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Abstract

An eigenfunction expansion approach is combined with a power series solution technique to
establish the asymptotic solutions for geometrically induced electroelastic singularities in
piezoelectric bodies of revolution and wedges, with arbitrary direction of polarization. The
asymptotic solutions are obtained by directly solving the three-dimensional equilibrium and
Maxwell’s equations in terms of displacement components and electric potential. Since the
direction of polarization can be arbitrary in space, the in-plane components of displacement
and electric field are generally coupled with the out-of-plane components, and the coupling
substantially complicates the solutions. The correctness of the proposed solutions are
confirmed by comparing the present results with the published results obtained by assuming
axisymmetric deformation or generalized plane deformation. The numerical results related to
singularity orders are shown for bodies of revolution and wedges that comprise a single
material (PZT-4 or PZT-5H) or bonded piezo/piezo (PZT-4/PZT-5H) or piezo/isotropic elastic
(PZT-4/Al or PZT-5H/AI) materials. The numerical results concerning the order of the
singularity are expressed in graphic form, and are shown herein for the first time.

Key words: electroelastic singularities, piezoelectric bodies of revolution, piezoelectric
wedges, three-dimnsional asymptotic solutions, eigenfunction expansion approach
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l. Introduction

1.1 Literature Review

Piezoelectric material is a widely used, smart or intelligent material, because of the
intrinsic effects of coupling between electric fields and mechanical deformation. Piezoelectric
materials have been extensively applied in actuators, resonators, oscillators, conductors and
sensors. The most interesting feature of piezoelectric materials is that they can serve not only
as actuators, providing driving signals, but also as sensors for smart structures. In the
practical applications, electroelastic singularities are commonly observed at a sharp corner or
because of discontinuity in material properties. Accordingly, either local mechanical failure
or dielectric failure can occur at a sharp corner. Understanding of the electroelastic singularity
behaviors of piezoelectric wedges is essential to optimize the design of piezoelectric devices
and further advance smart material technology. Furthermore, an accurate numerical analysis
of problems that involve stress singularities depends on knowledge of such stress singularity
behaviors. The two typical geometries that are commonly considered in the literature on
geometrically induced stress singularities are wedges and bodies of revolution.

The stress singularities in a wedge have been comprehensively examined. Since Williams
(1952a) pioneered the investigation of stress singularities of plates under extension, many
studies of stress singularities in wedges of a single material or multiple materials have been
carried out, based on the plane strain or stress assumption (e.g. Williams, 1952b; Hein and
Erdogan, 1971; England, 1971; Bogy and Wang, 1971; Dempsey and Sinclair, 1981; Ying
and Katz, 1987) or three-dimensional elasticity theory (e.g. Hartranft and Sih, 19609;
Chaudhuri and Xie, 2000). Geometrically induced stress singularities in plates of a single
material and multiple materials have also been extensively studied using classical thin plate
theory (e.g. Williams, 1952c; Williams and Owens, 1954), first-order shear deformation plate
theory (e.g. Burton and Sinclair, 1986; Huang, 2002a; Huang, 2003; Saidi et al., 2010;
McGee and Kim, 2005), and third—order plate theory (Huang, 2002b).

Numerous analyses of stress singularities for elastic bodies of revolution are also
available. Making an assumption of axisymmetric deformation, Zak (1964) utilized the Love
stress approach (Love, 1927) to investigate geometrically induced stress singularities in
bodies of revolution that were made of a single material, while Li et al. (1998, 2000) adopted
the Love stress approach and Boussinesq's solution (Timoshenko and Goodier, 1970)
respectively, to obtain the stress field near the bond edge of a bi-material body of revolution.
Ting et al. (1985) presented eigenfunctions at a singular point of a body of revolution made
of transversely isotropic material. Without assuming axisymmetric deformation, Huang and
Leissa (2007) presented three-dimensional sharp corner displacement functions for bodies of
revolution, and further studied the geometrically induced stress singularities in bimaterial
bodies of revolution (Huang and Leissa, 2008).
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A few studies of the geometrically-induced electroelastic singularities at the vertex of a
piezoelectric wedge (Fig. 2.1) are based on the assumption that all physical quantities under
consideration depend on the planar coordinates. Based on the plane strain assumption (&

7z

&, &y, andE,, which are defined in Chapter 2, equal zero), Xu and Rajapakse (2000)

7y ! x !

extended Lekhnitskii’s complex potential functions for in-plane stresses and electric
displacement components to examine the electroelastic singularities at the vertex of a
piezoelectric wedge that has a direction of polarization on the x-y plane (see Fig. 2.1). Based
on an assumption of generalized plane deformation, Chue and Chen (2002) presented a
decoupled formulation of piezoelectric elasticity and applied it to examine the stress
singularities near the apex of a rectilinearly polarized piezoelectric wedge, considering its
direction of polarization in the x-y plane or along the z-axis. Hwu and lkeda (2008) proposed
an extended Stroh formulation in an (X, y) coordinate system by considering a generalized
plane strain and short circuit (¢,, =0 and E, =0) and presented numerical results for the
electroelastic singularities at the vertices of piezoelectric wedges and multi-material wedges
with the directions of polarization in the x-y plane. Because different plane assumptions were
made in these three cited papers, they employed different constitutive laws in their solutions.
Notably, Xu and Rajapakse (2000) treated the piezoelectric material as transversely isotropic
material as they began to develop solutions while Chue and Chen (2002) and Hwu and Ikeda
(2008) treated piezoelectric material as generally anisotropic. The solutions of Xu and
Rajapakse (2000) include only in-plane physical quantities, while those of Chue and Chen
(2002) and Hwu and Ikeda (2008) included in-plane and out-of-plane physical quantities.
Following the assumptions in Chue and Chen (2002), Chen, Chu and Lee (2004) employed
the extended Lekhnitskii formulation to determine the eletroelastic singularity behaviors near
the apex of a piezoelectric wedge that was polarized in the radial, circular, or axial direction.
Chu and Chen (2003) applied the Mellin transform to determine anti-plane stress singularities
in a bonded bi-material piezoelectric wedge. Neglecting all out-of-plane physical quantities,
Shang and Kitamura (2005) utilized a modified version of the general solution that was
developed by Wang and Zheng (1995) and Shang et al. (2005) to investigate the stress
singularities at the interface edge of a wedge made of two piezoelectric materials with the
direction of polarization parallel to the x-axis.

A review of the literature reveals only two investigations that considered eletroelastic
singularities in a piezoelectric body of revolution, based on axisymmetric deformation
assumptions. To perform stress singularity analysis of axisymmetric piezoelectric bonded
structures, Xu and Mutoh (2001) adopted the general solutions for coupled equations for
piezoelectric material that was developed by Ding et al. (1996), while Li and Sato (2002)
extended the method proposed by Ting et al. (1985) for an elastic material. These solutions
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consist of four and three quasi-harmonic functions, respectively. In these two works, the
direction of polarization of the piezoelectric material was assumed to be along the axis of
revolution.

1.2 Purposes of Research

The main purpose of the present research is to develop an asymptotic solution for the
eletroelastic singularities in a piezoelectric body of revolution and wedge without any
restrictions on the direction of polarization of the material. When a piezoelectric material is
considered to be transversely isotropic, and the axis of material symmetry is not parallel to
the axis of revolution, the assumption of axisymmetric deformation is no longer valid. Since
the direction of polarization can be arbitrary in space, the in-plane components of
displacement and electric field are generally coupled with the out-of-plane components. An
eigenfunction expansion approach combined with a power series method is adopted to solve
the equilibrium and Maxwell’s equations in terms of mechanical displacement components
and electric potential. The correctness of the proposed solution is confirmed by comparing
the present results with the published results in cases in which the direction of polarization is
along some special directions. Analyses are performed on bodies that comprise a single
piezoelectric material (PZT-4 or PZT-5H), bonded piezo/piezo (PZT-4/PZT-5H) or
piezo/isotropic elastic (PZT-4/Al or PZT-5H/AI) materials. The effects of geometry of body,
polarization orientation, material type(s) and boundary conditions on the singularity orders
are comprehensively examined. The numerical results concerning the order of the singularity
are expressed in graphic form, and are shown herein for the first time.



