + + + +−
=

− + + + = + + + + 
∑  

( )( ) ( ) ( )( ) ( ) ) ( )( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
6 2 9 2 1 1 2 4 1

0

ˆ ˆ ˆˆ ˆ1 1
j

i i i i ii i i i i
k k k k kj k j k j k j k j k

k
C D k A A k Bµ µ µ µ µ+ + + +− − − − −

=

 + + + + + + +  ∑  

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) }5 7 1 8 10 1 11
ˆ ˆˆ ˆ ˆ1 1i i i i ii i i i i

k k k k kj k j k j k j k j k
B k C C k D Dµ µ µ µ µ+ +− − − − −

+ + + + + + +   

 (2.11a) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )(
1

2 3 2 6 2 9 2 3 20 0 0
0

1ˆ ˆ ˆˆ ˆ 2 1
2 1

j
i i i ii i i i i

j j j j kj k
k

B A C D k k A
j j

ς ς ς ς
−

+ + + + +−
=

− + + + = + + + + 
∑  

( )( ) ( ) ( )( ) ( ) ) ( )( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
6 2 9 2 1 1 2 4 1

0

ˆ ˆˆ ˆ ˆ1 1
j

i i i i ii i i i i
k k k k kj k j k j k j k j k

k
C D k B B k Aς ς ς ς ς+ + + +− − − − −

=

 + + + + + + +  ∑  

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) }5 7 1 8 10 1 11
ˆ ˆ ˆ ˆ ˆ1 1i i i i ii i i i i

k k k k kj k j k j k j k j k
A k C C k D Dς ς ς ς ς+ +− − − − −

+ + + + + + +   (2.11b) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )(
1

2 3 2 6 2 9 2 3 20 0 0
0

1ˆ ˆ ˆˆ ˆ 2 1
2 1

j
i i i ii i i i i

j j j j kj k
k

C A B D k k A
j j

ξ ξ ξ ξ
−

+ + + + +−
=

− + + + = + + + + 
∑  

( )( ) ( ) ( )( ) ( ) ) ( )( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
6 2 9 2 1 1 2 4 1

0

ˆ ˆ ˆˆ ˆ 1 1
j

i i i i ii i i i i
k k k k kj k j k j k j k j k

k
B D k C C k Aξ ξ ξ ξ ξ+ + + +− − − − −

=

 + + + + + + +  ∑  

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) }5 7 1 8 10 1 11
ˆ ˆ ˆ ˆ ˆ1 1i i i i ii i i i i

k k k k kj k j k j k j k j k
A k B B k D Dξ ξ ξ ξ ξ+ +− − − − −

+ + + + + + +   (2.11c) 
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )(
1

2 3 2 6 2 9 2 3 20 0 0
0

1ˆ ˆ ˆˆ ˆ 2 1
2 1

j
i i i ii i i i i

j j j j kj k
k

D A B C k k A
j j

ϑ ϑ ϑ ϑ
−

+ + + + +−
=

− + + + = + + + + 
∑  

( )( ) ( ) ( )( ) ( ) ) ( )( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
6 2 9 2 1 1 2 4 1

0

ˆ ˆˆ ˆ ˆ1 1
j

i i i i ii i i i i
k k k k kj k j k j k j k j k

k
B C k D D k Aϑ ϑ ϑ ϑ ϑ+ + + +− − − − −

=

 + + + + + + +  ∑  

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) }5 7 1 8 10 1 11 1
ˆ ˆ ˆˆ ˆ1 1i i i i ii i i i i

k k k k kj k j k j k j k j k
A k B B k C Cϑ ϑ ϑ ϑ ϑ+ + +− − − − −

+ + + + + + +   (2.11d) 

Close examination of Eqs. (2.11) reveals that if ( )
0

ˆ iA , ( )
1

ˆ iA , ( )
0

ˆ iB , ( )
1

ˆ iB , ( )
0

ˆ iC , ( )
1

ˆ iC , ( )
0

ˆ iD  

and ( )
1

ˆ iD  are determined, then the other coefficients in Eqs. (2.10) ( ( )ˆ i
jA , ( )ˆ i

jB , ( )ˆ i
jC  and 

( )ˆ i
jD , 2j ≥ ) can be found by solving the linear algebraic equations in Eqs. (2.11). 

Consequently, the solutions to Eqs. (2.8) in sub-domain i of θ  can be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 1 0 1 0 0 2 1 0 3 0 0 4 1 0 5

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,m m m m m m mi i i i i i
i i i i i i iU z A U A U B U B U C U C Uθ θ θ θ θ θ θ= + + + + +         

   ( ) ( ) ( ) ( )( ) ( )
0 0 6 1 0 7

ˆ ˆ ˆ ˆm mi i
i iD U D Uθ θ+ +  (2.12a) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 1 0 1 0 0 2 1 0 3 0 0 4 1 0 5

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,m m m m m m mi i i i i i
i i i i i i iV z A V A V B V B V C V C Vθ θ θ θ θ θ θ= + + + + +  

( ) ( ) ( ) ( )( ) ( )
0 0 6 1 0 7

ˆ ˆ ˆ ˆm mi i
i iD V D Vθ θ+ +  (2.12b) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 1 0 1 0 0 2 1 0 3 0 0 4 1 0 5

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,m m m m m m mi i i i i i
i i i i i i iW z A W A W B W B W C W C Wθ θ θ θ θ θ θ= + + + + +  

( ) ( ) ( ) ( )( ) ( )
0 0 6 1 0 7

ˆ ˆ ˆ ˆm mi i
i iD W D Wθ θ+ +  (2.12c) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 1 0 1 0 0 2 1 0 3 0 0 4 1 0 5

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ,m m m m m m mi i i i i i
i i i i i i iz A A B B C Cθ θ θ θ θ θ θΦ = Φ + Φ + Φ + Φ + Φ + Φ  

( ) ( ) ( ) ( )( ) ( )
0 0 6 1 0 7

ˆ ˆˆ ˆm mi i
i iD Dθ θ+ Φ + Φ  (2.12d) 

 
The asymptotic solution in sub-domain i of θ  is  

1 1( )( ) ( )
0

0

ˆ( , , ) ( , ) ( ) ( , , , ) ( )m m mmi i
r r mi

m
u r z r U z O r u r z O rλ λ λθ θ θ λ

∞
+ +

=
= + = +∑   (2.13a) 

1 1( ) ( ) ( )
0

0

ˆ( , , ) ( , ) ( ) ( , , , ) ( )m m mi m i
mi

m
u r z r V z O r u r z O rλ λ λ
θ θθ θ θ λ

∞
+ +

=
= + = +∑   (2.13b) 
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1 1( )( ) ( )
0

0

ˆ( , , ) ( , ) ( ) ( , , , ) ( )m m mmi i
z z mi

m
u r z r W z O r u r z O rλ λ λθ θ θ λ

∞
+ +

=
= + = +∑   (2.13c) 

1 1( )( ) ( )
0

0

ˆ( , , ) ( , ) ( ) ( , , , ) ( )m m mmi i
mi

m
r z r z O r r z O rλ λ λφ θ θ φ θ λ

∞
+ +

=
= Φ + = +∑   (2.13d) 

When the range of θ  is decomposed into n sub-domains, a total of 8n coefficients must 
be determined in all of the sub-domain solutions that are constructed using the above 
procedure. These solutions must satisfy the continuity conditions between pairs of adjacent 
sub-domains. These include continuities of tractions, mechanical displacements, electric 
displacements and electric potential. These continuity conditions yield 8(n-1) algebraic 
equations. Homogenous boundary conditions at 0θ θ=  and nθ θ=  must be satisfied, 
yielding another eight equations. As a result, 8n coefficients are to be determined from 8n 
homogenous algebraic equations. A nontrivial solution for the coefficients yields an 8n×8n 
matrix with a determinant of zero. The roots of the zero determinant ( mλ ), which can be 
complex numbers, are obtained herein using the numerical approach of Müller (1956).  
 
