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® < 4 & : We proposed a surface-based vacant parking space
detection system. Unlike many car-oriented or space-
oriented methods, the proposed system is parking-lot-
oriented. In the system, we treat the whole parking
lot as a structure consisting of plentiful surfaces.
A surface-based hierarchical framework is then
proposed to integrate the 3-D scene information with
the patch-based image observation for the inference
of vacant space. To be robust, the feature vector of
each image patch is extracted based on the Histogram
of Oriented Gradients (HOG) approach. By
incorporating these texture features into the
proposed probabilistic models, we could
systematically infer the optimal hypothesis of
parking statuses while dealing with occlusion effect,
shadow effect, perspective distortion, and
fluctuation of lighting condition in both day time
and night time.
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Abstract

We proposed a surface-based vacant
parking space detection system. Unlike many
car-oriented or space-oriented methods, the
proposed system is parking-lot-oriented. In the
system, we treat the whole parking lot as a
structure consisting of plentiful surfaces. A
surface-based hierarchical framework is then
proposed to integrate the 3-D scene information
with the patch-based image observation for the
inference of vacant space. To be robust, the
feature vector of each image patch is extracted

based on the Histogram of Oriented Gradients

(HOG) approach. By incorporating these texture
features into the proposed probabilistic models,
we could systematically infer the optimal
hypothesis of parking statuses while dealing
with occlusion effect, shadow effect, perspective
distortion, and fluctuation of lighting condition
in both day time and night time.

Keywords: Parking space detection;
Surface-based detection; Histogram of Oriented

Gradients; Bayesian inference

1. INTRODUCTION

In practice, the major challenges of vision-based
parking space detection come from the occlusion
effect, the shadow effect, the perspective
distortion, the fluctuation of lighting change, and
detection in nighttime. Nowadays, to overcome
those difficulties, many methods have been
proposed. These approaches can be classified
into two categories: car-oriented methods and
space-oriented methods.

For car-oriented methods, thanks to the progress
of object detection [1-2], many algorithms
utilized texture features, such as Histogram of
Oriented Gradients (HOG), to overcome the
lighting change and the geometry distortion
during targets detection. Generally, those
methods perform well even under environmental
variations. However, for the task of vacant space
detection in a parking lot, the car-oriented

methods may not work as robust as we expected



when the impact of the inter-object occlusion is
considered [3].

For space-oriented methods, the space modeling
is the key step. Eigen-space representation [4]
and many background modeling algorithms [5-6]
were proposed to adapt to the lighting variations.
However, those pixel-based space modeling
methods are sensitive to shadow effects. To
lower the interference of the shadow effects, the
texture-based methods, based on homogeneity
measurement, are then proposed, such as [7].
Even so, space-oriented methods still suffer from
inter-object occlusion.

Recently, unlike car-oriented or space-oriented
methods, which simply focus on limited aspects
of a parking lot, Huang et al. [8] proposed a
Bayesian hierarchical framework (BHF) for
vacant space detection, which is specifically
constructed from the parking-lot-oriented
viewpoint. In this method, by integrating the 3-D
scene  knowledge and the pixel-based
classification into the framework, both the
pixel-based appearance and the structural scene
property of a parking lot are well-utilized to
improve the performance of vacant space
detection. However, though BHF offers a
flexible framework, this method, which mainly
adopts a pixel-based classification process, does
not benefit from the great success of
texture-based classification.