Il Asymptotic Solutions for a Wedge
2.1 Basic Formulation
Consider a rectilinearly anisotropic piezoelectric wedge that is polarized in the z
direction, as presented in Fig. 2.1. The constitutive equations of the piezoelectric material are
expressed in the material coordinate system (X,y,z), as

(6} =[elz)-[e] {E}. (2.12)
{D} =[e]{z}+[n]{E}, (2.1b)
where {5} ={o-;(;( o) On 05 On O }T is the stress vector;
{2}:{53(;( gy &n 26y 26% Zgg(y}T is the strain vector; {15}:{D;( Dy DQ}T is
the electric displacement vector; {E} :{E;( Ey E; }T is the electric field vector, and [€],

[] and [7] are the mechanical elastic constant matrix, the piezoelectric constant matrix

and the dielectric constant matrix, respectively.
It is easy to solve for the eletroelastic singularities at the vertex of the wedge in the
cylindrical coordinate system (r,8,Z) given in Fig. 2.1. In the cylindrical coordinate system,

the equilibrium and Maxwell’s equations in terms of stress components (o;) and electric

displacements ( D, ) without body force and charges are

do, 1 aare aO-rz (O-rr _699) 0

o + " -0, (2.2a)
o r o0 o r
001 1 0%w , 0% 4 50w _ (2.2b)

or r 06 0z r

00y 109, , 0%  Ou _g (2.2¢)

or r 06 0z r
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r or r o oz
The constitutive equations of the piezoelectric material in the cylindrical coordinate

system are

toy=[clel-[el{E}, (2:33)

{D}=[e] {}+[n]{E}, (2.3b)

L =0, (2.2d)

where {o}={o, 2¢,, 2¢, 28r9}T,

r
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The components of [c], [e] and [#] are related to the components of [¢], [é] and [7],

respectively; and are functions of & and depend on the direction cosines between (X,y,7)
and (x, y, z). These relations are given in Appendix 1.
Substituting strain-displacement relations and electric field-potential relations into Eqgs.

(2.3) and (2.4) enables the stress components and electric displacements to be expressed in
terms of mechanical displacement components (u,,up and u,) and electric potential (¢),

given in Appendix Il. Substituting those expressions into Egs. (2.2) yields the governing
equations in terms of mechanical displacement components and electric potential as
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2.2. Construction of Asymptotic Solution

To determine the asymptotic solution of Eqgs. (2.5) as r approaches zero, the mechanical
displacement components and electric potential in the double series can be conveniently
expanded as follows;

(r,0,2) ii (2.6a)



(r,6,2)=3 3 r="N" (0,2), (2.6b)

m=0 n=0

(r,0,2) iir‘m*”w 0,z), (2.6¢)
m=0 n=0

(r,0,2)=3 3 ropm (2.60)
m=0 n=0

where the characteristic values A, are assumed to be constants and can be complex
numbers. The real part of A, has to be positive to satisfy the regularity conditions for
mechanical displacement components and electric potential at r=0 (such as finite
displacement and electric potential at r=0).

Substituting Egs. (2.6) into Eqgs. (2.5) and carefully arranging the resulting equations
yields
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To investigate the behaviors of the solutions around r=0, only the parts of the solutions
with the lowest order of r have to be considered. That is the solution corresponding to n=0 in
Egs. (2.7). Accordingly, the following equations must be solved.
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220 (m oy (m ~ o2v.m vV (M) o
@—1902+ pl(‘g) 8; + DZ(H)J[S p3(9) 6902 p4(9) 8(:9 + p5(9 0()
Y L N Y R (R
+ ps(e)ﬁ‘*‘ p7(9) 609 + ps(‘g)No( )+ pg(e) aeg + p1o(‘9 5—;+ p11(9)®g =0
(2.8a)
PEYAG) ov.(m - 220 M aum “
8002 +0,(6) 839 +q2(9)V0( )+q3(0) 8002 +q4(¢9)—°+q5(9)U(§ )
oW, ™ ow,™ . RO oDy < (m
+q6 (H) 6902 g, (9) 600 +q8(9)WO( )+q9 (H)a—eg"'%o (9)8—;+q11(9)q)g ) =0
(2.8b)
oW, b 0 () o0y auy" 3 (m)
oM ov.(m . 2p(m (m) “
+1,(9) 7 L (0) 800 +1, (O™ +1, () aeg 0 (0)—=2—+1,(0)D" =0
(2.8¢c)
82('1‘)(m) 8&)([“) . 620(m) aU(m) i
O 5 (0 s (045, (0) O v, (0) o, (01
o.M ov.(m i o2W.(m ow.m .
+5(0)— o+, (0) +54 (0)V, )+Sg(9)6—;2—%810(9)ﬁ+811(9)wo( =0

(2.8d)
Appendix Il defines p,, g, r,and s inEgs. (2.8).

Equations (2.8) are a set of ordinary differential equations with variable coefficients that
depend only on 4. The solutions to Egs. (2.8) are independent of z. The exact closed-form
solutions to Eqs. (2.8) are intractable, if they exist. The power series method can be directly
adopted to develop a general solution for ordinary differential equations with variable
coefficients. Very high-order terms must be considered to obtain an accurate solution and this
requirement can cause numerical difficulties. To overcome these difficulties, a domain
decomposition technique is used in conjunction with the power series method to establish a
general solution of Egs. (2.8).

The range of 6 under consideration is first divided into a number of sub-domains (see
Fig. 2.2). A series solution to Egs. (2.8) is established in each sub-domain. Consequently, a
general solution over the whole @ domain is constructed from these series solutions in the
sub-domains by imposing the continuity conditions between each pair of adjacent
sub-domains. This process is a very convenient means of constructing solutions that can be
used to analyze multi-material wedges, which are also considered in this work.
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To establish the power series solution for sub-domain i of &, the variable coefficients in
Egs. (2.8) are expanded in terms of the power series of & with respect to the middle point of

the sub-domain, 6, :

W= ) -0y sj<9>=§;<91 Plo-a). 29

A

by -

Ugm>=2/&§i>(9 0) ZB (9 6) V\A/;{“):ioégi)(e—e"i)j
i= = !
J
2

Y (g_p )

DJ‘ (9 gi) (2.10)
Substituting Egs. (2.9) and (2.10) into Egs. (2.8) and carefully rearranging yields the

following relations among the coefficients in Egs. (2.10)

A () g () & () 3 -1 & () g
A, + (1), By, + () CFly+ (1) D§+)z:m{é[(k”)(kﬂ)((%),—k B,

i) A ‘ Al i) A ) Al
+(ﬂe)(,-zk C|£|+)2+ k+2):|+2|: k+1 Ag?l‘*‘(,uz)(jik Ak()+(k+1)(ﬂ4)(,-zk B|£+)1
k=0
(i) é(i) k+1 (i) é() (i) C(i) k+1 (i) A(i)
+(,115)H k "‘( + )(,U7)j, k+l (,Us) +( + )(ﬂlo)j k+l (ﬂn)
(2.11a)

A () Al (i) A i) A -1 S ) A
BE+)2 +(§3)o A§+)2 +(§6 )o CJ('+)2 +(§9)g) DE+)2 :m{g[(k-"z)(k"—l)((gs)(j)k A1£+)2
) A i j ) Al i) Al ) Al
(ge )(J)k CI£+)2 (gg)() 1592):|+Z[(k+1)(§1)(j)k B|£+)1 +(g2)(jzk BIE) +(k+1)(§4)(,-3k A1£421
k=0
#e)]l A+ (k1) (60, €l (), €+ (k1) (s30)], B+ ()], B |} @10)
j1

i) A ) &l ) B -1 ) Al
| +(9€3)g) A§+)2 +(§6)E)) B§+)2 +(6€9)g) DE+)2 :m{é[(k+2)(k+l)((§3)g)k A1£+)2

+(5‘5)(]1 éiﬁ?z + k+2 )}4_2[ k +1 é:l k+1 (952) (k +1)(§4)(ji3k '&1£I+)1

4—(55)2i A( (k+1)(§7) k+1 (58) (k+1)(<§10) k+1 (§11) &i)J} (2.11c)
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3 () A () 4 () & -1 $ () AG
D} +(%), A +(8), B +(84)g CJQZ:m{k_o[(k+2)(k+l)((l93)jk Al

A

)" B8 J (k+1)( +(%)" DY +(k+1)(9,)". AV

+( G)j—k k+2+ k+2 +Z + k+1 ( 2)j—k k +( + )( 4)j—k Ak+l
k=0

(%), AY +(k+1)(9,)", BY, + (), éﬁ”+(k+1)(910)(j‘jké§?1+(9n)<;>k M]} (2.11d)

Close examination of Egs. (2.11) reveals that if AP, A®, B® B®Y C® Cc®, DY

and D are determined, then the other coefficients in Egs. (2.10) (A}i), é}", é}‘) and

[3}", j>2) can be found by solving the linear algebraic equations in Egs. (2.11).

