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This report introduces a multi-hypothesis temporal
prediction technique that combines two motion vectors
(MVs) derived respectively from template and block
matching for overlapped block motion compensation
(OBMC). It achieves similar prediction performance to
bi-prediction while only one MV has to be sent. Based
on two signal models, the template MV is shown to
approximate the pixel true motion around the template
centroid. We then find another MV to best complement
the template MV from both deterministic and
statistical viewpoints, the latter leading to the
search of 1ts optimal sampling location in the motion
field. The result is a search criterion with OBMC
window functions forming a geometry-like motion
partitioning. To compromise between performance and
complexity, generalizations to adaptive template
design, multi-hypothesis prediction and motion
merging are made. Extensive experiments conducted
with the HM-3.0 software confirm the effectiveness of
the proposed schemes.
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This report introduces a multi-hypothesis temporal prediction technique that combines two motion
vectors (MVs) derived respectively from template and block matching for overlapped block motion
compensation (OBMC). It achieves similar prediction performance to bi-prediction while only one MV has
to be sent. Based on two signal models, the template MV is shown to approximate the pixel true motion
around the template centroid. We then find another MV to best complement the template MV from both
deterministic and statistical viewpoints, the latter leading to the search of its optimal sampling location in
the motion field. The result is a search criterion with OBMC window functions forming a geometry-like
motion partitioning. To compromise between performance and complexity, generalizations to adaptive
template design, multi-hypothesis prediction and motion merging are made. Extensive experiments
conducted with the HM-3.0 software confirm the effectiveness of the proposed schemes.

Keywords : Bi-prediction, Overlapped Block Motion Compensation, Template Matching



I. INTRODUCTION

A key issue in video coders with motion-compensated prediction is how to trade off effectively between
the accuracy of the motion field representation and the required overhead. Often a rough representation
of the motion field is sufficient to provide good temporal prediction in terms of rate-distortion (R-D)
performance. Obvious evidences are the frequent occurrence of large motion partitions and of SKIP mode.
Accordingly, many literatures related to the decoder-side motion vector derivation (DMVD) techniques
are proposed, hoping to leverage the ever-increasing processing capability of the decoder to save motion
overhead.

Template matching prediction (TMP) [4] is a well-known DMVD technique. It estimates the motion
vector (MV) of a target block by minimizing the matching error over the reconstructed pixels in the
template region, which is inverse-L-shaped and sitting on the top and to the left of the target block.
Based on the concept, many of its variants have been proposed. Coding the target block at a lower spatial
resolution followed by an interpolation was found more R-D efficient in flat areas, where TMP does
not always guarantee to find a physically meaningful MV [10]. Even in non-flat areas, the template MV
is merely a rough estimate of the target block’s motion. Hence, the multi-hypothesis prediction becomes
popular to improve TMP [8]. Other alternatives include higher weight to pixels spatially closer to the target
block when calculating the template matching error [3], and adapting the template shape and location to
local signal characteristics [6].

Another school of thought follows multi-hypothesis TMP, but one of the hypotheses is sent as a coded
MV. Apparently, how to optimize this MV is the key to its effectiveness. It is obtained by carrying out
block matching as for BMC and then used as an initial estimate to confine template matching search [9].
However, this scheme is not guaranteed a minimal prediction residual, for it neglects the combined effect
of involved predictors. To overcome this problem, our prior works [5] proceed in reverse order, resulting
in less residual than TMP and BMC. Because the scheme is achieved with two hypotheses, it is viewed
as a particular bi-prediction featuring only one coded MV.

The critical step of the above bi-prediction is the combination of predictors. A simple way is to compute
their average [12]. In this report, we approach the problem from a theoretical perspective, assuming the
use of the more general weighting scheme of overlapped block motion compensation (OBMC) [7]. Based
on the underpinnings of [11] and [14], we show that the template MV is close to the true motion of a pixel

near the top-left corner of the target block. A similar argument is then utilized to convert the problem of



finding a MV to best complement the template MV into the search for a certain pixel whose true motion
will be served as the output, wherein the criterion is such that the mean-square prediction error over the
target block will be minimized when applying these motion samples for OBMC.