Generally, pixel-based classification is sensitive
to lighting change. To overcome the problem,
the authors in [8] assumed the scene is uniformly
lighted by sunlight. Based on the assumption, the
authors put much effort to dynamically compute
the environmental illumination and the direction
of sunlight to model the lighting change.
Although their

method produced robust

detection result during day time, the method may
not be directly applied in night time due to the
difficulty to model the complex nighttime
lighting condition especially the unpredictable
lighting change caused by car headlights. In fact,
to the most of our understanding, few systems
discuss the vacant space detection in night time.
In this project, we aim to find the suitable
modeling so that the power of texture-based
object classification could be incorporated into
BHF to overcome the lighting change and
inter-object occlusion. Comparing with the
pixel-based method, the wuse of texture
information lets us have more discriminative
features for object classification, have more
robust features against lighting change without
an accurate lighting model, and have a unified
manner to develop a day-and-night system. To
use texture information, we proposed a
surface-based vacant parking space detection
system. In the system, we integrate the 3-D
scene information into our framework by
treating the whole parking lot as a structure
consisting of plentiful surfaces. With the
proposed framework, HOG features combined
with the 3-D scene information are well-used to
detect vacant parking space. Our experiments
showed that the proposed surface-based
framework could deal with occlusion effect,
shadow effect, perspective distortion, and

lighting changes in day time and night time.

2. SURFACE-BASED PARKING LOT
STRUCTURE
As the aforementioned, car-oriented approaches,
which tend to capture the texture characteristics
of vehicles, seem to provide suitable solutions to

handling the occlusion and shadow effects. In



contrast, the space-oriented approaches, which
were designed to analyze the texture of the
image area corresponding to a vacant parking
space, can better handle the perspective
distortion by adding 3-D scene information.
Hence, if we can find a way to benefit from both
kinds of approaches, we may achieve robust
performance.

In terms of car-oriented approaches, systems
usually check the image area, as shown in Figure
1(a), to check the existence of a car. As for the
space-oriented approaches, the pixel-based or
texture-based feature inside the region of a
parking space is used for analysis, as shown in
Figure 1(b). In comparison, our approach treats
the parking spaces as a set of cubes, as
illustrated in Figure 1(c). Each cube is composed
of six patches like Figure 1(d). If looking into
the details, we may find that the ground plane of
a parking space is the ground patch, while a car
is made up of patches. Thus, we suggest using
surfaces to represent the parking lot structure so

that we can benefit from both the car-oriented

and space-oriented methods.

Figure 1. (a) Image area for car-level regions. (b)
Image area for ground patches. (¢) Model the room of
a parking space as a cube. (d) The elementary planes
for a parking space.

3. SURFACE-BASED INFERENCE
FRAMEWORK
3.1 Image Observation

For a structural parking lot, we may detect

the status of each parking space by observing
occlusion patterns inside each image patch. To
be specific, we demonstrate various kinds of
patterns inside different projection patches in
Figure 2. In total, there are 14 different patterns.
Here, owing to the regularity of occlusion
patterns among objects, an image patch presents
distinguishable textures for vacant space
detection. Thus, a direct method to determine the
parking statuses is to classify the selected
patches into one of the 14 occlusion patterns.

After patch classification, an important step is to
relate the classification results to the statuses of
spaces. To achieve the goal, we related the
classification results to 14 status-related
classification labels in the form of “Typ_Ind”,
where “Typ” indicates the surface type and “Ind”
shows the index number of occlusion patterns of
this “Typ”. The correspondence between
occlusion patterns and labels are shown in
Figure 2. Here, the possible surface types
include “side (S)”, “front (F)”, “top (T)”, and
“ground (G)” of a 3-D cube. For a surface type,
it has two or four different occlusion patterns
inside the observed patch. Without loss of
generality, we assume that the patch of “T”
surface has two possible patterns because the
patch is mainly affected by the parking status of
one space in our system. Note that the status of
one space could be {vacant (1), occupied (0)}.
On the other hand, all the other surface types
have 4 possible patterns in that the pattern is
affected by the statuses of two neighboring
spaces. In other words, the 4 occlusion indexes
indicate the 4 statuses of two spaces. Hence, for
the ith observed patch o;, we classify it as one of
the 14 classification labels {{S_j}j-1-4.{F_ j}j=1-4,

{G_ }er-a{T_ j}i12}. The label I; of the ith



observed patch o; then reflects the parking status.
For instance, if ;=T 2, it indicates the parking
space is vacant. Also, if ;=G_3, the current
space and its neighbor are occupied. However,
the classification label I; only provides local
decision of the parking status. As mentioned in
[3] and [8], the inter-object occlusion makes the
status of all spaces highly relevant. To achieve
the global optimum, the status of all relative
spaces should be inferred at the same time rather

than one by one.
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Figure 2. 14 occlusion patterns and their
classification labels.