Consequently, the solutions to Egs. (2.8) in sub-domain i of & can be expressed as

Ust™ (6.2)= APty (0)+ APGG) (0)+ BPUEE (6) + OIS (0)+ EUGT (0)+ EUGE (6)
+DOGM (9)+DOGM (0) (2.12a)

Vo™ (6.2)= AINGG) (0)+ ANGT (0)+ BN (0)+ BING (0)+ CINGE () + CIVGE (6)
DN (9)+ BINIY (6) (2.12b)

Vg (6.2)= AN () + AIGT (6) + BIMIGE) (0) + BIMIGE) (6) + CEMIG) (6) + CNIGE) (0)
DI (9)+ DIVIL™ (0) (2.12¢)

afy (0.2) = Aag (0)+ ADBGY (0)+ BB (0) + BID (0)+ CGT) (0) + PG (0)

+DPB (6)+ BODIY (0) (2.12)

The asymptotic solution in sub-domain i of & is

u(r,6,2) = i rUiM(@,z)+0o(r* ™y =al(r, 0,2, 4,) + O(r"m*) (2.13a)
m=0

uld(r,0,2) = Z rVi™ (9,2) +O(r' ) = al)(r,0,2, ,) +O(r" ) (2.13b)
m=0
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uf(r,0,2) = i rmWi™ (8, z)+Oo(r* ™y =a{ (r,0, 2, 4,) + O(r"m*t) (2.13c)

m=0
V) (r,0,2) = i rnd{™(9,2)+0(r* ™) = g0 (r,0,2, 2,,) + O(r*n*) (2.13d)
m=0

When the range of @ is decomposed into n sub-domains, a total of 8n coefficients must
be determined in all of the sub-domain solutions that are constructed using the above
procedure. These solutions must satisfy the continuity conditions between pairs of adjacent
sub-domains. These include continuities of tractions, mechanical displacements, electric
displacements and electric potential. These continuity conditions yield 8(n-1) algebraic
equations. Homogenous boundary conditions at =6, and 6=6, must be satisfied,
yielding another eight equations. As a result, 8n coefficients are to be determined from 8n
homogenous algebraic equations. A nontrivial solution for the coefficients yields an 8n*8n
matrix with a determinant of zero. The roots of the zero determinant (A4), which can be
complex numbers, are obtained herein using the numerical approach of Mller (1956).

2.3. Verification of Solution
To validate the proposed solution, convergence studies for minimum Re[ A ] (real part

of A ) are conducted by increasing the number of sub-domains or increasing the number of
polynomial terms in each sub-domain, and the convergent solutions are compared with the
published results. The wedges under consideration are made of piezoelectric material PZT-4,
which is transversely isotropic. Table 2.1 presents the material properties of PZT-4.

Table 2.2 considers three cases. Four letters specify the boundary conditions of a wedge at
6=0 and &=y. The first and third letters represent the mechanical boundary conditions at
6=0 and &=y, respectively; and C and F represent clamped and free boundary conditions,
respectively. Similarly, the second and fourth letters concern the electric boundary conditions
with C and O’s denoting electrically closed and open boundary conditions, respectively.
These rules are adopted throughout the paper.

The first case concerns a crack problem with a material having its direction of
polarization in the z direction (see Fig. 1). The surfaces of the crack are free of surface
traction and surface charge. That is o,,=0, =0,,=D,=0 at 8=0and 2z . The results of
Sosa and Pak (1990) were obtained by using an eigenfunction approach, which is similar to
the present approach. Sosa and Pak (1990) examined a piezoelectric parallelepiped with a
cut-through crack and having its direction of polarization in the z direction, so that they could
find a closed-form solution for 4 .

The other two cases involve 180° and 360° wedges with FOCC boundary conditions and
polarization along 6 =180° and & =270°, respectively, in the plane x-y. Table 2.2 also
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presents the results that were published by Hwu and lkeda (2008). Notably, the solutions of
Hwu and Ikeda (2008) are two-dimensional solutions, depending on x and y, and are based on
the assumption of generalized plane strain and a short circuit. They assumed ¢, =0 and
E, =0, eliminated the terms that were associated with ¢, and E, in the constitutive
equations, and replaced o,, and D, by the other stress and electric displacement

components. Thus, they eliminated c; (i or j=3), e, and 7,, from Egs. (2.4). Using their

assumptions and following the present solution procedure shown in Sections 2.1 and 2.2, one
can obtain exactly the same equations as Egs. (2.8) and the same values of A given in the
present work. This fact is indirectly evidenced by two observations. The first is that the terms
corresponding to the derivatives with respect to z in Egs. (2.5) are absent from Egs. (2.8),
indicating that the assumption of all physical quantities in Eqgs. (2.5) independent of z does
not affect the establishment of Eqs. (2.8). The other is that the coefficients in Egs. (2.8),

presented in Appendix 111, are independence of c;; (i or j=3), e, and 7,;.

The comparison in Table 2.2 of the convergent values obtained herein with those
published reveals excellent agreement. The present convergent solutions can be obtained by
increasing the number of sub-domains or increasing the order of the polynomials. Using a
large number of sub-domains in combination with a small number of polynomial terms can
yield convergent results without any numerical difficulty.

It is also interesting to demonstrate the accuracy of the values of A other than
minimum Re[ 4] obtained by the present approach. Herein, A_ are in order of Re[ 4 ]=
Re[4,,] (i=0, 1, 2,...). Table 3 compares 4,, 4 and A, determined by the present
approach with the results published by Hwu and Ikeda (2008) and Sze and Wang (2001) for
PZT-4 wedges with different 7', boundary conditions and directions of polarization. Notably,
the results of Sze and Wang (2001) were obtained by a finite element approach with
three-dimensional formulations and assuming all the physical quantities under consideration
independent on z. The material properties of PZT-4, which were used in Sze and Wang (2001)
and are different from those given in Table 2.3, were applied for the wedges with FOFO
boundary conditions in Table 2.3. The different material properties from those in Table 1 and
used in Sze and Wang (2001) are ¢&,=113 GPa, é,=13.44 C/m? &, = -6.98 C/m* , &
=13.84 C/m?, #,=60.0x10"° F/m, and 7,= 54.7x10™"° F/m. The present results were
obtained by dividing the whole domain of & into four sub-domains and using 12 polynomial
terms in the solutions for each sub-domain. Table 2.3 discloses excellent agreement between
the present and the published results.

2.4. Numerical Results and Discussion

After the correctness of the proposed solutions was verified by performing the
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convergence studies and comparisons with the published results, the proposed solution was
further applied to investigate the electroelastic singularities in a piezoelectric wedge with
varying directions of polarization. The wedges under consideration are made of a single
piezoelectric material, a piezoelectric material and an isotropic elastic material, or two
piezoelectric materials. Two parameters « and £ are introduced to specify the direction
of polarization, where « is the angle between the x-axis and the projection of the
polarization axis onto the x-y plane, and S is the angle between the z axis and the
polarization axis. The order of electroelastic singularity at the apex of a wedge is determined
by the real part of (A,,-1), and the root of primary interest is the one with the smallest
positive real part between zero and one. The following presents the values of minimum
Re[A,,] for wedges with various combinations of boundary conditions along =0 and
O=y.