2.3. Verification of Solution  

 To validate the proposed solution, convergence studies for minimum Re[ mλ ] (real part 
of mλ ) are conducted by increasing the number of sub-domains or increasing the number of 
polynomial terms in each sub-domain, and the convergent solutions are compared with the 
published results. The wedges under consideration are made of piezoelectric material PZT-4, 
which is transversely isotropic. Table 2.1 presents the material properties of PZT-4.  

Table 2.2 considers three cases. Four letters specify the boundary conditions of a wedge at 
0θ =  and θ γ= . The first and third letters represent the mechanical boundary conditions at 
0θ =  and θ γ= , respectively; and C and F represent clamped and free boundary conditions, 

respectively. Similarly, the second and fourth letters concern the electric boundary conditions 
with C and O’s denoting electrically closed and open boundary conditions, respectively. 
These rules are adopted throughout the paper.   

The first case concerns a crack problem with a material having its direction of 
polarization in the z direction (see Fig. 1). The surfaces of the crack are free of surface 
traction and surface charge. That is θθσ = rθσ = zθσ = Dθ =0 at 0 and 2θ π= . The results of 
Sosa and Pak (1990) were obtained by using an eigenfunction approach, which is similar to 
the present approach. Sosa and Pak (1990) examined a piezoelectric parallelepiped with a 
cut-through crack and having its direction of polarization in the z direction, so that they could 
find a closed-form solution for mλ .  

The other two cases involve 180o and 360o wedges with FOCC boundary conditions and 
polarization along 180oθ =  and 270oθ = , respectively, in the plane x-y. Table 2.2 also 
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presents the results that were published by Hwu and Ikeda (2008). Notably, the solutions of 
Hwu and Ikeda (2008) are two-dimensional solutions, depending on x and y, and are based on 
the assumption of generalized plane strain and a short circuit. They assumed 0zzε =  and 

0zE = , eliminated the terms that were associated with zzε  and zE  in the constitutive 
equations, and replaced zzσ  and zD  by the other stress and electric displacement 

components. Thus, they eliminated ijc  (i or j=3), 6ke  and 3kη  from Eqs. (2.4). Using their 

assumptions and following the present solution procedure shown in Sections 2.1 and 2.2, one 
can obtain exactly the same equations as Eqs. (2.8) and the same values of mλ  given in the 
present work. This fact is indirectly evidenced by two observations. The first is that the terms 
corresponding to the derivatives with respect to z in Eqs. (2.5) are absent from Eqs. (2.8), 
indicating that the assumption of all physical quantities in Eqs. (2.5) independent of z does 
not affect the establishment of Eqs. (2.8). The other is that the coefficients in Eqs. (2.8), 

presented in Appendix III, are independence of ijc (i or j=3), 6ke  and 3kη .  

The comparison in Table 2.2 of the convergent values obtained herein with those 
published reveals excellent agreement. The present convergent solutions can be obtained by 
increasing the number of sub-domains or increasing the order of the polynomials. Using a 
large number of sub-domains in combination with a small number of polynomial terms can 
yield convergent results without any numerical difficulty.   

It is also interesting to demonstrate the accuracy of the values of mλ  other than 
minimum Re[ mλ ] obtained by the present approach. Herein, mλ  are in order of Re[ iλ ]≤

Re[ 1iλ + ] (i=0, 1, 2,…). Table 3 compares 0λ , 1λ  and 2λ  determined by the present 
approach with the results published by Hwu and Ikeda (2008) and Sze and Wang (2001) for 
PZT-4 wedges with different γ , boundary conditions and directions of polarization. Notably, 
the results of Sze and Wang (2001) were obtained by a finite element approach with 
three-dimensional formulations and assuming all the physical quantities under consideration 
independent on z. The material properties of PZT-4, which were used in Sze and Wang (2001) 
and are different from those given in Table 2.3, were applied for the wedges with FOFO 
boundary conditions in Table 2.3. The different material properties from those in Table 1 and 
used in Sze and Wang (2001) are 33ĉ =113 GPa, 15ê =13.44 C/m2, 31ê = -6.98 C/m2 , 33ê
=13.84 C/m2,  11η̂ =60.0×10-10 F/m, and 33η̂ = 54.7×10-10 F/m. The present results were 
obtained by dividing the whole domain of θ  into four sub-domains and using 12 polynomial 
terms in the solutions for each sub-domain. Table 2.3 discloses excellent agreement between 
the present and the published results.  

 

2.4. Numerical Results and Discussion 

After the correctness of the proposed solutions was verified by performing the 
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convergence studies and comparisons with the published results, the proposed solution was 
further applied to investigate the electroelastic singularities in a piezoelectric wedge with 
varying directions of polarization. The wedges under consideration are made of a single 
piezoelectric material, a piezoelectric material and an isotropic elastic material, or two 
piezoelectric materials. Two parameters α  and β  are introduced to specify the direction 
of polarization, where α  is the angle between the x-axis and the projection of the 
polarization axis onto the x-y plane, and β  is the angle between the z axis and the 
polarization axis. The order of electroelastic singularity at the apex of a wedge is determined 
by the real part of ( mλ -1), and the root of primary interest is the one with the smallest 
positive real part between zero and one. The following presents the values of minimum 
Re[ mλ ] for wedges with various combinations of boundary conditions along 0θ =  and 
θ γ= .   

 
2.4.1 Wedges made of a single piezoelectric material 

Figures 2.3 illustrates the effects of the direction of polarization on the minimum values 

of Re[ mλ ] for a o270 wedge made of PZT-5H, whose material properties are given in Table 

2.1. Four combinations of boundary conditions were considered - FOFO, FCFC, COCO and 
CCCC. As stated in Section 4, FOFO means free mechanical boundary conditions and open 
electric boundary conditions at both of o0=θ  and 270oθ = . In Fig. 3a, o0=α  means that 
the direction of polarization is in the x-z plane, while o90=β  in Fig. 3b indicates that the 
direction of polarization is in the x-y plane. Figure 2.3a only considers oo 900 ≤≤ β  because 

090+β  and β−090  yield the same mλ . Similarly, Fig. 3b only presents the results for 

oo 1800 ≤≤α  because o180+α  and α−o180  have the same mλ . Figures 2.3a and 2.3b 

demonstrate that the FF mechanical boundary conditions cause more severe electroelastic 
singularities than do the CC mechanical boundary conditions. Electric boundary conditions 
do not affect minimum Re[ mλ ] in the FCFC and FOFO cases. The variation in minimum 
Re[ mλ ] owing to changes in the direction of polarization is less than 5%.  

Figures 2.4 plots the variation of minimum Re[ mλ ] of PZT-5H wedges with wedge angle 
γ  and under FOFO and COCO boundary conditions. Three different directions of 

polarization in the x-y plane were considered - o0=α , o60 , and o120 . The mλ  values that 

correspond to minimum Re[ mλ ] are all real. As expected, minimum Re[ mλ ] decreases as γ  
increases; and the FOFO boundary conditions yield a smaller minimum Re[ mλ ] than do the 
COCO boundary conditions. When o360=γ (representing a crack), both sets of boundary 
conditions result in 5.0=mλ , and the orientation of the polarization in the x-y plane does not 
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influence the singularity order.  
 

2.4.2 Bi-material wedges made of piezoelectric and elastic materials 
The integration of piezoelectric films on silicon (Si) substrates is favored in the design 

and formation of micro electromechanical systems. This section study the electroelastic 
singularities at the interface in wedges that are made of PZT-5H and Si, whose material 
properties are found in Table 2.1. Two typical wedge configurations – those of o180 and 

o270  wedges – were considered first. In a o180 wedge, Si and PZT-5H occupy oo 900 ≤≤θ
and oo 18090 ≤≤ θ , respectively, while in a o270 wedge, Si and PZT-5H occupy 

oo 1800 ≤≤ θ and oo 270180 ≤≤θ , respectively. Figures 2.5 an 2.6 plot the values of 
minimum Re[ mλ ] of these two wedges versus their directions of polarization, respectively. 
Again, four sets of boundary conditions were considered. These are F-FO, F-FC, C-CO, and 
C-CC, where “-“ denotes the absence of any electric boundary conditions at o0=θ , 
according to the rule for defining boundary conditions described in Section 2.3.  

