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Abstract

This study aims to investigate the thermal residual stress effect on the constitutive behaviors of fiber composites with three different
fiber arrays, i.e., square edge packing, square diagonal packing, and hexagonal packing. The repeating unit cell (RUC) containing fiber
and matrix phase was employed to describe the mechanical behaviors of fiber composites. For the fiber phase, it was assumed to be linear
elastic, whereas the matrix was a nonlinear material. The generalized method of cell (GMC) micromechanical model originally proposed
by Paley and Aboudi [Paley M, Aboudi J. Micromechanical analysis of composites by the generalized cells model. Mech Mater 1992;
14(2):127–39] was extended to include the thermal–mechanical behavior, from which the thermal residual stress within the fiber and
matrix phases was calculated. Through numerical iteration, the constitutive relations of the composites in the presence of residual stress
were established. Results show that for the composites with square edge packing, the mechanical behaviors are affected appreciably by
the thermal residual stress. On the other hand, the composites with hexagonal packing and square diagonal packing are relatively less
sensitive to the thermal residual stress.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber composites, because of their superior mechanical
performances and light weight properties, have been exten-
sively employed in various applications. In the manufactur-
ing process, the fiber composites were usually cured at high
temperatures followed by the cooling stage to room tem-
perature. During the cooling, because of the mismatch in
the coefficients of thermal expansion of the fiber and matrix
together with the mutual constraint effect, the thermal
residual stress was induced in the constituents. The magni-
tude of the residual stress relies on the properties of the
fiber and matrix as well as the associated microstructures
of the fiber composites, including the fiber shape and fiber
packing arrangements. In addition, the formation of resid-
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ual stress may have influences on the constitutive behaviors
of the fiber composites, especially in the nonlinear range
because the nonlinear behavior is highly dependent on
the stress states of the composites.

The constitutive behaviors of the composites with differ-
ent fiber architectures have been characterized by many
researchers using either finite element analysis or analytical
micromechanical approach [2–6]. Zhu and Sun [2] investi-
gated the nonlinear behaviors of AS4/PEEK composites
with three different fiber arrays under off-axis loading using
finite element approach. It was found that the nonlinear
behaviors of the composites were quite sensitive to the fiber
packing arrangement. The similar conclusions were also
addressed by Hsu et al. [3], who proposed an analytical
micromechanical model for simulating the nonlinearity of
AS4/PEEK composites subjected to combined transverse
compression and shear loading. Orozco and Pindera [4]
conducted a micromechanical analysis using the GMC
model on the two-phase composites with randomly
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distributed fibers, indicating that as the number of the
refined sub-cells in the unit cell is increased, the behaviors
of the composites tend to be that of a transversely isotropic
solid. The influences of fiber shape and fiber distribution on
the elastic/plastic behavior of metal matrix composites
were examined by Pindera and Bednarcyk [5] using the
GMC micromechanical model. It was shown that the fiber
packing exhibits a substantially greater effect on the
responses of the composite materials than does the fiber
shape. Pindera et al. [6] investigated the nonlinear behav-
iors of the boron/aluminum composites subjected to ten-
sile, compressive and off-axis loadings. The thermal
residual stress was considered in their analysis in order to
explain the differences of initial yielding in tension and
compression. The effect of residual stresses on yielding of
SiC/Ti plates was also reported by Zhou et al. [7]. Aghdam
et al. [8] accounts for residual stresses, off-axis orientation
and the interface condition between fiber and matrix on
the constitutive behaviors of SiC/Ti metal matrix compos-
ites. However, their analysis is limited to single fiber array
(square). A comprehensive review regarding the effect of
fiber arrangement on the elastic and inelastic responses of
fiber composites was provided by Arnold et al. [9]. In light
of the aforementioned investigations, it was suggested that
the behaviors of the fiber composites were mainly domi-
nated by the fiber packing arrangements. However, few
studies concerning the influence of the residual stress aris-
ing from curing associated with different fiber arrays on
the performances of fiber composites have been reported.

The objective of this study is to investigate the effect of
thermal stress on the stress and strain curves of composites
with different fiber packing arrangements. An appropriate
repeating unit cell (RUC) corresponding to each fiber array
was selected for the micromechanical analysis where the
fiber was considered to be linear elastic, and the matrix
was assumed to follow the nonlinearity of von Mises J2

materials. By using Aboudi’s GMC micromechanical
model [1], the incremental form of the constitutive relations
of the composites was expressed in terms of the constituent
properties as well as the geometry parameters of the RUC,
from which the thermal residual stress within the ingredi-
ents was calculated. After a numerical iteration, the corre-
sponding stress and strain relations of the composites in the
Square edge packing Square diagonaSquare edge packing Square diagona

Fig. 1. Three different fiber packing a
presence of thermal residual stress subjected to off-axis
loading were generated. The results were compared to
those calculated from the composites without taking into
account the thermal stress effect.