3.2 HOG Patch Features and Classification
Models

To classify patches, our system trains the
likelihood models p(oj|l]) for different ;.
However, due to the perspective effect of image
projection, the shape of image patches appears
quite different. To overcome the perspective
distortion, we proposed normalizing the size and
shape of a given patch before the patch is
processed for training or testing. In our system,
we normalize an image patch into a rectangle
with 64 pixels in length and 32 pixels in width.

After normalization, we extract statistic
features from the normalized patches for model
training or testing. To be less affected by
shadows and the change of illumination, we
utilize the HOG feature proposed in [9]. Here, a
normalized image patch is regularly segmented

into 4x2 cells. Since the patch size is 64 by 32,

each cell would contain 16x16 pixels. For each
cell, an 8-orientation histogram of gradient is
built. By merging the histograms of the 8 cells,
we get the HOG feature vector of a normalized
patch with 8x8 dimensions.

By using the HOG feature discussed above,
we can train the 14 likelihood models. However,
to be more practical, we have to reduce the
dimension of HOG feature while keeping all
models discriminative. Note the feature
dimension is 64. In our system, we adopt the
multi-class Linear Discriminant Analysis (LDA)
[10] to lower the feature space. In general, it
may be difficult to retain the discrimination
among 14 likelihood models in a low feature
space. Fortunately, with the use of 3-D scene
information, we are able to know the surface
type of a patch label in advance. Note that each
selected patch is related to the projection of one
surface of the 3-D cube. Given a patch, its
surface type is determined. Thus, while
performing patch classification, only likelihood
models within the same surface type should
compare with each other. This allows us to
divide the 14 models into 4 groups based on the
surface type and apply LDA to each group
independently. Obviously, this is a benefit from
3-D scene information. In our system, we lower
the feature space to a 3-dimensional space.

Taking the learning process of the surface
type “T” as an example, based on the 3-D scene
information, we know and could collect T-type
patches. Each patch is normalized and its HOG
feature vector is extracted. Furthermore, each
patch is manually labeled as either “T_1” or
label “T_2” for a 2-class LDA process. Here, for
each label, L patches are collected for training.

In our experiment, we found 300 patches per



label are enough for training. After the LDA
process, the feature dimension is reduced from
64 to 3, and we attain two three-dimensional
feature sets {Xjr 1}i=i-. and {Xjr 2}j=1-L. Here,
we assume the distribution of each class is a
Gaussian function. Therefore, the likelihood
model of a label is represented as

L(X:3) L T —u)]. )

1
e
By using the training sets {Xjr 1}j=1- L and {X
iiT_2}i=1-3L, We can estimate the mean vectors and

covariance matrixes for the model L (X;u,x)

and the model L, (X;u,5)-

Figure 3. Feature distributions of 14 likelihood

models.

For all the other surface types “S”, “F”, and
“G”, the training process is similar except that
we use a 4-class Linear Discriminant Analysis
and learn 4 likelihood models for each surface
type. Thus, we totally have learned 14 models
for the inference. Figure 3 shows that the feature
distributions of the 14 different classes are
well-separated after LDA process.