In Figs. 2.5a and 2.5b, the directions of polarization of PZT-5H are in the x-z plane and 
x-y plane, respectively, while Fig. 2.5c displays the results for the wedges with the F-FO 
boundary conditions and having the directions of polarization on the surfaces with o30=β , 

o60  and o90 . It is interesting to observe that the direction of polarization can be especially 
arranged to eliminate electroelastic singularities at the interface of the wedge. For example, 

Fig. 2.5a reveals no electroelastic singularities when oo 9080 ≤≤ β and oo 9038 ≤≤ β  for 

boundary conditions F-FO and C-CO, respectively; Fig. 2.5b shows no electroelastic 
singularities when oo 18090 ≤<α  under boundary conditions F-FO and F-FC, and Fig. 5c 
shows no electroelastic singularities when oo 8818 <<α  and oo 7223 <<α under the 
conditions o60=β and o30 , respectively. Notably, boundary conditions C-CC yield more 
severe singularities at the interface than do the other three sets of boundary conditions.  

According to Fig. 2.6, in investigating the singularities in o270  wedges, changes in the 
direction of polarization may yield considerable changes in minimum Re[ mλ ]. In Fig. 6a, the 
order of the singularity falls by approximately 10% under boundary conditions F-FO as β  

changes from o0  to o90 , and in Fig. 2.6b, it increases by about 25% under boundary 
conditions F-FC as α  changes from o45  to o135 .  

Figures 2.7a and 2.7b plot the variation of minimum Re[ mλ ] with the angle of PZT-5H, 

1γ , under boundary conditions F-FO and C-CO, respectively. In the wedges in Figs. 2.7, Si 

occupies 0 180o oθ≤ ≤ , and the wedge angle γ  equals 1 180oγ + . The directions of 

polarization are in the x-y plane and =α o0 , o60  and o120 . As expected, the strength of 
the singularity generally increases with the increase of 1γ , and the order of the singularity 

equals 0.5 when o1801 =γ  (representing a crack). The relatively abrupt changes of the 
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minimum Re[ mλ ] around o1601 =γ  in Fig. 2.7a are caused by the changes of mλ  from 

real numbers to complex numbers.  
 

2.4.3 Bi-material wedges made of piezoelectric materials  
  Bi-material wedges that comprise piezoelectric materials are commonly encountered 

in smart structures. This section investigates electroelastic singularities at the interface of 
bi-material wedges comprised of PZT-5H and PZT-4, whose material properties are provided 
in Table 1. The configurations of wedges considered in this section are the same as those in 
the preceding section, except in that the elastic material in the previous section is replaced by 
the piezoelectric material PZT-4.  

Figures 2.8 illustrate the effects of the orientations of polarization on the electroelastic 
singularities in wedges with a wedge angle o180 . When the direction of polarization lies in 
the x-y plane (see Fig. 8b),  oo 882 << α  and oo 846 << α yield no singularities under 
boundary conditions COCO and CCCC, respectively. When the direction of polarization is on 

the surface with o30=β (see Fig. 2.8c), no singularities are found for oo 168108 << α

under the FOFO boundary conditions. Changes in the direction of polarization alter the order 
of the singularity by less than 4%.   

Free-free mechanical boundary conditions cause more severe electroelastic singularities 
in o270 wedges (Figs. 2.9) than do clamped-clamped boundary conditions. The orientation of 
polarization may change the order of the singularity by approximately 9%. For wedges with 
other angles, that percentage exceeds 10% (Figs. 2.10).  
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III Asymptotic Solutions for a Body of Revolution  
3.1 Basic Formulation 

Consider a body of revolution made of a piezoelectric material polarized along the 
direction Z , which makes an angle γ  with the axis of revolution Z (Fig. 3.1). Although Fig. 
1 displays a bi-material body of revolution, a body of a single material will be first 
considered in the following development of basic equations and solutions. The solutions are 
then easily extended to a bimaterial body. Define two Cartesian coordinate systems (X, Y, Z) 
and ( , , )X Y Z , where Y and Y  axes are coincidental. A cylindrical coordinate system (r,θ , 
Z) (Fig. 3.1) can be conveniently used to solve problems of bodies of revolution. Without 
body force and charges, the equilibrium and Maxwell’s equations in terms of displacement 
components and electric potential are given in Eqs. (2.5). Notably, the material coordinate 
system ( )ˆ ˆ ˆx, y,z  and geometry coordinate system (x, y, z) in chapter 2 are replaced by 
( , , )X Y Z  and (X, Y, Z) herein, respectively.  

Figure 3.2 shows a half plane with any constant θ  in Fig. 3.1. To find an asymptotic 
solution around the sharp corner in Fig. 3.2, (r, Z) coordinates are transformed to (ρ, φ) 
coordinates as shown in Fig. 3.2. Transforming Eqs. (2.5) from (r, Z) to (ρ, φ) using the 
relations, 

( )2 2r R zr = − + , 1tan z
r R

φ − − =  − 
, cosr R r φ− = , and sinz r φ= − , (3.1) 

yields the following complicated partial differential equations with variable coefficients; 

16 56
11 1 55 3 15 5 11 16 2 15 56 4

12 2 2
cos

c cc L c L c L c c L c c L
Rr φ θ θ θ θ

   ∂ ∂∂ ∂    + + + + + + + +        + ∂ ∂ ∂ ∂     
 

( )
( )

2
26 66

22 66 16 1 45 3 14 56 52 2
1

cos
r

c cc c u c L c L c c L
R θ θ θθr φ

   ∂ ∂∂ ∂  + − + + + + + + +    ∂ ∂ ∂∂ +    
 

( ) ( )66 46
26 12 66 2 14 24 56 25 46 4

1
cos

c cc c c L c c c c c L
Rr φ θ θ θ θ
 ∂ ∂∂ ∂   + − + + + + − − + + +    + ∂ ∂ ∂ ∂    

 

( )

2
66 26

26 22 66 26 15 1 35 32 2
1

cos

c cc c c c u c L c L
R

θθ θ θ θr φ

  ∂ ∂ ∂ ∂   + − + − − + + + +    ∂ ∂ ∂ ∂  +   
 

( ) ( )56 36
13 55 5 15 25 14 56 2 13 23

1
cos

c cc c L c c c c L c c
Rr φ θ θ θ

  ∂ ∂∂  + + + − + + + + − +    + ∂ ∂ ∂  
 

( )
( )

2
46

36 45 4 24 46 11 1 35 32 2
1

cos
z

cc c L c c u e L e L
Rθ θ θ θr φ

  ∂∂ ∂ ∂   + + + − + + + +     ∂ ∂ ∂ ∂    +   
 



20 
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3.2 Construction of Asymptotic Solution 

To find solutions to Eqs. (3.2) for bodies of revolution, the methodology of Hartranft and 
Sih (1969) for elastic wedges can be applied. The solutions are expressed as  
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where mλ  is a parameter to be determined, which can be a complex number, and the real 
part of mλ  must be positive to ensure finite displacement and electric potential at 0=r . To 
determine the eletroelastic singularity behaviors as r  approaches zero, substituting Eqs. 
(3.3) into Eqs. (3.2) with careful arrangement and considering only the equations for the least 
power order of r  yield 

( )
( ) ( )[ ]

( )
( )( )




+−

∆
+

∂
∂

−−−
∆

+
∂

∂
ϕλλ

ϕ
ϕϕλ

ϕ
2

1155
1

0
151155

1
2
0

2

sin11ˆ
2cos22sin11ˆ

cc
U

ccc
U

mm

m

m

m

 