Experiments based on the HM-3.0 software and common test conditions [1] confirm our bi-prediction
to be effective. Several variants, which implement adaptive template switching with multi-hypothesis
prediction or extend the notion to Motion Merging [13], were studied to trade off between performance
and complexity. The best of them achieves 2.1-2.9% BD-rate savings at a cost of 34% and 44% increases
respectively in encoding and decoding times. Replacing template matching by motion merging brings
down the time increases to 19% and 3%, respectively, with BD-rate reductions dropping to 1.3-1.9% as
a result. While this is by no means an ideal operating point, our work shows the potential of having the
encoder and decoder work jointly to deliver better results.

The rest of this report is organized as follows: Section II analyzes TMP in a motion sampling framework.
Within the framework, Section III formulates the optimal combination of TMP and BMC based on OBMC.
Section IV evaluates the performance and complexity of the bi-prediction scheme and its variants. Section

V concludes this report.

II. TEMPLATE MATCHING PREDICTION

In this section, TMP is studied to 1) reveal the factors that determine its prediction performance and

2) to understand its relationship to BMC.

A. Review of Signal Models

To analyze the residual of BMC, Tao ef al. [11] modeled the autocorrelation functions of the intensity

and motion fields by

E[L(s1)I(s0)] = max (o, o2 <1 - w» (1a)

Elv(s1)vs(s2)] = Eluy(s1)vy(s2)] = o2 o1, (1b)

respectively, where i (s) represents the intensity value of pixel s = (z(s),y(s)) of frame k; v(s) =
(v.(8), v,(s)) denotes its true MV'; and {0%, K} and {02, p,,} are parameters related to their respective
variances and correlation coefficients. Equations (1a) and (1b) suggest that the intensity and motion
correlations between any two pixels decrease with the distance in between them.

"Under the constant intensity assumption, Iy (s) = Ix_1(s + v(s)) with Ix_1(s) being the reference frame of Ix(s).
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Similarly, in [14], Zheng et al. introduced a motion model assuming that the difference between the

true MVs of any two pixels obeys the normal distribution:
v (81) — v(82) or vy(s1) — vy (s2) ~ N(0,a7%(s1,82)), )

where « is a constant indicating the degree of motion variation in the horizontal or vertical direction, and
r(81,82) = ||s1 — $2||2 is the £2 distance between pixels s; and s,. The "hat" in (2) indicates that its value
will be clipped when exceeding a maximum threshold, which is essential for the model to be proper [2].

Equation (2) leads to the following autocorrelation function:
Elvn (s1)0,(52)] = Eloy (s1)0,(52)] = 02, = S7(s1,52) G)

assuming the motion field is (wide-sense) stationary and zero-mean.

With these models, a closed-form expression for the mean-sqaure prediction error, E[d?(s; v(q))] where
d(s;v(q)) = Ix(s)—Ix—1(s + v(q)), of pixel s based on the true MV of pixel q can be obtained. This
result is useful for analyzing various prediction schemes, as we shall see later. In [11], the derivation is
done by a direct application of (1a) and (1b) in evaluating E[(I,_1(s + v(s))—Ix_1(s + v(q)))?], where,

under the constant intensity assumption, I (s + v(s)) has been substituted for I;(s). This gives

E[d*(s; v(@)] = —8"?’2” (1= plrath). “4)

Zheng et al. [14] take a different approach to find E[d%(s;v(q))], without the need of an intensity
model. They approximate the prediction error by Taylor expansion, d(s;v(q)) ~ I;(f)l(s +v(q))(ve(s) —
ve(q))+1 ,'ﬂ(f)l(s +v(q)) (vy(s) — vy(q)), take expectation of the square of both sides, and assume the z, y
components of /; (s +v(q)) and (v(s) — v(q)) are all independent of each other, to get

Bld*(s;v(q)] = (s, q) = e|ls — g3, )

where (2) is put into use and € = aE[(I,Q(f)l(s +v(q))* + (I,;(f)l(s +v(q)))?.
According to (4) and (5), several parallels between them can be drawn:
o The minimum of E[d?(s;v(q))] is reached when pixel q coincides with pixel s, which is obvious
from the constant intensity assumption.
« The value of E[d?(s;v(q))] increases when pixel q is further away from pixel s and converges to a
value proportional to 80202, /K or ¢, both have to do with the joint randomness of the motion and
intensity fields.