2.4.1 Wedges made of a single piezoelectric material
Figures 2.3 illustrates the effects of the direction of polarization on the minimum values

of Re[ 4,,] for a 270°wedge made of PZT-5H, whose material properties are given in Table

2.1. Four combinations of boundary conditions were considered - FOFO, FCFC, COCO and
CCCC. As stated in Section 4, FOFO means free mechanical boundary conditions and open
electric boundary conditions at both of ¢=0° and 6=270°. In Fig. 3a, a=0° means that
the direction of polarization is in the x-z plane, while £ =90° in Fig. 3b indicates that the
direction of polarization is in the x-y plane. Figure 2.3a only considers 0° < 8 <90° because

S+90° and 90° - g vyield the same A_. Similarly, Fig. 3b only presents the results for

0° <@ <180° because «+180° and 180° —«a have the same A, . Figures 2.3a and 2.3b

demonstrate that the FF mechanical boundary conditions cause more severe electroelastic
singularities than do the CC mechanical boundary conditions. Electric boundary conditions
do not affect minimum Re[ 4] in the FCFC and FOFO cases. The variation in minimum
Re[ 4,,] owing to changes in the direction of polarization is less than 5%.

Figures 2.4 plots the variation of minimum Re[ A, ] of PZT-5H wedges with wedge angle
y and under FOFO and COCO boundary conditions. Three different directions of

polarization in the x-y plane were considered - «=0°, 60°,and 120°. The A, values that

correspond to minimum Re[ 4, ] are all real. As expected, minimum Re[ A ] decreases as y
increases; and the FOFO boundary conditions yield a smaller minimum Re[ 4, ] than do the

COCO boundary conditions. When y» =360°(representing a crack), both sets of boundary
conditions resultin 4, =0.5, and the orientation of the polarization in the x-y plane does not
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influence the singularity order.

2.4.2 Bi-material wedges made of piezoelectric and elastic materials

The integration of piezoelectric films on silicon (Si) substrates is favored in the design
and formation of micro electromechanical systems. This section study the electroelastic
singularities at the interface in wedges that are made of PZT-5H and Si, whose material
properties are found in Table 2.1. Two typical wedge configurations — those of 180°and
270° wedges — were considered first. Ina 180° wedge, Si and PZT-5H occupy 0° <6 <90°
and 90° <0<180°, respectively, while in a 270° wedge, Si and PZT-5H occupy
0° <@ <180°and 180° <#<270°, respectively. Figures 2.5 an 2.6 plot the values of
minimum Re[ A4, ] of these two wedges versus their directions of polarization, respectively.
Again, four sets of boundary conditions were considered. These are F-FO, F-FC, C-CO, and
C-CC, where “-* denotes the absence of any electric boundary conditions at 6=0°,
according to the rule for defining boundary conditions described in Section 2.3.

In Figs. 2.5a and 2.5b, the directions of polarization of PZT-5H are in the x-z plane and
x-y plane, respectively, while Fig. 2.5c displays the results for the wedges with the F-FO
boundary conditions and having the directions of polarization on the surfaces with 3 =30°,
60° and 90°. It is interesting to observe that the direction of polarization can be especially
arranged to eliminate electroelastic singularities at the interface of the wedge. For example,

Fig. 2.5a reveals no electroelastic singularities when 80° < #<90°and 38° < 5 <90° for

boundary conditions F-FO and C-CO, respectively; Fig. 2.5b shows no electroelastic
singularities when 90° <« <180° under boundary conditions F-FO and F-FC, and Fig. 5¢c
shows no electroelastic singularities when 18° <« <88° and 23° <« <72° under the
conditions B =60°and 30°, respectively. Notably, boundary conditions C-CC yield more
severe singularities at the interface than do the other three sets of boundary conditions.

According to Fig. 2.6, in investigating the singularities in 270° wedges, changes in the
direction of polarization may yield considerable changes in minimum Re[ 4, ]. In Fig. 6a, the

order of the singularity falls by approximately 10% under boundary conditions F-FO as S
changes from 0° to 90°, and in Fig. 2.6b, it increases by about 25% under boundary

conditions F-FC as « changes from 45° to 135°.
Figures 2.7a and 2.7b plot the variation of minimum Re[ 4, ] with the angle of PZT-5H,

7,, under boundary conditions F-FO and C-CO, respectively. In the wedges in Figs. 2.7, Si
occupies 0°<0<180°, and the wedge angle y equals p, +180°. The directions of

polarization are in the x-y plane and « = 0°, 60° and 120°. As expected, the strength of
the singularity generally increases with the increase of y,, and the order of the singularity

equals 0.5 when y; =180° (representing a crack). The relatively abrupt changes of the
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minimum Re[ 4] around y, =160° in Fig. 2.7a are caused by the changes of A from

real numbers to complex numbers.

2.4.3 Bi-material wedges made of piezoelectric materials

Bi-material wedges that comprise piezoelectric materials are commonly encountered
in smart structures. This section investigates electroelastic singularities at the interface of
bi-material wedges comprised of PZT-5H and PZT-4, whose material properties are provided
in Table 1. The configurations of wedges considered in this section are the same as those in
the preceding section, except in that the elastic material in the previous section is replaced by
the piezoelectric material PZT-4.

Figures 2.8 illustrate the effects of the orientations of polarization on the electroelastic
singularities in wedges with a wedge angle 180°. When the direction of polarization lies in
the x-y plane (see Fig. 8b), 2° <a <88° and 6° <a <84°yield no singularities under
boundary conditions COCO and CCCC, respectively. When the direction of polarization is on

the surface with £ =30°(see Fig. 2.8c), no singularities are found for 108° < o <168°

under the FOFO boundary conditions. Changes in the direction of polarization alter the order
of the singularity by less than 4%.

Free-free mechanical boundary conditions cause more severe electroelastic singularities
in 270°wedges (Figs. 2.9) than do clamped-clamped boundary conditions. The orientation of
polarization may change the order of the singularity by approximately 9%. For wedges with
other angles, that percentage exceeds 10% (Figs. 2.10).
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I11 Asymptotic Solutions for a Body of Revolution
3.1 Basic Formulation

Consider a body of revolution made of a piezoelectric material polarized along the
direction Z , which makes an angle » with the axis of revolution Z (Fig. 3.1). Although Fig.
1 displays a bi-material body of revolution, a body of a single material will be first
considered in the following development of basic equations and solutions. The solutions are
then easily extended to a bimaterial body. Define two Cartesian coordinate systems (X, Y, Z)
and (X,Y,Z), where Y and Y axes are coincidental. A cylindrical coordinate system (r, &,
Z) (Fig. 3.1) can be conveniently used to solve problems of bodies of revolution. Without
body force and charges, the equilibrium and Maxwell’s equations in terms of displacement
components and electric potential are given in Egs. (2.5). Notably, the material coordinate
system (X,y,z) and geometry coordinate system (X, y, z) in chapter 2 are replaced by
(X,Y,Z) and (X, Y, Z) herein, respectively.

Figure 3.2 shows a half plane with any constant & in Fig. 3.1. To find an asymptotic
solution around the sharp corner in Fig. 3.2, (r, Z) coordinates are transformed to (p, ¢)
coordinates as shown in Fig. 3.2. Transforming Egs. (2.5) from (r, Z) to (p, ¢) using the
relations,

p=y(r-R)?+2%, 4= tan‘l[_—ZRj, r—-R=pcosg,and z=—psing, (3.1)
yields the following complicated partial differential equations with variable coefficients;

0 0 oc 0
c11+ﬁ+2c16 £j L, +[c15 +=28 4 2¢c6 —j Lﬂl

1
Ly +Coglg + 2 S R
{[C“ S C15L5]+pcos¢+RK 00 00 00

1 3Cye 0% 0OCgg O
b | Copp + =2 4 G —— F—2 LU, + Ly +Cpels +(Cpyq +Ceg ) L
)2{ 2% 50 T 2 50 ag | [T Cigly +Ca5ls +(Cig +Cs ) Ls

1 OCeg 0 OCyg aj
- —Cpg +—22+(Cp+C5 ) — | Ly +| Cla —Coq —Csg +——>+(Cp5 +Cag ) — | L
pcos¢+RH 267 5p (G2 66)89j 2 (014 24~ G6 (C25 46)80 4