If we denote the feature reduction process
from the ith high-dimensional feature oi to the
low-dimensional feature Xi as Xi=R(oi), we

could define the likelihood model as

PO 1)=L ROYmD)=L (X;m3). (2

3.3 3-D Scene Information
Based on the local image features, we could
classify image patches and extract the parking

status implied by the labeling results. However,

the extracted statuses from relevant patches may
sometimes happen to report inconsistent statuses
for the same space. In Figure 4, we use a
three-space case to explain the inconsistency. In
this example, after patch classification, the top
patch of space “c” is labeled as T_2, which
implies space “c” is vacant (1). On the other
hand, the ground patch of space “c” is labeled as
G_3, which implies both space “b” and “c” are
occupied (0). Here, the reported statuses of “c”
are inconsistency. To resolve the inconsistency,
we use scene information. Based on the scene
model, we can generate status hypotheses S. In
our 3-space example, we have 8 hypotheses for

spaces “a”, “b”, and “c”. Given a hypothesis,
such as S=(1,0,0), its corresponding expected
label set L® could be generated. Since L® and S
are one to one mapping, to determine the
statuses of the three spaces, we only need to
measure the likelihoods of 8 expected label sets
and pick the optimal one. Here, for status
inference, we only check the possible expected
label sets, which the labels are always consistent.
Obviously, we do not measure the likelihood of
inconsistent labeling combinations. Thus, the
inconsistency is resolved. As for the likelihood
measurement, the detail is given in the next
section.

In summary, with the 3-D scene information,
we have two benefits. First, the image patches
for analysis are systematically selected by
geometric projection. Note that those patches are
overlapped. Second, once 3-D surfaces and
image patches are related, the expected
classification labeling passed from the scene
layer could be used to reduce the inconsistency

of patch labeling and enhance the performance.
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Figure 4. A three-space example to illustrate the
information from observation layer and scene layer
for status inference.

3.4 Information Fusion and Problem Solving

In our system, we need a mechanism to fuse
image texture and scene information for the
optimal inference of the parking status. Here, we
propose a surface-based structure to achieve the
goal. In the structure, as an example in Figure 4,
the scene layer includes many nodes which
denote the statuses of all parking spaces. Each
status node is supported by six labeling nodes,
and each labeling node denotes the classification
of the corresponding image patch in the
observation layer. Using the proposed structure,
we could fuse local image observations and
global 3-D scene information to infer the
statuses of multiple spaces with the
consideration of inter-object occlusion.

In our method, we denote a status hypothesis
(S) as a combination of the statuses of the
parking spaces. If we also denote our image
observation, which is the set of patches, as
O={0i}i=1-n, the inference of the optimal parking

statuses is equivalent to maximizing (3).

S” =arg max p($ |O)- 3

Here, N is the total number of patches and i
is the patch index. However, the relation
between S and O is not straightforward and

hence the solution of (3) is not trivial. To solve

(3), we treat the set of classification labels L as a
hidden layer in order to bridge the gap between S
and O. Under the proposed framework, the
expected labels of N patches [°={1°}_ , can
be directly generated if a hypothesis S is given.
Here, the superscript of L°® indicates that L°
belongs to the limited labeling space under the
status hypothesis S. In our system, this one to
one mapping, denoted as L°=f(S), means that the
scene information is completely inherited by L°.
Therefore, we could assume p(O|S)=p(O|L®).
Thus, with L® standing between S and O, we may
rewrite (3) based on Bayesian rule as:
S"=arg msax[p(o\s)p(s )

=arg msax[p(O‘Ls )p(S)]

In our system, p(O] L°) is further reformulated

(4)

as:

pOIL)=]TrG11) ®)

in which we assume the observation nodes
O={0i}i=1-n are conditionally independent if the
status of the labeling layer is given; in addition,
as shown in Figure 4, we assume the connections
between the patches and the labeling nodes are

one-to-one. These connections can be modeled
by a likelihood term p(o, |1°), which represents
how likely the ith patch o; can be observed if |?
is given. Note that |5 is the expected label of
the ith patch under the status hypothesis S. Also,
p(S) in (4) represents the prior knowledge of the
parking space status. In our system, we assume
p(S) is uniformly distributed. Under this
assumption, the p(S) term in (4) can be ignored

and we have the final formulation in (6).
* N S
S™ =arg msax{n p(Oi 1 )p(S)}
N S
=arg msax{l_[ p(Oi I )}

(6)




To assess the likelihood term p(o, |I°), we use

the trained models in equation (2). To solve the
optimal problem in (6), an exhaustive search of S
is workable. However, in our system, we adopt
the standard graph-cuts technique [11-12] to

speed up the inference of the parking status.