( )( ) ( ) ( )








+

∆
+




−++−+ ϕϕϕλλϕλλ 2

45
2

16
1

015
2

5511 cossin1ˆ2sin2cos1 ccUccc m
mmmm  

( ) ( )
( ) ( ) ( )[ ]

( )
 

ˆ
2cos2sin1

ˆ
2sin

2
0

561416452
0

2
5614

ϕ
ϕϕλ

ϕ
ϕ

∂
∂

+−−−+
∂
∂


+

+
m

m

m V
cccc

Vcc  

( ) ( )




++










 +

−+−+ ϕϕλϕϕϕλλ 2
45

2
16

56142
45

2
16 cossin2sin

2
sincos1 cccccc mmm  



23 
 

( ) ( ) ( ) ( )

2
0

2
55132

35
2

15
1

0
5614

ˆ
2sin

2
cossin1ˆ2sin

2 ϕ
ϕϕϕϕ

∂
∂









 +

++
∆

+









+

+
m

m WccccVcc  

( ) ( ) ( )[ ]
( )

( )







+−+

∂
∂

+−−−+ ϕϕλλ
ϕ

ϕϕλ 2
35

2
15

0
55131535 sincos1

ˆ
2cos2sin1 ccWcccc mm

m

m  

( ) ( ) ( )m
m Wcccccc

0
55132

35
2

15
5513 ˆ2sin

2
cossin2sin

2 












 +

+++

+

− ϕϕϕλϕ  

( ) ( )
( ) ( )[ ϕλ

ϕ
ϕϕϕ 2sin1

ˆ
2sin

2
cossin1

15352
0

2
31152

35
2

11
1

eeeeee m

m

−−+
∂
Φ∂





 +

++
∆

+  

( ) ]
( )

( ) ( )










 +

−+−+
∂
Φ∂

+− ϕϕϕλλ
ϕ

ϕ 2sin
2

sincos1
ˆ

2cos 31152
35

2
11

0
3115

ee
eeee mm

m

 

( ) ( ) 0ˆ2sin
2

cossin 0
31152

35
2

11 =Φ













 +

+++ m
m

eeee ϕϕϕλ , (3.4a) 

 
( )

( ) ( )[ ]
( )

( )( )



+−

∆
+

∂
∂

−−−
∆

+
∂
∂ ϕλλ

ϕ
ϕϕλ

ϕ
2

6644
2

0
466644

2
2

0
2

sin11ˆ
2cos22sin11ˆ

ccVcccV
mm

m

m

m

 

( )( ) ( ) ( )








+

∆
+




−++−+ ϕϕϕλλϕλλ 2

45
2

16
2

046
2

4466 cossin1ˆ2sin2cos1 ccVccc m
mmmm  

( ) ( )
( ) ( ) ( )[ ]

( )

ϕ
ϕϕλ

ϕ
ϕ

∂
∂

+−−−+
∂

∂

+

+
m

m

m UccccUcc 0
145616452

0
2

1456
ˆ

2cos2sin1
ˆ

2sin
2

 

( ) ( )




++










 +

−+−+ ϕϕλϕϕϕλλ 2
45

2
16

14562
45

2
16 cossin2sin

2
sincos1 cccccc mmm  

( ) ( ) ( ) ( )

2
0

2
45362

34
2

56
3

0
1456

ˆ
2sin

2
cossin1ˆ2sin

2 ϕ
ϕϕϕϕ

∂
∂









 +

++
∆

+









+

+
m

m Wcc
ccU

cc  

( ) ( ) ( )[ ]
( )

( )







+−+

∂
∂

+−−−+ ϕϕλλ
ϕ

ϕϕλ 2
34

2
56

0
45365634 sincos1

ˆ
2cos2sin1 ccWcccc mm

m

m  

( ) ( ) ( )m
m Wcccccc

0
45362

34
2

56
4536 ˆ2sin

2
cossin2sin

2 












 +

+++

+

− ϕϕϕλϕ  

( ) ( )
( ) ( )[ ϕλ

ϕ
ϕϕϕ 2sin1

ˆ
2sin

2
cossin1

16342
0

2
14362

34
2

16
2

ee
ee

ee m

m

−−+
∂
Φ∂









 +

++
∆

+  

( ) ]
( )

( ) ( )










 +

−+−+
∂
Φ∂

+− ϕϕϕλλ
ϕ

ϕ 2sin
2

sincos1
ˆ

2cos 14362
34

2
16

0
1436

eeeeee mm

m

 

( ) ( ) 0ˆ2sin
2

cossin 0
14362

34
2

16 =Φ













 +

+++ m
m

eeee ϕϕϕλ , (3.4b) 

 
( )

( ) ( )[ ]
( )

( )( )



+−

∆
+

∂
∂

−−−
∆

+
∂

∂ ϕλλ
ϕ

ϕϕλ
ϕ

2
5533

3

0
355533

3
2

0
2

sin11ˆ
2cos22sin11ˆ

ccWcccW
mm

m

m

m

 



24 
 

( )( ) ( ) ( )








+

∆
+




−++−+ ϕϕϕλλϕλλ 2

35
2

15
3

035
2

3355 cossin1ˆ2sin2cos1 ccWccc m
mmmm  

( ) ( )
( ) ( ) ( )[ ]

( )

ϕ
ϕϕλ

ϕ
ϕ

∂
∂

+−−−+
∂

∂

+

+
m

m

m UccccUcc 0
551315352

0
2

5531
ˆ

2cos2sin1
ˆ

2sin
2

 

( ) ( )




++










 +

−+−+ ϕϕλϕϕϕλλ 2
35

2
15

55132
35

2
15 cossin2sin

2
sincos1 cccccc mmm  

( ) ( ) ( ) ( )

2
0

2
45362

34
2

56
3

0
5513

ˆ
2sin

2
cossin1ˆ2sin

2 ϕ
ϕϕϕϕ

∂
∂









 +

++
∆

+









+

+
m

m VccccUcc  

( ) ( ) ( )[ ]
( )

( )







+−+

∂
∂

+−−−+ ϕϕλλ
ϕ

ϕϕλ 2
34

2
56

0
45365634 sincos1

ˆ
2cos2sin1 cc

V
cccc mm

m

m  

( ) ( ) ( )m
m Vcccccc

0
45362

34
2

56
4536 ˆ2sin

2
cossin2sin

2 












 +

+++

+

− ϕϕϕλϕ  

( ) ( )
( ) ( )[ ϕλ

ϕ
ϕϕϕ 2sin1

ˆ
2sin

2
cossin1

15332
0

2
35132

33
2

15
3

ee
ee

ee m

m

−−+
∂
Φ∂









 +

++
∆

+  

( ) ]
( )

( ) ( )










 +

−+−+
∂
Φ∂

+− ϕϕϕλλ
ϕ

ϕ 2sin
2

sincos1
ˆ

2cos 35132
33

2
15

0
3513

ee
eeee mm

m

 

( ) ( ) 0ˆ2sin
2

cossin 0
35132

33
2

15 =Φ













 +

+++ m
m

eeee ϕϕϕλ , (3.4c) 

 
( )

( ) ( )[ ]
( )

( )( )



+−

∆
+

∂
Φ∂

−−−
∆

+
∂
Φ∂

ϕηηλλ
ϕ

ϕηϕηηλ
ϕ

2
1133

4

0
131133

4
2
0

2

sin11ˆ
2cos22sin11ˆ

mm

m

m

m

 

( )( ) ( ) ( )








+

∆
−Φ




−++−+ ϕϕϕηλλϕηηλλ 2

35
2

11
4

013
2

3311 cossin1ˆ2sin2cos1 eem
mmmm  

( ) ( )
( ) ( ) ( )[ ]

( )

ϕ
ϕϕλ

ϕ
ϕ

∂
∂

+−−−+
∂
∂


+

+
m

m

m UeeeeUee 0
311511352

0
2

3115
ˆ

2cos2sin1
ˆ

2sin
2

 