1 BCeg ( aczeJ G 0
+ Cog — +| —Co9 —Cg5 +—== | —+Cog — |t Ug + Ly +c35L
(pcos¢+R)2{ 2%~ 59 2=t T 50 59 T2 57 | (10 Ci5hg +C3sl3

OCsg 0 OCs5
—Cor +—2 4 +Cer )— |Lo + —Cog +—22
H% 575, (014 56)69j 2 (013 BT,

+(°13+055)|-5]+p—

d 1 oCug ) O o°
+(Cag +Cyps ) — |Ly [+——————|| —Coy + —2> | ——+Cys —= |1 U, + L, +esc L
(c36 45)69) 4} (pCOS¢+R)2 K 2475 ]69 46 OHZ:I} z {{911 1+€35l3
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(€31 915)'—5] pcos¢+RKell e 20 (esq 21)60} 2 (31 2+
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0 0
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1 anzzj d 0
+ -0, (3.2d)
(pcosg+ R)2 H 20 Joo" " 5q? |7

where

L, =cos? ¢ 82+sm ¢ 0 2singcosg 0 +23|n¢2cos¢ 0 sm2¢ 0 |
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)

3.2 Construction of Asymptotic Solution

To find solutions to Egs. (3.2) for bodies of revolution, the methodology of Hartranft and
Sih (1969) for elastic wedges can be applied. The solutions are expressed as

=33 U M(6,0), uy(r,6,2)=3 3 p" N M (6,0)

m=0 n=0 m=0n=0
(r,0,2 :Z.)Z; Ity (m ¢(r,0,z):ggpimmé&m)(aw) (33)

where A, is a parameter to be determined, which can be a complex number, and the real
part of A, must be positive to ensure finite displacement and electric potential at p=0. To

determine the eletroelastic singularity behaviors as o approaches zero, substituting Egs.

(3.3) into Egs. (3.2) with careful arrangement and considering only the equations for the least
power order of p yield
o?uim 1 _ aui™ 1 .
8(/)2 + A_(ﬂm _1)[(C55 - Cn)sm 2¢ —2C,5 COS Z(P] 5(3) + A Am ((ﬂ’m _1)C55 + Cll)S|n2 4
1 1

+ 4, ((ﬂ’m _1)C11 + Css )C052 o+ A, (2 = A )cls sin Z(D}Ljém)

+ 1 C, Sin? 2
A_ 16 @ +Cy;sCOS” @

1

27 (m) 7 (m)
+ '(C14 -; = )Sin 2(0} aaVOZ + (ﬂ‘m - l)[(C45 ~Cis )Sin 20 - (C14 +Cyg )COS 2§0] 5Vo
¢ op

+ {/lm (4, —1)(016 oS @+ C,e SiN’ @ —@sin 2¢) + /1,{016 sin® ¢ +¢,, C0s* @
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A 27 (m)
+—(C14 +C56)sin 2¢ VO(“‘)+i Cis SiN” o+ Cyy cos%zwwsin 2¢ d WOZ
2 A, 2 op

. oW
+ (ﬂ“m _1)[(C35 —Cp5 )Sm 2¢ - (013 + Css )COS 2(0]

[ (4, 1)(015cos @+CySin° @

_ (C13 ;Css)sin 2(pj+ A (cls sin ¢ + C, cos” @ + sm 2(0)}}

2p(m)
+i[ellsin2go+e35 cosz¢+wsin 2(0}6 0+ (2, —D(ess —&45)sin 290
A 2 op

(15 +ey1)

m)

(
0

op

+ A, (en sin @ + e, cos? p + @sin 2¢H}égﬂ> =0, (3.4a)

— (&5 + €, )c0s 29] + {im (4, —1{e11 C0S% @ + &, sin’ p — 2L gjn Z(pj

1 . V™ 1
— (4 -1 - 202 2 0 —
6(02 +A2( m )[(C44 Cee)sm @ — £Cy COS (/7] o0 + A,

+ A, (A, =1)ceg +Cyp )cOS® o+ A, (2— A4, )4 SIN 2@}\70('“) + Ai{{cm sin? @ + C,; cos? @
2

{/ﬁtm ((;{’m _1)C44 + C66)Sin2 ®

2% (m) 7 (m)
+Msin 24 0, , (4, —1)[(c,s —Cy4 )SiN 200 — (Cyq +C,, )COS 2¢1]6U°
2 op op

2
(CSG + C14

{ﬂm (4, —1)(ch cos” @ +C,Sin° - )sin 2¢]+/1m(cl6 sin® @ +c,; Cos” @

A _ _ 27 (m)
+(C56 + 14)S|n2(0 U(()m)_i_i C56 S|n2 ¢+C34 COSZ(D‘I'MS”] 2¢ 8—02
2 A, 2 op

g (m)
+(A, —1)[(Cyy —Cs5 )5iN 20— (Cy + C,5 )COS 200 6\2/; + {/Im (4, —1{c56 0s® p+C,, Sin
(e tcy) er Cas )sin 2(pj+ A (056 sin2 @+ C,, C0S% o + (C5+Cs5) )sin ZgoH}V\A/O(”‘)

2

23 (m)

+ Ai{ele Sin® @ + ey, C0s” g + e ; “Jsin 24 aaq)g + (A —Dl(ess —e Jsin2¢
¢

2

— (&4 +€,,)COS 20| é o {im (4, —1)(e16 cos? @+ e, sin’ go—@sin 240)
Q
+ A (em sin® p+e,, cos’ ¢ +@sin 2@]}}&)&”‘) =0, (3.4b)
v (™) j (m)
(= w  ca)sinZo 25, 00520) " L4, (2 B s e
® A, op A,
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+ A, (A, —1)Css +Cg5 )COS? @+ A, (2 1, )Cys SIN 2(0}\@0(”“) + Ai{[cls sin? g + C,, COS% @
3

217 (m) 7 (m)
+ Msin 24 aaug +(A, =D(cys —Cy5)sin 29— (5 + g )COS 2go]6l; 0
() Q

. Cis +Cs5) . :
+ [lm (4, —1)(c15 cos® @ +Cy Sin° qo—%sm 2(0) + A, (clS sin® @+, cos* ¢
2,7 (m)

. ~ . . V
+(C13+C55)s|n 2§0 U(()m)_;’_i CSGSIn2§0+C34 COSZQ+MS”’] 2¢) a 02
2 A, 2 op

+ (A, =1(cqy —Cy5 )siN 200 — (Cy +c45)0032¢>]a [ (4, 1)(c56 cos® p+Cy, Sin’ @
—Wsin 2¢j+ A (056 sin® @ + ¢, cos® (p+ sm 2¢H}

(-l - e Jsin2g

: €5 +€;
+Ai{e15 sin® ¢ + e, cos’ ¢+(13T)s n 2(0}

3

(m)
— ()5 + €4 )05 20| a; + {Am (4, —1)(e15 cos® p+e,,sin® _wsin ggpj
+ A (els sin® ¢ +e,, cos’ gp+@sin 2(0)}&)3’“) =0, (3.4c)
e 1 | G 1 .
00° +A_(lm _1)[(7733 _7711)5m 2¢ —2n,, C0s Z(P] P A Ao ((ﬂ“m _1)7733 R/t )Sm ®»
(4 4 () 4

+ A, (A, =1y + 155 )c08% @+ A, (2= A, Iy, SiN 2(0}&)3’“) - {ell sin? @ + e, Cos’ ¢

L

A4

2% (m) J (m)

+ (61%%1)5”1 2(0} aaUOZ + (2 ~Dl(es —ey, )sin 20— (e, + e, )cos 2¢] ag ,
»

+ {ﬂm (4, —1)(911 COS” ¢ + €y Sin° @ —(el%e”)sin Z(pj + ﬁm(ell Sin® ¢ + e, Cos” @

- X _ _ 27 (m)
+ —(els * e31)SII'I 2(/>H}U ém) _Ai{{em sin’ p+ey cos’ Q+ wsm 2¢:| aa 02
4

2 7

7 (m)

. oV,
+ (ﬁm _l)[(e34 — €5 )SII’] 20— (e14 + €3 )COS 2(0] 8(()p

ICYRL) ; e36)sin 2¢j+ A (ew sin® ¢ +e,, cos% @ + WSM 2¢ﬂ}\70(”‘)

J{ﬂm (4, —1)(e16 cos? @ +e,,sin’ @

247 (m)
_Ai{|:els sin® g +e;,cos’ ¢ e ;ess Jsin 2‘”} : Woz +(2n ~1l(es; — e )sin2¢

4 op
/()

— (e, + €5 )c0s 20| + |:ﬂ’m (4, —1)(e15 c0s? p+e,,5in’ g — WSM ij

op
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+ A (eﬁ sin? @ +e,, c0s? g + @sin Zgz)ﬂ}V\Alo(m) =0, (3.4d)

where

A, =Cy,SiN* 9 +Cy COS” @ +C SIN2¢, A, =CgSiN° @+C,, COS” @ +C,,SiN 20,

A, =CesSIN® 9 +Cyy COS” @ +Cy SIN2¢0, A, =1, SIN° @ +177,,COS° p+17,55IN 200 .