4. EXPERIMENT RESULTS

4.1 System Evaluation

In our experiments, we evaluate our system in
the outdoor parking lot. Here, we set up an IP
camera on the roof of a building near the parking
lot. The camera was geometrically calibrated
beforehand and monitored the status of parking
spaces both day and night. In the parking lot,
there are three major blocks and 72 parking
spaces. Figure 5 shows some images of the
parking lot and the detection results. To evaluate
the performance of our system, we calculate
false positive rate (FPR), false negative rate
(FNR), and accuracy (ACC).

=Z>

FPR = BV ()
N,
FNR = Vv 8)
NV
ACC = Nyy + Npp 9
Ny +N,

where N, denotes the number of total parked
spaces, N, denotes the number of total vacant
spaces, [\]PV denotes the number of parked
spaces being detected as vacant, va denotes
the number of vacant spaces being detected as
parked, [\]W denotes the number of vacant
spaces being detected as vacant, and NPP
denotes the number of parked spaces being

detected as parked.

Figure 5. Results of vacant space detection.

As aforementioned, there are four challenges
for vision- based parking space detection:
occlusion effect, shadow effect, perspective
distortion, and fluctuation of lighting condition
in both day time and night time. To evaluate our
system under those conditions, we firstly divide
a whole day into the day period (5:00~19:00)
and the nigh period (19:00~5:00). For day time,
we used four testing video sequences, including
a sunny day, a cloudy day, a normal day, and a
rainy day, to test our system. Each sequence
presents challenging occlusion effect, shadow
effect,

perspective distortion, and lighting

change. Moreover, we also evaluated the
performance of detection over different blocks to
evaluate the influence of perspective distortion.
In Table I, we list the experimental results
including the detection result of each parking
block and the performance in a normal day, a
sunny day, a cloudy day, and a rainy day. In our
experiments, perspective distortion and weather
changes cause little degradation. For the night
time, we used another three video sequences for
evaluation, which include unpredictable lighting
change caused by car headlights as shown in
Figure 5(c). The performance of detection over

different blocks was also evaluated. The



detection result is shown in Table Il. With the
surface-based method, our system can deal with
the occlusion problem, shadow effects, and
lighting changes effectively in both day time and
night time. Please check our website [13] for the

complete detection result.

4.2 System Performance Comparison

Moreover, we tested the daytime dataset
released by Huang et al. [8] for performance
comparison. In this dataset, there are 46 parking
spaces in the parking lot and three video
sequences captured in a normal day, in a sunny
day, and in a cloudy day. In Figure 6, we plot the
Receiver Operating Characteristic (ROC) curve
of their method and the proposed method for
comparison. Comparing with Huang et al.’s
work, our method achieves comparable
performance in the day period. However,
Huang’s method is more complicated and needs
to dynamically model the lighting condition and
estimate sunlight direction for the pixel-based
classification. Those processes can be avoided in
our system due to the use of texture information.
Also, since it is more difficult to model the
complex nighttime lighting condition, Huang et
al.’s method could not be directly applied in the
night time. For performance comparison in night
time, we compare our method with Wu’s method
[3] by using our nighttime video sequences. In

Figure 7, we plot the ROC curve of Wu’s

method and the proposed method for comparison.

Here, our method achieves better accuracy if

comparing with Wu’s work in night time.

5. CONCLUSIONS
In summary, we proposed a vacant parking space

detection system working day and night. In

practice, the challenges come from occlusion
effect, shadow effect, perspective distortion, and
lighting change. To overcome the problems, we
proposed the surface-based modeling that
regards the parking lot as a structure consisting
of plentiful surfaces. With the structure, we are

able to import the texture information and 3-D

scene information simultaneously for space

detection. Experiments have shown that our
approach performs well in the complicated
parking lot environment in both day time and
night time.
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Conference on Intelligent Transport Systems Telecommunications (ITST).
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