( ) ( )




++










 +

−+−+ ϕϕλϕϕϕλλ 2
35

2
11

31152
35

2
11 cossin2sin

2
sincos1 eeeeee mmm  

( ) ( ) ( ) ( )

2
0

2
36142

34
2

16
4

0
3115

ˆ
2sin

2
cossin1ˆ2sin

2 ϕ
ϕϕϕϕ

∂
∂









 +

++
∆

−









+

+
m

m Vee
eeU

ee  

( ) ( ) ( )[ ]
( )

( )







+−+

∂
∂

+−−−+ ϕϕλλ
ϕ

ϕϕλ 2
34

2
16

0
36141634 sincos1

ˆ
2cos2sin1 eeVeeee mm

m

m  

( ) ( ) ( )m
m Veeeeee

0
36142

34
2

16
3614 ˆ2sin

2
cossin2sin

2 












 +

+++

+

− ϕϕϕλϕ  

( ) ( )
( ) ( )[ ϕλ

ϕ
ϕϕϕ 2sin1

ˆ
2sin

2
cossin1

15332
0

2
35132

33
2

15
4

eeWeeee m

m

−−+
∂

∂









 +

++
∆

−  

( ) ]
( )

( ) ( )










 +

−+−+
∂

∂
+− ϕϕϕλλ

ϕ
ϕ 2sin

2
sincos1

ˆ
2cos 35132

33
2

15
0

3513
eeeeWee mm

m

 



25 
 

( ) ( ) 0ˆ2sin
2

cossin 0
35132

33
2

15 =













 +

+++ m
m Weeee ϕϕϕλ , (3.4d) 

where  
ϕϕϕ 2sincossin 15

2
55

2
111 ccc ++=∆ , ϕϕϕ 2sincossin 46

2
44

2
662 ccc ++=∆ , 

ϕϕϕ 2sincossin 35
2

33
2

553 ccc ++=∆ , ϕηϕηϕη 2sincossin 13
2

33
2

114 ++=∆ . 
Equations (3.4) are a set of ordinary differential equations with variable coefficients that are 
functions of ϕ , θ  and γ . Finding a closed-form solution for these equations is generally 
impossible. 

The power series method is utilized to find a general solution for Eqs. (3.4). Very 
high-order terms are typically required to obtain an accurate solution and can cause numerical 
difficulties. To overcome these difficulties, the range of ϕ  under consideration is divided 
into a number of sub-domains (see Fig. 3.3). A series solution for Eqs. (3.4) is established in 
each sub-domain. Then, a general solution for the whole domain of ϕ  is constructed from 
these series solutions in the sub-domains by satisfying the continuity conditions between each 
pair of adjacent sub-domains. This means of constructing solutions is very convenient for 
analyzing the bi-material body that is considered in this work.  

With fixed θ  and γ , the following functions that specify the variable coefficients in 
Eqs. (3.4) are expressed as Taylor expansions over sub-domain i; 
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where iϕ  is a reference point in sub-domain i. Here, iϕ  is chosen as the middle point along 
the ϕ  in the sub-domain i. Consequently, the general solutions of Eqs. (3.4) in sub-domain i 
are expressed in the following form: 
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(3.6) 

Substituting Eqs. (3.5) and (3.6) into Eqs. (3.4) with careful arrangement yields the 
recursive equations for the coefficients in Eqs. (3.6), 
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If ( )iA0

ˆ , ( )iA1
ˆ , ( )iB0

ˆ , ( )iB1
ˆ , ( )iC0

ˆ , ( )iC1
ˆ , ( )iD0

ˆ and ( )iD1
ˆ are known, then ( )i

jA 2
ˆ

+ , ( )i
jB 2

ˆ
+ , ( )i

jC 2
ˆ

+ and ( )i
jD 2

ˆ
+  

can be determined using Eqs. (3.7). Hence, the solutions of Eqs. (3.4) in subdomain i can be 
simply represented as,  
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 (3.8) 
To obtain the solutions of Eqs. (3.4) for the whole domain of ϕ , the following 

continuity conditions at the interface ( )iϕϕ =  between sub-domains i and i+1 have to be 
satisfied; 

( ) ( ) ( ) ( ) ii
i

rzii
i

rrii
i

rzii
i

rr ϕϕθrσϕϕθrσϕϕθrσϕϕθrσ cos,,sin,,cos,,sin,, )1()1()()( ++ +=+ , (3.9a) 

( ) ( ) ( ) ( ) ii
i

zzii
i

rzii
i

zzii
i

rz ϕϕθrσϕϕθrσϕϕθrσϕϕθrσ cos,,sin,,cos,,sin,, )1()1()()( ++ +=+ , (3.9b) 
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r ϕϕθrσϕϕθrσϕϕθrσϕϕθrσ θθθθ cos,,sin,,cos,,sin,, )1()1()()( ++ +=+ , (3.9c) 

( ) ( ) ( ) ( ) ii
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zii
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zii
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r DDDD ϕϕθrϕϕθrϕϕθrϕϕθr cos,,sin,,cos,,sin,, )1()1()()( ++ +=+ , (3.9d) 

( ) ( )i
i

ri
i

r uu ϕθrϕθr ,,,, )1()( += , (3.9e) 

( ) ( )i
i

i
i uu ϕθrϕθr θθ ,,,, )1()( += , (3.9f) 

( ) ( )i
i

zi
i

z uu ϕθrϕθr ,,,, )1()( += , (3.9g) 
( ) ( ) ( ) ( )i

i
i

i ϕθrφϕθrφ ,,,, 1+= . (3.9h) 

If the domain of ϕ  under consideration is divided into n sub-domains (Fig. 3.3), the 8n 

coefficients in Eqs. (3.8) for i=1, 2,…, n, must be determined. The interface continuity 

conditions yield 8(n-1) equations (Eqs. (3.9) with i=1, 2,…, (n-1)). The homogenous 

boundary conditions at 0ϕϕ =  and nϕϕ =  yield another eight equations. In total, 8n 

homogeneous algebraic equations for these 8n coefficients can thus be constructed. A 

nontrivial solution yields an 8n×8n determinant of zero. The roots of the zero determinant 

( mλ ) can be complex numbers, and were obtained herein using the subroutine, “DZANLY”, 

in IMSL (International Mathematical and Statistical Library). The subroutine is based on the 

numerical approach of Müller (1956).  

Two types of mechanical boundary condition were considered herein - free and clamped. 
For free traction at 0ϕϕ =  or nϕϕ = , 

0cossin  ,0cossin  ,0cossin =+=+=+ ϕσϕσϕσϕσϕσϕσ θθ zrzzrzrzrr  
while the clamped boundary conditions require 0=== θuuu zr . Two types of electric 
boundary conditions can also be specified at 0ϕϕ =  or nϕϕ = . They are electrically open 
and closed boundary conditions. Electrically open and closed conditions are 

0cossin =+ ϕϕ zr DD  and 0=φ , respectively. 
 

3.3. Convergence and Comparison 
The convergence and comparison of the minimum Re[ mλ ] (real part of mλ ) of 

bi-material bodies of revolution are summarized here to confirm the correctness of the 
proposed solutions. Two geometric shapes with a horizontal interface, called geometry I and 
geometry II, displayed in Fig. 3.4, are considered. Geometry I has 900 =ϕ and 270=nϕ
while geometry II has 00 =ϕ  and 270=nϕ , as shown in Fig. 3.3. Table 2.1 gives the 
material constants, and the direction of polarization of the material is assumed to be along the 
axis of revolution ( 0=γ ). Notably, material PZT-6B(Im.) in Table 2.1 is an imaginary 
material with the same elastic properties as PZT-6B, and is adopted here to obtain results that 
can be compared with those of Xu and Mutoh (2001). The boundary conditions at 0ϕϕ =  
and nϕϕ =  are traction-free and electrically open.  