Equations (3.4) are a set of ordinary differential equations with variable coefficients that are
functions of ¢, € and y. Finding a closed-form solution for these equations is generally
impossible.

The power series method is utilized to find a general solution for Egs. (3.4). Very
high-order terms are typically required to obtain an accurate solution and can cause numerical
difficulties. To overcome these difficulties, the range of ¢ under consideration is divided
into a number of sub-domains (see Fig. 3.3). A series solution for Egs. (3.4) is established in
each sub-domain. Then, a general solution for the whole domain of ¢ is constructed from
these series solutions in the sub-domains by satisfying the continuity conditions between each
pair of adjacent sub-domains. This means of constructing solutions is very convenient for
analyzing the bi-material body that is considered in this work.

With fixed € and y, the following functions that specify the variable coefficients in
Egs. (3.4) are expressed as Taylor expansions over sub-domain i;

in2 K i . COSZ K i o sm K
M _>allp-a), —L=3bp-5), Zﬁ 0=,
A1 k=0 Al k=0

2 . iN2¢p & _\ cos K i _
- q) Zdé 0-5) LN el (- ), 23 10-3),

in2 Kl _ oS K6 _ sin Ko _
2P S pip-5), L= qlp-5), L=1(p-5),

A, k=0 A, k=0 A, k=0

c0S2 K _

U (3.5)
A4 k=0

where ¢, is a reference point in sub-domain i. Here, ¢, is chosen as the middle point along
the ¢ in the sub-domain i. Consequently, the general solutions of Egs. (3.4) in sub-domain i

are expressed in the following form:
J

~ . n J oA . - J . .
UM =>ANp-5), V" =Y B p-5)", W™ =>Cp-3),
=0 =0

j=0 1=
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J

=" DYp-g,) (3.6)

j=0
Substituting Egs. (3.5) and (3.6) into Egs. (3.4) with careful arrangement yields the
recursive equations for the coefficients in Egs. (3.6),

Aot + 28D ) ) )+ 7000
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IfAY, AD B, BY CI, CY, DY and DV are known, then Al),, B, C" and DV,
can be determined using Egs. (3.7). Hence, the solutions of Egs. (3.4) in subdomain i can be

simply represented as,

U0, 0)= A'Ug + AN + BIU G + BIU G + CYUG + CIUGH + DU + DI,

Vo (6.0)= NG + ANGT + BINGS + BIV,

A

W,"(0,0) = AP + AN + BIWIGE + BIWE + CIWGE + CIWGE) + DIWIGE + DIV

05(0.9)= AVDE + AVD + BYDE) + BIDG + CIDE, + CUdG + D

o=

i+ B

(3.8)

To obtain the solutions of Egs. (3.4) for the whole domain of ¢, the following

continuity conditions at the interface (¢ = ¢,) between sub-domains i and i+1 have to be
satisfied,;

a(p,6,9,)sing, +c(p,0,0,)cosp, = (p,0,0,)sing, + 4 (p,0,¢,)cosp,,  (3.9)
o (0.0.0,)sing, +55(p,0,9,)c0s9, = (p.0,0,)sing, + 557 (p,0,¢,)cosp;,  (3.9b)
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(i+1)

oy (0,0,0)sing, +05) (p,0,¢,)c0sg, = 55 (0,0, )sin g, + 7§,

D (0,0,0,)sing, + DY (p,0,¢;)cosp, = D™ (p,0,¢,)sing; + D" (p,0,¢, )cosp;,  (3.9d)

(p.0.0)cosp,,  (3.9¢)

u (0, 6,¢,)=u"(p,0,0,), (3.9¢)
u’(0.6,0,)=uf" (0,6,0,), (3.9)
u®(p,6,0,)=ul"(p.0,0,), (3.99)

8"(p.6,0,)=4""(p.6,0,). (3.9h)

If the domain of ¢ under consideration is divided into n sub-domains (Fig. 3.3), the 8n
coefficients in Egs. (3.8) for i=1, 2,..., n, must be determined. The interface continuity
conditions yield 8(n-1) equations (Egs. (3.9) with i=1, 2,..., (n-1)). The homogenous
boundary conditions at ¢p=¢, and @ =¢, vyield another eight equations. In total, 8n

homogeneous algebraic equations for these 8n coefficients can thus be constructed. A
nontrivial solution yields an 8nx8n determinant of zero. The roots of the zero determinant

(Ay ) can be complex numbers, and were obtained herein using the subroutine, “DZANLY”,

in IMSL (International Mathematical and Statistical Library). The subroutine is based on the
numerical approach of Miller (1956).

Two types of mechanical boundary condition were considered herein - free and clamped.
For free tractionat ¢ =¢y or ¢ =g,

o, Sinp+o,,c080=0, o,SiNp+0,c05¢0=0, o, Sinp+0c,Ccosp=0
while the clamped boundary conditions require u, =u, =u, =0. Two types of electric
boundary conditions can also be specified at ¢ =¢, or ¢ =g, . They are electrically open

and closed boundary conditions. Electrically open and closed conditions are
D,singp+D,cosp=0 and ¢ =0, respectively.

3.3. Convergence and Comparison
The convergence and comparison of the minimum Re[ A,,] (real part of A, ) of

bi-material bodies of revolution are summarized here to confirm the correctness of the
proposed solutions. Two geometric shapes with a horizontal interface, called geometry | and

geometry Il, displayed in Fig. 3.4, are considered. Geometry | has ¢, =90"and ¢, = 270"
while geometry Il has ¢, =0" and ¢, =270", as shown in Fig. 3.3. Table 2.1 gives the
material constants, and the direction of polarization of the material is assumed to be along the
axis of revolution (y =0°). Notably, material PZT-6B(Im.) in Table 2.1 is an imaginary

material with the same elastic properties as PZT-6B, and is adopted here to obtain results that
can be compared with those of Xu and Mutoh (2001). The boundary conditions at ¢ = ¢,

and ¢ = ¢, are traction-free and electrically open.
Table 3.1 lists the minimum values of Re[ 4, ] that were obtained by dividing the domain
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of ¢ into various numbers of sub-domains of equal size, using different numbers of terms in
the series solution for each sub-domain. Notably, the A,,, which correspond to minimum of
Re[ Ay, ] , are all real in the cases considered in Table 3.1. The convergent solutions can be

obtained by fixing the number of sub-domains and increasing the number of terms in series
solutions or by fixing the number of terms in series solutions and increasing the number of
sub-domains. The results published in Xu and Mutoh (2001) and Li et al. (2002), which were
obtained based on the assumption of axisymmetric deformation, are also given in Table 3.1.
The excellent agreement between the convergent results herein and the published data
validates the proposed solutions.