« The shape of F[d*(s;v(q))], when viewed as a surface in the three-dimensional space constituted by



TABLE I
SAMPLING LOCATIONS OF v; FOR VARIOUS TEMPLATE CONFIGURATIONS

Wy =2 Wy =4 Wy =8
Block sc (Block Center) Tao Zheng Tao Zheng Tao Zheng
4x4 (1.5,1.5) (-1,-1)  (-0.25,-0.25) (-1,-2)  (-1.25,-1.25) (-3,-3) (-3,-3)
8x8 (3.5,3.5) (-1,-1)  (0.75, 0.75) (-1,-1) (0,0) (-2,-3)  (-1.75,-1.75)
16x16 (7.5,1.5) (-1,-1)  (2.75, 2.75) (-1,-1) (2,2) (-2,-2) (0.25,0.25)

(0,0) — the position of the top-left most pixel in the block B.
W; — the thickness of the template.

E|[d*(s;v(q))] and the z,y components of (s — q), is mainly affected by the motion model.

B. Sampling the Motion Field

With (5), a block MV, v;, found from least-squares-based block matching was shown in [14] to
approximate the true motion associated with the block center, v(s,), in the sense that the sum of prediction

error variances over the target block is minimized when v, is chosen to be v(s,):
se = argmin ) Bld*(s;v(q))] = (%Zz(s% %Zy(s)) , (6)
seB seB seB
where B is a set consisting of coordinates of every pixel in the block. This can be easily verified by
substituting (5) in (6) and setting the derivatives with respect to the x, y components of q equal to zero. A
similar result is also observed with (4).2 Together these observations leads to an insightful interpretation
of BMC: its operation may be viewed as a two-step process in which block-based motion estimation acts
as a motion sampler taking samples at block centers while block-based motion compensation reconstructs
the motion field by interpolating between motion samples using the nearest-neighbor rule .
Following the same line of derivation with B3 replaced by 7 and using (5), we have s, =(> .., x(s)/ |7,
Y sc7 Y(8)/|T|). Repeating the same computation with (4) gives a somewhat different result, but the trend
remains similar. Table I shows the locations of s;. As can be seen, 1) the difference between v, and v,
can be view as their sampling locations in the motion field and 2) a change to the template configuration

amounts to a variation of v;’s sampling location.

C. Prediction Error Surfaces of BMC and TMP

With the background developed so far, we are now ready to proceed with exploring the distribution of
prediction error variance over the target block B, termed the prediction error surface, for BMC and TMP.
To do so, v, and v; are modeled by v(s.) and v(s;), respectively, and substituted for v(q) in (4) or (5)

The optimal q in (6) cannot be found by differentation because of the £; norm. We thus search exhaustively among all possible locations
in quarter-pel precision.
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Fig. . Mean-square prediction error surfaces of block B produced with (a) BMC and (d) TMP. The second and third columns show the
error surfaces predicted by Tao and Zheng’s models, respectively. (BasketballDrill, W, = H, = 16, W, = 4)

to compute the error variance for every pixel s in B. The results are visualized in Fig. 1 and compared
with empirical surfaces that have been generated through real encoding.

The error surfaces of BMC, predicted respectively by the models, are convex shapes, whose minimum
occur at the block center; in other words, the error variance tends to be smaller around the center and larger
at block boundaries, which is understandable if we recall that v, approximates v(s.). Following the same
argument, the residual of TMP has a larger variance at the bottom-right quarter of the target block, because
v, when viewed as v(s;), generally has a weaker correlation to pixels’ true motion there. Comparing

these results with their empirical counterparts confirms the accuracy of our theoretical predictions.