Table 3.1 lists the minimum values of Re[ mλ ] that were obtained by dividing the domain 
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of ϕ  into various numbers of sub-domains of equal size, using different numbers of terms in 
the series solution for each sub-domain. Notably, the mλ , which correspond to minimum of 
Re[ mλ ] , are all real in the cases considered in Table 3.1. The convergent solutions can be 
obtained by fixing the number of sub-domains and increasing the number of terms in series 
solutions or by fixing the number of terms in series solutions and increasing the number of 
sub-domains. The results published in Xu and Mutoh (2001) and Li et al. (2002), which were 
obtained based on the assumption of axisymmetric deformation, are also given in Table 3.1. 
The excellent agreement between the convergent results herein and the published data 
validates the proposed solutions.  

 
3.4. Numerical Results and Discussion 

The electroelastic singularity is governed by the real part of ( mλ -1), and the root of 
primary interest is the one with the smallest positive real part between zero and one. In this 
section, the values of minimum Re[ mλ ] are shown for single material and bi-material bodies 
of revolution. The piezoelectric materials, PZT-4 and PZT-5H, and an elastic material, Al 
(aluminium), are considered. The material properties of PZT-4 and PZT-5H are given in Table 
1, while the elastic constants for Al are E (Young’s modulus) = 68.9 GPa and ν  (Poisson’s 
ratio) = 0.25. The results were obtained using eight equal sub-domains for ϕ and 15-term 
series solutions for each sub-domain. The boundary conditions under consideration are 
specified by four letters. The first pair of letters refers to the boundary conditions at 0ϕϕ = , 
while the second pair specifies the boundary conditions at nϕϕ = . The first letter in each 
pair concerns the mechanical boundary conditions, with C and F’s denoting clamped and free 
boundary conditions, respectively, while the second letter concerns the electric boundary 
conditions with C and O’s representing electrically closed and open boundary conditions, 
respectively. Accordingly, in the following, COFO boundary conditions mean that the 
mechanical boundary conditions are clamped and free at 0ϕϕ =  and nϕϕ = , respectively, 
and the electric boundary conditions are open at 0ϕϕ =  and nϕϕ = .  

 
3.4.1 Bodies of revolution made of a single piezoelectric material 

Consider a PZT-4 or PZT-5H body of revolution with a direction of polarization that may 
not be along the Z-axis (axis of revolution). The geometry of the body considered in this 
section is similar to geometry II in Fig. 3.4. Figures 3.5 plots the variations of minimum 
Re[ mλ ] with θ  for PZT-4 bodies with 0=γ , 45  and 90 , while Fig. 3.6 plots 
corresponding curves for PZT-5H bodies. Notably, the results at 02 θπθ −=  are identical to 
those at 0θθ =  in all the cases that are considered in this work. Consequently, the range of 
θ  considered is between 0  and 180 . The mλ  that corresponds to minimum Re[ mλ ] are 
all real in the cases examined in Figs. 3.5 and 3.6. 

As expected, minimum Re[ mλ ] does not change with θ  when the direction of 
polarization is along the Z-axis ( 0=γ ). When the direction of polarization is not along the 
Z-axis, minimum Re[ mλ ] varies significantly with θ . For example, when 45=γ , the 
maximum relative difference may reach 7.8% for a PZT-4 body with COCO boundary 
conditions, while the maximum difference is about 5.2 % for a PZT-5H body. When γ  
changes from 0  to 45  or 90 , the minimum Re[ mλ ] may increase or decrease, 
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depending on the values of θ  and the boundary conditions. PZT-4 bodies exhibit more 
severe electroelastic singularities than PZT-5H bodies under clamped-clamped mechanical 
boundary conditions; the opposite is true under free-free mechanical boundary conditions.  

Figures 3.7 and 3.8 display the variations in minimum Re[ mλ ] at 60=θ with β  for 
PZT-4 and PZT-5H bodies, respectively. Two values of γ , 0 and 45 , were considered. 
Generally, minimum Re[ mλ ] declines as β  increases, such that a larger β  induces more 
severe electroelastic singularities at the sharp corner of a body of revolution. Electroelastic 
singularities under free-free boundary conditions are more severe than those obtained under 
clamped-clamped boundary conditions. When 0=γ , the electric boundary conditions do 
not significantly affect the singularities. However, when 45=γ , open-open electric 
boundary conditions results in a smaller minimum Re[ mλ ] than closed-closed electric 
boundary conditions  for clamped-clamped bodies of revolution, while the opposite trend is 
true for bodies of revolution with free-free mechanical boundary conditions.  As γ  
changes from 0  to 45 , the mλ , which corresponds to minimum Re[ mλ ], may change 
from real to complex or from complex to real. For instance, under CCCC boundary 
conditions, mλ  are complex for 45=γ  when β  is between 48  and 73  for PZT-4 
bodies and between 52  and 70  for PZT-5H bodies, while they are all real for 0=γ . A 
comparison of Figs. 3.7 and 3.8 reveals that PZT-4 bodies have stronger singularities than 
PZT-5H bodies under clamped-clamped boundary conditions, but not at all values of β  
under free-free boundary conditions  

 
3.4.2 Bi-material bodies of revolution made of piezoelectric and elastic materials 

This section investigates bi-material bodies of revolution with a geometry that is similar 
to geometry II in Fig. 3.4, in which material 1 is an isotropic elastic material, Al, and material 
2 is PZT-4 or PZT-5H. The arrangements considered in Figs. 3.9 to 3.12 are the same as those 
in Figs. 3.5 to 3.7, respectively, except that bi-material bodies of revolution are considered in 
Figs. 3.9 to 3.12. Notably, the continuity conditions on the interface between the piezoelectric 
material and the elastic material are given by Eqs. (3.9a) to (3.9c), (3.9e) to (3.9g) and 

( ) ( ) 0,,1 =+
i

i ϕθrφ . No electric boundary condition applies at 0ϕϕ = , and the second letter of 
the four letters that denote the boundary conditions is replaced by “-“. 

Figures 3.9 and 3.10 discover that when 0≠γ , the minimum Re[ mλ ] does significantly 
vary with θ . When 45=γ , the maximum relative difference may reach 25% for a 
PZT-4/Al body under C-CC boundary conditions, while the maximum difference is 
approximately 16 % for a PZT-5H/Al body. Unlike in Figs. 3.5 and 3.6, the minimum Re[ mλ ] 
for the C-CC boundary conditions can be smaller than those for C-CO boundary conditions, 
depending on γ  and θ . When 45=γ , the mλ , which correspond to minimum Re[ mλ ] 
under C-CC boundary conditions, are no longer all real; they are complex for  11063 ≤≤θ  
in Fig. 3.9(b) and  10168 ≤≤θ  in Fig. 3.10(b). Figure 3.9(b) demonstrates that the 
minimum Re[ mλ ] under C-CC boundary conditions are lower than those under free-free 
boundary conditions when 14≤θ .  

Figures 3.11 and 3.12 plot the variations of minimum Re[ mλ ] at 60=θ with β  for 
PZT-4/Al and PZT-5H/Al bodies, respectively. The relatively abrupt changes in the curves 
(i.e., at 159≈β  under F-FC boundary conditions and 99≈β  under C-CO boundary 
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conditions in Fig. 3.11(a)) are caused by the roots’s changing from real to complex numbers 
or from complex to real numbers. Generally, the strength of the electroelastic singularity 
increases with β . Free-free boundary conditions produce singularities that are more severe 
than clamped-clamped boundary conditions do, except for 160≥β . Interestingly, the 
minimum Re[ mλ ]  for the bodies with 0=γ are more considerably affected by electric 
boundary conditions than those for the bodies with 45=γ . Changing γ  from 0  to 45  
can alter the minimum Re[ mλ ] with the maximum relative difference of 9.6% occurring at 

99=β  under C-CO boundary conditions in Fig. 3.11. Unlike the minimum Re[ mλ ] ≥  0.5 
for bodies of revolution made of two isotropic elastic materials under free-free boundary 
conditions given in Huang and Leissa [26], the minimum Re[ mλ ] can be smaller than 0.5 for 
β  larger than around 150 under F-FO boundary conditions.  