3.4. Numerical Results and Discussion
The electroelastic singularity is governed by the real part of (A,-1), and the root of

primary interest is the one with the smallest positive real part between zero and one. In this
section, the values of minimum Re[ A, ] are shown for single material and bi-material bodies

of revolution. The piezoelectric materials, PZT-4 and PZT-5H, and an elastic material, Al
(aluminium), are considered. The material properties of PZT-4 and PZT-5H are given in Table
1, while the elastic constants for Al are E (Young’s modulus) = 68.9 GPa and v (Poisson’s
ratio) = 0.25. The results were obtained using eight equal sub-domains for ¢ and 15-term

series solutions for each sub-domain. The boundary conditions under consideration are
specified by four letters. The first pair of letters refers to the boundary conditions at ¢ = ¢,
while the second pair specifies the boundary conditions at ¢ = ¢,,. The first letter in each

pair concerns the mechanical boundary conditions, with C and F’s denoting clamped and free
boundary conditions, respectively, while the second letter concerns the electric boundary
conditions with C and O’s representing electrically closed and open boundary conditions,
respectively. Accordingly, in the following, COFO boundary conditions mean that the
mechanical boundary conditions are clamped and free at @ = ¢, and ¢ = ¢, respectively,

and the electric boundary conditions are openat ¢ =¢, and ¢ =¢@,.

3.4.1 Bodies of revolution made of a single piezoelectric material

Consider a PZT-4 or PZT-5H body of revolution with a direction of polarization that may
not be along the Z-axis (axis of revolution). The geometry of the body considered in this
section is similar to geometry Il in Fig. 3.4. Figures 3.5 plots the variations of minimum

Re[ 4,1 with @ for PZT-4 bodies with y=0", 45° and 90°, while Fig. 3.6 plots
corresponding curves for PZT-5H bodies. Notably, the results at & =2z — 6, are identical to
those at & =6, in all the cases that are considered in this work. Consequently, the range of

6 considered is between 0° and 180°. The A that corresponds to minimum Re[ A, ] are

all real in the cases examined in Figs. 3.5 and 3.6.
As expected, minimum Re[ A4, ] does not change with & when the direction of

polarization is along the Z-axis ( = 0°). When the direction of polarization is not along the
Z-axis, minimum Re[A.,] varies significantly with 6. For example, when y =45", the

maximum relative difference may reach 7.8% for a PZT-4 body with COCO boundary
conditions, while the maximum difference is about 5.2 % for a PZT-5H body. When »

changes from 0 to 45 or 90°, the minimum Re[ A, ] may increase or decrease,
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depending on the values of @ and the boundary conditions. PZT-4 bodies exhibit more
severe electroelastic singularities than PZT-5H bodies under clamped-clamped mechanical
boundary conditions; the opposite is true under free-free mechanical boundary conditions.

Figures 3.7 and 3.8 display the variations in minimum Re[A,] at 6 =60"with g for

PZT-4 and PZT-5H bodies, respectively. Two values of y, 0°and 45°, were considered.
Generally, minimum Re[ A,,] declines as g increases, such that a larger £ induces more

severe electroelastic singularities at the sharp corner of a body of revolution. Electroelastic
singularities under free-free boundary conditions are more severe than those obtained under

clamped-clamped boundary conditions. When » =0°, the electric boundary conditions do
not significantly affect the singularities. However, when y =45, open-open electric
boundary conditions results in a smaller minimum Re[ A,,] than closed-closed electric
boundary conditions for clamped-clamped bodies of revolution, while the opposite trend is
true for bodies of revolution with free-free mechanical boundary conditions. As y
changes from 0° to 45°, the A, which corresponds to minimum Re[ 4,,], may change
from real to complex or from complex to real. For instance, under CCCC boundary
conditions, A, are complex for y =45 when g is between 48  and 73" for PZT-4

bodies and between 52° and 70° for PZT-5H bodies, while they are all real for »=0". A

comparison of Figs. 3.7 and 3.8 reveals that PZT-4 bodies have stronger singularities than
PZT-5H bodies under clamped-clamped boundary conditions, but not at all values of g

under free-free boundary conditions

3.4.2 Bi-material bodies of revolution made of piezoelectric and elastic materials

This section investigates bi-material bodies of revolution with a geometry that is similar
to geometry Il in Fig. 3.4, in which material 1 is an isotropic elastic material, Al, and material
2 is PZT-4 or PZT-5H. The arrangements considered in Figs. 3.9 to 3.12 are the same as those
in Figs. 3.5 to 3.7, respectively, except that bi-material bodies of revolution are considered in
Figs. 3.9 to 3.12. Notably, the continuity conditions on the interface between the piezoelectric
material and the elastic material are given by Egs. (3.9a) to (3.9¢), (3.9¢) to (3.99) and
31 (p,0,0,)=0. No electric boundary condition applies at ¢ = ¢, and the second letter of
the four letters that denote the boundary conditions is replaced by “-*.

Figures 3.9 and 3.10 discover that when y = 0°, the minimum Re[ A, ] does significantly
vary with 6. When y=45", the maximum relative difference may reach 25% for a

PZT-4/Al body under C-CC boundary conditions, while the maximum difference is
approximately 16 % for a PZT-5H/Al body. Unlike in Figs. 3.5 and 3.6, the minimum Re[ A, ]

for the C-CC boundary conditions can be smaller than those for C-CO boundary conditions,
depending on 7 and 6. When y =45, the A, which correspond to minimum Re[ A, ]
under C-CC boundary conditions, are no longer all real; they are complex for 63° <6 <110°
in Fig. 3.9(b) and 68" <#<101" in Fig. 3.10(b). Figure 3.9(b) demonstrates that the
minimum Re[ A, ] under C-CC boundary conditions are lower than those under free-free
boundary conditions when 6 <14°.

Figures 3.11 and 3.12 plot the variations of minimum Re[A,,] at 6 =60"with g for
PZT-4/Al and PZT-5H/AI bodies, respectively. The relatively abrupt changes in the curves
(i.e., at f#~159° under F-FC boundary conditions and S ~99° under C-CO boundary
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conditions in Fig. 3.11(a)) are caused by the roots’s changing from real to complex numbers
or from complex to real numbers. Generally, the strength of the electroelastic singularity
increases with . Free-free boundary conditions produce singularities that are more severe

than clamped-clamped boundary conditions do, except for f#>160". Interestingly, the
minimum Re[A,,] for the bodies with » =0"are more considerably affected by electric

boundary conditions than those for the bodies with y =45°. Changing y from 0° to 45°
can alter the minimum Re[ 4, ] with the maximum relative difference of 9.6% occurring at

£ =99 under C-CO boundary conditions in Fig. 3.11. Unlike the minimum Re[ 4,,] > 0.5

for bodies of revolution made of two isotropic elastic materials under free-free boundary
conditions given in Huang and Leissa [26], the minimum Re[ 4., ] can be smaller than 0.5 for

S larger than around 150° under F-FO boundary conditions.

3.4.3 Bi-material bodies of revolution made of piezoelectric materials

The results for bi-material bodies of revolution consisting of PZT-4 and PZT-5H with a
horizontal interface are given in Figs. 3.13 and 3.14. Figure 3.13 concerns bodies of
revolution with geometry | and geometry Il displayed in Fig. 3.4, where materials 1 and 2 are
PZT-5H and PZT-4, respectively. Figure 3.14 considers bodies of revolution with geometry 11
and having various 2.

As expected, Fig. 3.13 demonstrates that bodies of revolution with geometry Il (« = 270°)
have more severe singularities at the interface corner than do bodies of revolution with
geometry | (o =180°"). When » =0°, the roots corresponding to minimum Re[ 4] are all

real. As y changes from 0° to 45 or 90°, the roots may change from real to complex,
depending on & and the boundary conditions. For instance, for y =45"and under COCO
boundary conditions, when & <51° and 6 <36° for geometries | and Il, respectively, the
roots corresponding to minimum Re[ 4, ] are complex. The variations of minimum Re[ 4, ]

with @ in Fig. 3.13(b) indicate that the maximum difference can reach 11% for geometry |
under FOFO boundary conditions, and 7.2% for geometry Il under FOFO boundary
conditions. When y =90", the maximum difference between values of minimum Re[ 4, ] for
various & reaches 4.5% for geometry | under COCO boundary conditions, and 4.3% for
geometry Il under FOFO boundary conditions.