III. BI-PREDICTION COMBINING TMP AND BMC

A. Problem Formulation

The fact that in this application, v; cannot be specified discretionarily by the encoder poses the key
question of what is then the most appropriate choice for v, and the OBMC weights which, along with the
given v;, would minimize the residual for every block. Obviously, we cannot afford to specify a unique
set of OBMC weights for each block, so the same weights must be shared among different blocks. Such

restriction leads us to the following problem formulation:

minignize(g){ = Z Z (I (8) — wy (8) Iy—1 (s + vii) —wp (8) Iy—1 (s + Vb,i))Q

Vb,i,Ws (8),we e7 ocB
K2

subject to wy (S) +wy (S) =1, for all s 7



Predictor

Fig. 2. Concept of bi-prediction combining TMP and BMC.

where s = (x(s),y(s)) is a pixel position relative to the top-left corner of a picture, with's = (z(8),y(s))
being its relative coordinates within a prediction block; {1;};cz denotes a set of those blocks in a picture
adopting this prediction scheme; and w; (S) and w (s) are OBMC weights associated with the template
and block MVs, respectively. Note that an unconstrained equivalent of (7) can be obtained by substituting
1 — wy () for wy (s), leaving unknown only the block MVs, {v;;}icz, and the corresponding OBMC
weights, w,(s).

B. Iterative Least-Squares (LS) Solution

The problem in (7) can be solved iteratively. Using an initial guess, called leO) (s), we can find a motion

vector vl()oi) for each prediction block B;, i € Z, with the following search criterion

2
v,(fz.) = arg min I (s)— (1 - wéo) () —1(s+ Vt(oi)) - wéo) (8) I—1(s+vp4) ) (8)
: Vi :
" seB;
(0) 0)

where v, ;' is computed right before the search of Vl(m- by performing TMP. Conditioned on the resulting

Vl()?i) and V,Sg), wy(s) is refined subsequently as follows for every distinct s:

Ziel’ (Ik (Sl) — kal(si + Vgg)) (kal(si + Vl()(,)z)) — kal(si + VE?))

2
0 0
Ziel’ (kal(si + Vl(),i)) — kal(si =+ Vzg,z)))

: )

where s; is a pixel in B;. Then, the iteration continues by substituting the newly obtained w,()l) (s) for
wéo) (s) in (8). This procedure, although straightforward, is less instructive. We do not know the underlying

mechanism that gives rise to the solution, nor can we explain it.

C. Least Mean-Square (LMS) Solution

To gain more insights into the result, we transform the problem of minimizing the sum, &, of squared
prediction errors into that of minimizing its expected value, F[¢], so that the aforementioned motion

sampling concept and the signal models can come into play. Assuming that the intensity and motion
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Fig. 3. Error surfaces showing how the sum of prediction error variances over the target block varies with the location of s,: (a) Tao’s and
(b) Zheng’s models.

fields are stationary, the new objective becomes

minimizez E [(Ik (8) — (1 —wy (8)) Tu—1(s + v(s,)) — w (8) In—1 (s + v(s;)))°| - (10)

wy (8),Sp seB
Obviously, for (10) to be minimized, the optimal wj () must satisfy, for all s € B,

wy (3) = Eld(s; v(s,))(d(s; v(s,)) — d(s; v(s,)))]
E[(d(s; v(s,) — d(s; v(s,))”]

; (1)

where d(s;v(q))=Ix(s)—Ir-1(s + v(q)), g = s; or s;. Recall that from Table I, s; is known once the
template shape and signal model are selected. Then, substituting (11) into (10), the summation is seen to
be a function of E [d(s;v(s,))?], E[d(s;v(s,))?] and E [d(s;v(s,))d(s; v(s,))], and s, is the last term to
be solved. Depending on which signal model is in use, the optimal s, can be derived as

lls—selh lIs—sblx llse—sllr ) >
80-%0-2 (1_pm _1+pm +1_pm )

* . m _ lls=sellr _

§j, = argmin E — | 1—-p; ., (1 Hst—sblll) (12)

seB

with Tao’s model or

(?Q(S, s;) — (F(s,8¢) — 72(s,80) + 7 (st, Sb))2> (13)

* .
S;, = argmin E €
b & Sb 47/“\2 (St, Sb)

seB
with Zheng’s model. In particular, both equations suggest that there is no closed-form expression for
s;—1.e., it has to be sought numerically.