 
3.4.3 Bi-material bodies of revolution made of piezoelectric materials 

The results for bi-material bodies of revolution consisting of PZT-4 and PZT-5H with a 
horizontal interface are given in Figs. 3.13 and 3.14. Figure 3.13 concerns bodies of 
revolution with geometry I and geometry II displayed in Fig. 3.4, where materials 1 and 2 are 
PZT-5H and PZT-4, respectively. Figure 3.14 considers bodies of revolution with geometry II 
and having various β .  

As expected, Fig. 3.13 demonstrates that bodies of revolution with geometry II ( 270=α ) 
have more severe singularities at the interface corner than do bodies of revolution with 
geometry I ( 180=α ). When 0=γ , the roots corresponding to minimum Re[ mλ ] are all 
real. As γ  changes from 0  to 45  or 90 , the roots may change from real to complex, 
depending on θ  and the boundary conditions. For instance, for 45=γ and under COCO 
boundary conditions, when 51<θ  and 36<θ  for geometries I and II, respectively, the 
roots corresponding to minimum Re[ mλ ] are complex. The variations of minimum Re[ mλ ] 
with θ  in Fig. 3.13(b) indicate that the maximum difference can reach 11% for geometry I 
under FOFO boundary conditions, and 7.2% for geometry II under FOFO boundary 
conditions. When 90=γ , the maximum difference between values of minimum Re[ mλ ] for 
various θ  reaches 4.5% for geometry I under COCO boundary conditions, and 4.3% for 
geometry II under FOFO boundary conditions. 

Figure 3.14 plots the variations of minimum Re[ mλ ] at 60=θ  with β  for bodies of 
revolution with geometry II. Two values of γ , 0 and 45 , were considered. Again, the 
relatively abrupt changes in the curves are caused by a change in the roots from real to 
complex or from complex to real. Generally, free-free boundary conditions give more severe 
singularities at the interface corner than do clamped-clamped boundary conditions. Changing 
γ  from 0  to 45  changes the minimum Re[ mλ ] by up to 5.0%, as for the body of 
revolution with 105=β  under COCO boundary conditions. 
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IV Concluding Remarks 

This study found asymptotic solutions to piezoelectric wedges and bodies of revolution 
to investigate geometrically-induced electroelastic singularities in these bodies based on 
three-dimensional piezoelaticity theory in a cylindrical coordinate system. The piezoelectric 
material is first assumed to be anisotropic and its direction of polarization to be arbitrary.  
The solutions were obtained using an eigenfunction expansion approach in conjunction with a 
power series technique to solve the equilibrium and Maxwell’s equations, which are four 
coupled partial differential equations in terms of the displacement components and electric 
potential. The present solutions are easily reduced to the solution for anisotropic elastic 
wedges by eliminating the piezoelastic and dielectric constants. The proposed solutions are 
verified by performing convergence studies and comparing the results with the published 
results.  

The proposed solution were employed to examine electroelastic singularities in wedges 
and bodies of revolution that comprise a single piezoelectric material, bounded 
piezo/isotropic elastic materials, or piezo/piezo materials. The minimum Re[ mλ ], which is 
directly related to the order of the singularity, is displayed for different corner angles, 
combinations of boundary conditions, and directions of polarization. As expected, the 
strength of the singularity generally increases with the increase of corner angle. The 
geometrically induced electroelastic singularity order can depend significantly on the 
polarized direction. Interestingly, the direction of polarization can be set to eliminate the 
singularities at the interface of o180 wedges made of PZT-5H/Si or PZT-5H/PZT-4 with 
free-free mechanical boundary conditions. This phenomenon is particularly important 
because such wedges are frequently encountered in many smart structures.   
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Appendix II 
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where the electric potential, φ , is related to the electric field by, 
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=

φ , 
θ
φ

θ ∂
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=
r

E 1  and 
z

Ez ∂
∂

=
φ .  
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Table 2.1 Material properties 
 

Material 

Stiffness 

[GPa] 

Piezoelectric const. 

[C/m2] 

Dielectric const. 

×10-10[F/m] 

11ĉ  12ĉ  13ĉ  33ĉ  44ĉ  15ê  31ê  33ê  11η̂  33η̂  

CdSe 74.1 45.2 39.3 83.6 13.2 -0.138 -0.159 0.347 0.844 0.903 

PZT-4 139.0 77.8 74.3 115.0 25.6 12.7 -5.2 15.1 64.6 56.2 

PZT-5H 126.0 55.0 53.0 117.0 35.3 17.0 -6.5 23.3 151.0 130.0 

BaTiO3 275.0 179.0 152.0 165.0 54.3 21.3 -2.69 3.65 175.0 9.88 

PZT-6B(Im.) 168.0 60.0 60.0 163.0 27.1 43.0 -14.0 36.0 200.0 247.0 

PZT-6B 168.0 60.0 60.0 163.0 27.1 4.6 -0.9 7.1 36.0 34.0 

Si 166.2 64.6 64.6 166.2 50.8 - - - - - 
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Table 2.2 Convergence of minimum Re[ mλ ] for PZT-4 wedges 

 

γ 
Boundary 
conditions 

Number of 
Sub-domains 

Terms Published 
results 5 6 7 8 9 10 12 14 15 

360  FOFO 

3 0.4985 0.4978 0.4916 0.4417 0.4980 0.4998 0.4750 0.5000 0.4999 

0.5000# 
4 0.4996 0.4963 0.4993 0.4999 0.4999 0.4984 0.4999 0.4999 0.4999 
6 0.5000 0.4993 0.4999 0.4999 0.5000 0.5000 0.4999 0.5000 0.5000 
8 0.4999 0.4999 0.4999 0.4999 0.4999 0.5000 0.5000 0.4999 0.5000 

360  

FOCC 

3 0.1769 0.1969 0.2052 0.1602 0.1718 0.1965 0.1724 0.1954 0.1895 

0.1869*  
4 0.1855 0.1895 0.1847 0.1877 0.1879 0.1857 0.1877 0.1865 0.1869 
6 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 
8 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 

180  

2 0.3710 0.3751 0.3749 0.3740 0.3736 0.3735 0.3741 0.3737 0.3738 

0.3739* 
3 0.3741 0.3737 0.3738 0.3739 0.3739 0.3739 0.3739 0.3739 0.3737 
4 0.3738 0.3739 0.3739 0.3739 0.3739 0.3739 0.3739 0.3739 0.3739 
6 0.3739 0.3739 0.3739 0.3739 0.3739 0.3739 0.3739 0.3739 0.3739 

 
Note: * denotes results from Hwu and Ikeda (2008) 
     # denotes results from Sosa and Pak (1990) 
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Table 2.3 Comparisons between the present and the published mλ  for PZT-4 wedges 
 

γ  Boundary 
conditions 

Direction of 
polarization 

Roots of 
mλ  Published results Present results 

360  FOCC Y 
0λ  

1λ  

2λ  

0.1869* 
0.3131* 
0.6869* 

0.1869 
0.3131 
0.6869 

357  FOFO 

Y 
0λ  

1λ  

2λ  

0.5000# 
0.5094# 
0.5046# 

0.5000 
0.5094 
0.5046 

Z 
0λ  

1λ  

2λ  

0.5000# 
0.5085# 
0.5042# 

0.5000 
0.5085 
0.5042 

330  FOFO 

Y 
0λ  

1λ  

2λ  

0.5021# 
0.5499# 
0.6109# 

0.5021 
0.5498 
0.6109 

Z 
0λ  

1λ  

2λ  

0.5015# 
0.5455# 
0.5982# 

0.5014 
0.5455 
0.5981 

180  FOCC Y 
0λ  

1λ  

2λ  

0.3739* 
0.5000* 
0.6261* 

0.3739 
0.5000 
0.6261 

 
Note: * denotes the results of Hwu and Ikeda (2008) 