Figure 3.14 plots the variations of minimum Re[4,,] at =60 with g for bodies of

revolution with geometry Il. Two values of y, 0°and 45°, were considered. Again, the

relatively abrupt changes in the curves are caused by a change in the roots from real to
complex or from complex to real. Generally, free-free boundary conditions give more severe
singularities at the interface corner than do clamped-clamped boundary conditions. Changing

y from 0° to 45" changes the minimum Re[A,] by up to 5.0%, as for the body of
revolution with £ =105" under COCO boundary conditions.
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IV Concluding Remarks

This study found asymptotic solutions to piezoelectric wedges and bodies of revolution
to investigate geometrically-induced electroelastic singularities in these bodies based on
three-dimensional piezoelaticity theory in a cylindrical coordinate system. The piezoelectric
material is first assumed to be anisotropic and its direction of polarization to be arbitrary.
The solutions were obtained using an eigenfunction expansion approach in conjunction with a
power series technique to solve the equilibrium and Maxwell’s equations, which are four
coupled partial differential equations in terms of the displacement components and electric
potential. The present solutions are easily reduced to the solution for anisotropic elastic
wedges by eliminating the piezoelastic and dielectric constants. The proposed solutions are
verified by performing convergence studies and comparing the results with the published
results.

The proposed solution were employed to examine electroelastic singularities in wedges
and bodies of revolution that comprise a single piezoelectric material, bounded
piezo/isotropic elastic materials, or piezo/piezo materials. The minimum Re[ A, ], which is
directly related to the order of the singularity, is displayed for different corner angles,
combinations of boundary conditions, and directions of polarization. As expected, the
strength of the singularity generally increases with the increase of corner angle. The
geometrically induced electroelastic singularity order can depend significantly on the
polarized direction. Interestingly, the direction of polarization can be set to eliminate the
singularities at the interface of 180°wedges made of PZT-5H/Si or PZT-5H/PZT-4 with
free-free mechanical boundary conditions. This phenomenon is particularly important
because such wedges are frequently encountered in many smart structures.
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where the electric potential,

¢, is related to the electric field by,
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Table 2.1 Material properties

Stiffness Piezoelectric const. Dielectric const.

Material [GPa] [C/m?] x10"°[F/m]
éll 612 613 633 644 é\15 éBl é\33 ﬁll ﬁ33
CdSe 74.1 45.2 39.3 83.6 13.2 -0.138 -0.159 0.347 0.844 0.903
PZT-4 139.0 77.8 74.3 115.0 25.6 12.7 -5.2 151 64.6 56.2
PZT-5H 126.0 55.0 53.0 117.0 35.3 17.0 -6.5 233 151.0 130.0
BaTiO; 275.0 179.0 152.0 165.0 54.3 213 -2.69 3.65 175.0 9.88
PZT-6B(Im.) 168.0 60.0 60.0 163.0 27.1 43.0 -14.0 36.0 200.0 247.0
PZT-6B 168.0 60.0 60.0 163.0 27.1 4.6 -0.9 7.1 36.0 34.0

Si 166.2 64.6 64.6 166.2 50.8 - - - - -
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Table 2.2 Convergence of minimum Re[ 4, ] for PZT-4 wedges

Boundary
conditions

Number of
Sub-domains

Terms

5

6

7

8

9

10

12

14

15

Published
results

360°

FOFO

w

0.4985
0.4996
0.5000
0.4999

0.4978
0.4963
0.4993
0.4999

0.4916
0.4993
0.4999
0.4999

0.4417
0.4999
0.4999
0.4999

0.4980
0.4999
0.5000
0.4999

0.4998
0.4984
0.5000
0.5000

0.4750
0.4999
0.4999
0.5000

0.5000
0.4999
0.5000
0.4999

0.4999
0.4999
0.5000
0.5000

0.5000"

360°

180°

FOCC

0.1769
0.1855
0.1869
0.1869

0.1969
0.1895
0.1869
0.1869

0.2052
0.1847
0.1869
0.1869

0.1602
0.1877
0.1869
0.1869

0.1718
0.1879
0.1869
0.1869

0.1965
0.1857
0.1869
0.1869

0.1724
0.1877
0.1869
0.1869

0.1954
0.1865
0.1869
0.1869

0.1895
0.1869
0.1869
0.1869

0.1869*

o B W N OO &~ WO O b

0.3710
0.3741
0.3738
0.3739

0.3751
0.3737
0.3739
0.3739

0.3749
0.3738
0.3739
0.3739

0.3740
0.3739
0.3739
0.3739

0.3736
0.3739
0.3739
0.3739

0.3735
0.3739
0.3739
0.3739

0.3741
0.3739
0.3739
0.3739

0.3737
0.3739
0.3739
0.3739

0.3738
0.3737
0.3739
0.3739

0.3739*

Note: * denotes results from Hwu and Ikeda (2008)

# denotes results from Sosa and Pak (1990)
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Table 2.3 Comparisons between the present and the published A, for PZT-4 wedges

Boundary Direction of Roots of )
Y o o 1 Published results Present results
conditions polarization m

Ao 0.1869" 0.1869
360° FOCC Y A 0.3131" 0.3131
2, 0.6869" 0.6869
Ao 0.5000% 0.5000
Y A 0.5094% 0.5094
2, 0.5046" 0.5046

357° FOFO -
A 0.5000 0.5000
z A 0.5085" 0.5085
A, 0.5042" 0.5042
Ao 0.5021* 0.5021
Y A 0.5499" 0.5498
2, 0.6109" 0.6109

330° FOFO p
Ao 0.5015 0.5014
Z A 0.5455" 0.5455
A, 0.5982" 0.5981
A 0.3739" 0.3739
180° FOCC Y A 0.5000" 0.5000
2, 0.6261" 0.6261

Note: * denotes the results of Hwu and Ikeda (2008)
#: denotes the results of Sze et al. (2001)
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Table 3.1: Convergence of minimum Re[An] for bodies of revolution

Number of Polynomial terms Published
Material 1/ Number of
Geometry results
Material 2 Sub-domains 5 6 7 9 11 13 15
2 0.9363 0.9348 0.9357 0.9377 0.9387 0.9383 0.9380
CdSe/ 4 0.9379 0.9381 0.9382 0.9381 0.9381 0.9381 0.9381
0.9381*
PZT-5H 6 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381
8 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381 0.9381
2 0.9268 0.9242 0.9308 0.9302 0.9280 0.9272 0.9278
CdSe/ 4 0.9286 0.9289 0.9279 0.9281 0.9281 0.9281 0.9281
0.9281*
PZT-6B 6 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281
8 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281
|
2 0.8949 0.9588 0.9429 0.9172 0.9394 0.9256 0.9284
4 0.9436 0.9430 0.9430 0.9430 0.9429 0.9429 0.9429
CdSe/ BaTiOs 0.9429*
6 0.9429 0.9428 0.9428 0.9429 0.9429 0.9429 0.9429
8 0.9429 0.9428 0.9429 0.9429 0.9429 0.9429 0.9429
2 0.98792 | 0.98475 | 0.98641 | 0.98793 | 0.98713 | 0.98828 | 0.98792
PZT-6B/ 4 0.98742 0.98732 | 0.98731 0.98720 | 0.98613 | 0.98725 0.98724
0.98724"
PZT-6B(Im.) 6 0.98802 0.98764 | 0.98764 | 0.98733 0.98724 | 0.98724 | 0.98724
8 0.98730 | 0.98724 | 0.98723 0.98724 | 0.98724 | 0.98724 | 0.98724
3 0.54766 0.53669 | 0.52792 0.52053 0.52716 | 0.52670 0.53197
PZT-6B/
11 6 0.52694 | 0.52758 | 0.52801 0.52836 0.52819 | 0.52818 0.52820 0.52819"
PZT-6B(Im.)
9 0.52803 0.52809 | 0.52823 0.52820 | 0.52820 | 0.52820 | 0.52820

Note: * denotes the results of Sato and Watanabe (2002)
+: denotes the results of Xu and Mutoh (2001)
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Fig. 2.2 Sub-domains for 6 [0, y]
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Fig. 3.1 Bi-material body of revolution with a sharp corner
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Fig. 3.2 Cylindrical (r, Z) and sharp corner (p,p) coordinates
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Fig. 3.3 Sub-domains for ¢ €[p,, ¢, ]
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