Fig. 3 plots the sum of prediction error variances over the target block B as a function of s,’s position,
with (0,0) being the position of the top-left pixel in 3. The sum reaches the minimum when s; sits in the
bottom-right quarter (see Table II for s;). As was noted before, TMP is less efficient in predicting pixels
in the bottom-right area. It is natural to expect the block MV to be so sampled as to compensate for its

inefficiency. Once s; is known, the corresponding wj(s) is immediately obvious by (11) (See Fig. 4).
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TABLE II
SAMPLING LOCATIONS OF SZ FOR VARIOUS TEMPLATE CONFIGURATIONS

Wy =2 Wy =4 Wy =38
Block s. (Block Center) Tao Zheng Tao Zheng Tao Zheng
4x4 (1.5, 1.5) 2, 2) 2,2) 2,2) (15,1.5) 2,2) (15,1.5)
8x8 (3.5, 3.5) (5,5 (45,45) (5,5 (45,4.5) 4, 4 4, 4)
16x16 (7.5, 17.5) (10, 10) (9.5, 9.5) (10, 10) (9.5, 9.5) (10, 10) 9, 9)

IV. EXPERIMENTAL RESULTS

Experiments are carried out using the HM-3.0 software and common test conditions [1] to measure the
coding performance of the proposed scheme (referred hereafter to as the TB-mode). A flag is sent for each
non-skipped, 2Nx2N Prediction Unit (PU) to implement TB-mode as a switchable coding option. The
search range for TMP is +4 pixels and W; = 4. The OBMC weights for the LS solution are computed
offline based on a separate set of training sequences, while the model parameters for the LMS solutions

are selected empirically.’

A. Coding Performance

Table III shows the coding results of the LS and LMS solutions. In particular, three heuristic variants
of the TB-mode, demonstrating the effects when v, is estimated independently or dependently of v;
and/or when a simple averaging of predictors is used in place of OBMC, are tested (Section *2). These
simple heuristics perform worse than the LS and LMS solutions (Section #1); the straightforward approach
(TB, 1/2), which simply averages the template and block predictors, even incurs 0.1% BD-rate increase.
Incorporating OBMC (TB, LS) seems more beneficial than optimizing the block MV (TB, 1/2, ME opt.).
But, neither approach comes close to the LS and LMS schemes, which deliver 0.7% in BD-rate reduction.
All the schemes have almost the same level of encoding and decoding time increases. Their impact on
encoding time (a 3-6% increase) is relatively modest, but the decoding time increase is still considerable
(9-25%), mainly casued by performing TMP.

3For Tao’s model, P, = 0.95; for Zheng’s model, the clipping threshold is set equal to (2IV )2 /2 with 2N denoting the width, or height,
of the target PU.



TABLE III
COMPARISONS OF TB-MODES AND TMP

Sec Mode  Weighting ME Opt. RAHE RALC LBHE LBLC Avg. Enc. Dec.
TB LS o -0.7 -0.5 -0.8 -0.9 -0.7  106% 121%
1 B LMS-Tao 0 -0.7 -0.5 -0.7 -0.9 -0.7  106% 121%
TB LMS-Zheng 0 -0.7 -0.5 -0.8 -0.8 -0.7  106% 116%
B 12 0.0 0.0 0.1 0.2 0.1 103% 109%
2 TB LS -0.3 -0.2 -0.3 -0.3 -0.3  103% 116%
B 1/2 0 -0.1 0.0 -0.1 -0.3 -0.1  105% 122%

Note — Negative values mean a rate reduction while positive values indicate a rate inflation.