#: denotes the results of Sze et al. (2001)  
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Table 3.1: Convergence of minimum Re[λm] for bodies of revolution 

 

Geometry 
Material 1/ 

Material 2 

Number of 

Sub-domains  

Number of Polynomial terms Published 

results 

 
5 6 7 9 11 13 15 

I 

CdSe/ 

PZT-5H 

2 0.9363 0.9348 0.9357 0.9377 0.9387 0.9383 0.9380 

0.9381* 
4 0.9379 0.9381 0.9382 0.9381 0.9381 0.9381 0.9381 

6 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381 

8 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381 

CdSe/ 

PZT-6B 

2 0.9268 0.9242 0.9308 0.9302 0.9280 0.9272 0.9278 

0.9281* 
4 0.9286 0.9289 0.9279 0.9281 0.9281 0.9281 0.9281 

6 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281 

8 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281 

CdSe/ BaTiO3 

2 0.8949 0.9588 0.9429 0.9172 0.9394 0.9256 0.9284 

0.9429* 
4 0.9436 0.9430 0.9430 0.9430 0.9429 0.9429 0.9429 

6 0.9429 0.9428 0.9428 0.9429 0.9429 0.9429 0.9429 

8 0.9429 0.9428 0.9429 0.9429 0.9429 0.9429 0.9429 

PZT-6B/ 

PZT-6B(Im.) 

2 0.98792 0.98475 0.98641 0.98793 0.98713 0.98828 0.98792 

0.98724+ 
4 0.98742 0.98732 0.98731 0.98720 0.98613 0.98725 0.98724 

6 0.98802 0.98764 0.98764 0.98733 0.98724 0.98724 0.98724 

8 0.98730 0.98724 0.98723 0.98724 0.98724 0.98724 0.98724 

II 
PZT-6B/ 

PZT-6B(Im.) 

3 0.54766 0.53669 0.52792 0.52053 0.52716 0.52670 0.53197 

0.52819+ 6 0.52694 0.52758 0.52801 0.52836 0.52819 0.52818 0.52820 

9 0.52803 0.52809 0.52823 0.52820 0.52820 0.52820 0.52820 

Note: * denotes the results of Sato and Watanabe (2002) 
+: denotes the results of Xu and Mutoh (2001)  
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Fig. 2.1 Coordinate systems for a wedge 
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Fig. 2.2 Sub-domains for [0, ]θ γ∈
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Fig. 2.3 Variation of minimum Re[ mλ ] with direction of polarization for a o270  PZT-5H wedge  

           (a) 0oα =  (on x-z plane), (b) 90oβ =  (on x-y plane), (c) 30 ,  60  and 90o o oβ =  
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 (a) 

 

 
 (b) 

 
      Fig. 2.4 Variation of minimum Re[ mλ ] with wedge angle for PZT-5H wedges 

                              (a) FOFO boundary conditions,  
                              (b) COCO boundary conditions 

 
 

 

PZT-5H 

  

  

 



50 
 

 

   
 (a) (b) 
 

 
 (c) 
 

Fig. 2.5 Variation of minimum Re[ mλ ] with direction of polarization for a o180 PZT-5H/ Si bi-material wedge  

           (a) 0oα =  (on x-z plane), (b) 90oβ =  (on x-y plane), (c) 30 ,  60  and 90o o oβ =  
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Fig. 2.6 Variation of minimum Re[ mλ ] with direction of polarization for a o270 PZT-5H/ Si bi-material wedge  

           (a) 0oα =  (on x-z plane), (b) 90oβ =  (on x-y plane), (c) 30 ,  60  and 90o o oβ =  
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 (a) 
 

 
 (b) 
 

      Fig. 2.7 Variation of minimum Re[ mλ ] with wedge angle for PZT-5H/Si wedges 
                              (a) F-FO boundary conditions,  
                              (b) C-CO boundary conditions 
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Fig. 2.8 Variation of minimum Re[ mλ ] with direction of polarization for a o180 PZT-5H/ PZT-4  

bi-material wedge  
           (a) 0oα =  (on x-z plane), (b) 90oβ =  (on x-y plane), (c) 30 ,  60  and 90o o oβ =  

 
  

 

PZT-4 

 

  PZT-5H  
 

 
PZT-4 

PZT-5H 
 

 

 

PZT-4 

 

  PZT-5H  



54 
 

 

   
 (a) (b) 
 

 
 (c) 

Fig. 2.9 Variation of minimum Re[ mλ ] with direction of polarization for a o270 PZT-5H/ PZT-4 

 bi-material wedge  
           (a) 0oα =  (on x-z plane), (b) 90oβ =  (on x-y plane), (c) 30 ,  60  and 90o o oβ =  

 

  

PZT-4   

PZT-5H 
 

  

PZT-4   

PZT-5H 
 

PZT-5H 

 

 

 
 PZT-4 



55 
 

 

 
 (a) 

 

 
 (b) 

     
Fig. 2.10 Variation of minimum Re[ mλ ] with wedge angle for PZT-5H/PZT-4 wedges 

                              (a) FOFO boundary conditions,  
                              (b) COCO boundary conditions 
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Fig. 3.1 Bi-material body of revolution with a sharp corner 
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Fig. 3.2 Cylindrical (r, Z) and sharp corner (ρ,φ) coordinates 
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Fig. 3.3 Sub-domains for [ ]nϕϕϕ ,0∈  
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Fig.3.4 Geometry and boundary conditions for bodies of revolution considered in convergence 
studies 

Material 2 
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 (b) 

 
 (c) 

Fig. 3.5 Variation of minimun Re[λm] with θ for PZT-4 of bodis of revolution  
with β = 90°: (a) γ = 0°, (b) γ = 45°, (c) γ = 90°

PZT-4 
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 (a) 

 
 (b) 

 
 (c) 

Fig. 3.6 Variation of minimun Re[λm] with θ for PZT-5H of bodis of revolution  
with β = 90°: (a) γ = 0°, (b) γ = 45°, (c) γ = 90° 
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Fig. 3.7 Variation of minimun Re[λm] at θ = 60° with β for PZT-4 bodies of revolution: 
(a) γ = 0°, (b) γ = 45° 
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Fig. 3.8 Variation of minimun Re[λm] at θ = 60° with β for PZT-5H bodies of revolution: 
(b) γ = 0°, (b) γ = 45° 
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 (c) 
Fig. 3.9 Variation of minimun Re[λm] with θ for PZT-4/Al of bodis of revolution  

with β = 90°: (a) γ = 0°, (b) γ = 45°, (c) γ = 90°
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 (a) 

 
 (b) 

 

 (c) 
Fig. 3.10 Variation of minimun Re[λm] with θ for PZT-5H/Al of bodis of revolution  

with β= 90°: (a) γ = 0°, (b) γ = 45°, (c) γ = 90° 
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Fig. 3.11 Variation of minimun Re[λm] at θ = 60° with β for PZT-4/Al bodies of revolution: 
(a) γ = 0°, (b) γ = 45° 

 
  

Al 

PZT-4 
β 



67 
 

 
 
 
 
 
 

 

(a) 

 

(b) 
 

Fig. 3.12 Variation of minimun Re[λm] at θ=60° with β for PZT-5H/Al bodies of revolution: (a) γ 
= 0°, (b) γ = 45° 
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 (a) 
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 (c) 
Fig. 3.13 Variation of minimun Re[λm] with θ for PZT-4/ PZT-5H of bodis of revolution  

with β = 90°: (a) γ = 0°, (b) γ = 45°, (c) γ = 90°  
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 (b) 
Fig. 3.14 Variation of minimun Re[λm] at θ=60° with β for PZT-4/ PZT-5H bodies of revolution: 

(a) γ = 0°, (b) γ = 45°. 
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