TABLE 1V
COMPARISONS OF TB-MODES WITH FIXED OR VARIABLE TEMPLATE PATTERN

RAHE RALC LBHE LBLC Avg. Enc. Dec.
(a) Fixed Template Pattern (Inverse-L) -0.7 -0.5 -0.7 -0.9 -0.7  106% 121%
(b) Variable Template Pattern -1.1 -0.9 -1.1 -1.5 -1.2 114%  119%
Note — The results shown are with Tao’s model and 2 hypotheses.

B. Adaptive Template Switching

The coding performance of the TB-mode can improve at the cost of extra signaling overhead and
computation. For instance, the encoder can switch between different template designs (see Fig. 5) to
better adapt to time-varying signal characteristics. Of course, besides signaling the choice of template, the
OBMC weights and block MV also need to be optimized by the same procedure described in Section III.
From Table IV, this scheme further improves the rate saving by 0.4-0.6%, adding up to an average BD-rate
saving of 1.2%, while elevating the encoding and decoding time ratios to 114% and 119%, respectively,

due to extra computation needed for mode decision.

C. Multi-hypothesis Extension

The results given above have been generated by limiting the hypothesis number to two. Considering
a three-hypothesis case, two block MVs, v; and vy, and their associated OBMC weights, wj; (S) and
wpa (S), has to be determined. More unknowns are to be solved, which largely complicates the iteration
process of the LS solution, so we resort to the LMS approach. In analogy with (10), the objective is to

find two pixels, s;; and sy, in the target block B that minimize:
2
= Z E [( It (s) — wy (8) I—1(s + v(s;))—wp1 (8) L—1 (s + V(s,;)) —we2 (8) Ir—1 (s + v(sy;)) ) ] ; (14)
seB

where v, v;; and vy, are modeled, respectively, by v(s,), v(s,;) and v(s,,) with s, as a priori, and
w; (8) = 1 — wyy (S) — wye (8). Proceeding in much the same way as in [2], we can solve for the solution,
sy, and sj,, by evaluating ¢ for all permissible values of s;1, sp2 € BB, which involves only the second-order

moments of d(s; v(s,)), d(s;v(s,;)), d(s;v(s,,)).* Using the result, v;; and vy, are then estimated by

*Refer to (6) and (11) in [2] for evaluating &, w;(3), wp1i(3), wya(3).

9
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divide-and-conquer, with v, first found by
* . * [ * * [ * 2
Vi1 = argmin Z (I (s) — (1 — wiy (S;86,851)) Tk—1 (s + vi) — wiy (S;sey8iy) T—1 (s + Vp1)) (15)
1

seB

and utilized subsequently alone with v; to find v, as follows:

2
( Ti (s) = (1 — wyy (S;8¢, 831, 855) — wiy (S58¢,871,875)) -1 (s + ve) )

—wgy (S;8¢,851,8h0) Tk—1 (8 + Viy) — wiy (884,81, 855) Tk—1 (S + Vi)

* — arg mi 16
Vip = argmin )y | (16)

seB

where the wy; (S) and wy, (S) are augmented with the sampling points (s;, s;; or s;,) from which they
are computed.’

We also preserve the flexibility of TB-mode to switch between two- and three-hypothesis cases, in order
to be R-D effective. However, the s;; in (14) is generally not equal to s; in (10), resulting in three times
of motion search respectively for v}, v}, and v;,. To reduce the complexity, we simply let s}; = s;, = sj,
resulting in wj; (S) and wj, (S) equal to 1w; (S). Hence, there is no need to find v}, since its result is
exactly identical to v;.

Table V compares the results of TB-modes with varying the numbers of hypothesis. Note that the
notation, taking Experiment (b) as an example, (1 v; + 2 v;’s) means that the encoder can choose adaptively
the TB-mode with (1 v; + 1 v;) or (1 v; + 2 v’s). In (b) and (e), there is almost no difference, in terms of
BD-rate savaings, between the heuristic and theoretically optimal approaches. Only 0.1-0.2% rate saving
in the low-delay conditions is obtained from the optimal approach, while increasing the encoding time by
10% which is nearly unacceptable. Hence, we adopt the heuristic approach for the later experiments.

From the table (a-d), increasing the maximum hypothesis number from 2 to 4 almost doubles the
rate saving in every test condition, achieving an average BD-rate reduction of 2.2%, and the increase of
decoding time is about 30% higher than the (1 v; + 1 v;). As it stands, the setting (1 v, + 2 v;,’s) seems
to offer a better compromise between performance and complexity, with a comparable encoding/decoding
time increase to (1 v; + 1 v3), yet a moderate rate saving (1.8%, on average). The same observation does

>Sra, Wit (8;8¢,85,) in (15) is generally not equal to wi, (S;s¢, 85, 852) in (16).
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TABLE V
COMPARISONS OF TB-MODES WITH MULTI-HYPOTHESIS PREDICTION

Hypotheses Heuristic RAHE RALC LBHE LBLC Avg. Enc. Dec.
(@ 2 (Avet+1wy) -1.1 -0.9 -1.1 -1.5 -1.2 114%  119%
b)) 3 (Ave+2wvps) 0 -1.6 -1.6 -1.7 -2.2 -1.8 119%  125%
© 3 @Qwvist+t1lwvy) -1.6 -1.4 -2.0 -2.4 -1.8  118% 143%
d 4 Q2wvist2wv’s) 0 -2.0 -1.9 -2.2 -2.7 22 122%  147%
e 3 (Ive+t2wvys) -1.6 -1.5 -1.8 -2.4 -1.8 129%  125%

Note — The results shown are with adaptive template switching.

TABLE VI
COMPARISONS OF TB-MODES WITH MOTION MERGING
Hypotheses RAHE RALC LBHE LBLC Avg. Enc. Dec.
(@ 2 (IMRGv:+1wy) -0.7 -0.5 -0.9 -0.8 -0.7  106% 101%
(b) 3 (1 MRG vy + 2 vp’s) -0.9 -0.8 -1.2 -1.3 -1.1 0 110%  102%
©0 3 (2MRGvwv s+ 1wy -0.9 -0.7 -1.2 -1.2 -1.0  108%  102%
(d 4 2MRGwv’s+2wvy’s) -1.1 -1.0 -1.3 -1.5 -1.2° 109%  103%

not apply to the other 3-hypothesis scheme, (2 v;’s + 1 v;), which differs in using more v;’s. For this

reason, its decoding time increase is as considerable as (2 v;’s + 2 v;’s).

D. Generalization to Motion Merging

The idea of Motion Merging [13] is to send few bits to reuse MV(s) from a previously decoded
neighboring PU as v;. It is similar to treating the motion sample taken at the center of the referred
PU as v, in which case selecting adaptively from a range of candidate PUs is assimilated to switching
between different template designs. In this analogy, we simply apply the previous OBMC windows to
the present case, and the weight values are rounded to power-of-two numbers with 3-bit integer precision
for simplification. Comparing Table VI with Table V, the performance declines 0.5-1.0% across different
experiments, but also much lower encoding and decoding time increases. The high complexity associated
with TMP can be thus resolved. Performance loss may be inevitable; it however can be mitigated without

significantly complicating the decoder.

V. CONCLUSION

We proposed a bi-prediction scheme combining BMC and TMP predictors through OBMC. First, TMP
is examined in the context of motion field sampling and showed that the template MV may be viewed
as the pixel true motion around the template centroid. Following a similar argument, we formulated the
problem of finding an MV to best complement the template MV as the search of its sampling location in
the motion field. This formulation allows solving the problem analytically and leading to useful insights

into the solution. We found that when sampled optimally, this MV, along with the template MV, forms

11



a geometry-like motion partitioning. The notion of our scheme is capable of tremendous generalization.

The template pattern need not be fixed, the number of hypotheses can be extended over two, and TMP

can be replaced with other DMVD techniques, such as Motion Merging. Experimental results confirm our

scheme to be effective.
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