2. Micromechanical approach

2.1. Selection of unit cell

In modeling the mechanical responses of fiber compos-
ites using a micromechanical approach, a unit cell needs
to be properly selected to represent the microstructures of
the materials, and thus, the overall composites responses
can be predicted directly from the unit cell. In this study,
three different fiber arrays, i.e., square edge packing, square
diagonal packing, and hexagonal packing, were considered
and illustrated, respectively, in Fig. 1. Based on the period-
icity and symmetry conditions in the uniformly distributed
fibers, the repeating unit cells (RUCs) enclosed with dashed
lines in Fig. 1 were chosen and utilized to obtain the
mechanical properties of the fiber composites associated
with different fiber arrangements [10].

2.2. Characterization of matrix nonlinearity

In order to characterize the behavior of the fiber com-
posites using the micromechanical approach, the constitu-
tive properties of the constitutions, i.e., fiber and matrix,
as well as the fiber volume fraction have to be specified ini-
tially. In the research, the fiber was assumed to be linear
elastic materials, whereas the matrix phase was regarded
as a nonlinear material. To model the nonlinear deforma-
tion, the matrix was assumed to be von Mises J2 materials,
and through the flow rule, the plastic strain increment of
the matrix was expressed as

dep
ij ¼ dk

oJ 2

orij
ð1Þ

where

J 2 ¼
1

6
½ðr11 � r22Þ2 þ ðr22 � r33Þ2 þ ðr33 � r11Þ2�

þ r2
12 þ r2

23 þ r2
13 ð2Þ
l packing Hexagonal packingl packing Hexagonal packing

rrangements for fiber composites.
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and dk is a proportional factor.
By defining an effective stress �r as

�r ¼
ffiffiffiffiffiffiffi
3J 2

p
ð3Þ

through the equivalence of plastic work, i.e.,

dW p ¼ rij dep
ij ¼ �rdep ¼ 2J 2 dk ð4Þ

the effective plastic strain increment dep was given explicitly
as

dep ¼ 2

3

1

2
½ðdep

11 � dep
22Þ

2 þ ðdep
22 � dep

33Þ
2 þ ðdep

33 � dep
11Þ

2�
�

þ 3

4
ðdcp2

12 þ dcp2

23 þ dcp2

13Þ
�1=2

ð5Þ

and the proportional factor dk in Eq. (1) was derived as

dk ¼ 3

2

dep

�r
¼ 3

2

d�r
H p�r

ð6Þ

where Hp is the plastic modulus and written as

Hp ¼
d�r
dep

ð7Þ

In addition, the relationship of effective stress and effective
plastic strain is assumed to be described using a power law
function as

ep ¼ Að�rÞn ð8Þ
With Eqs. (7) and (8), the plastic modulus dk is yielded as

Hp ¼
1

nAð�rÞn�1
ð9Þ

Based on the definition of the effective stress given in Eq.
(3), d�r is deduced explicitly as

d�r ¼ 1

2�r
ð2r11 � r22 � r33Þdr11 þ ð�r11 þ 2r22 � r33Þdr22½

þð�r11 � r22 þ 2r33Þdr33 þ 6r23 dr23

þ6r13 dr13 þ 6r12 dr12� ð10Þ

By substituting Eq. (10) together with Eq. (6) into Eq. (1),
the plastic strain increment is written explicitly in terms of
the stress increments as

dep
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where

S1 ¼
1

3
ð2r11 � r22 � r33Þ

S2 ¼
1

3
ð�r11 þ 2r22 � r33Þ

S3 ¼
1

3
ð�r11 � r22 þ 2r33Þ

S4 ¼ 2r23

S5 ¼ 2r13

S6 ¼ 2r12

It is noted that in Eq. (11), the elements in the plastic com-
pliance matrix are not a constant, but they dependent on
the stress states, and for a given loading history, a numer-
ical iteration process is usually required to update the com-
pliance matrix. By combining the elastic parts, the
incremental form of the constitutive relation of the epoxy
material is established as

fdeg ¼ ½SM�fdrg ð12Þ

where

½SM� ¼ ½Se� þ ½Sp� ð13Þ

In Eq. (13), [Se] represents the elastic compliance matrix of
the epoxy, and [Sp] denotes the plastic compliance matrix
given in Eq. (11). By inverting Eq. (12), the stress and strain
relation expressed in terms of the stiffness matrix is ob-
tained as

fdrg ¼ ½CM�fdeg ð14Þ

where

½CM� ¼ ½SM��1 ð15Þ

Therefore, the constitutive relation given in Eq. (14) will
be utilized afterward in the micromechanical model to de-
note the matrix materials properties. It should be noted
that the incremental plasticity equations implemented into
the GMC framework are different from those employed by
Pindera and Bednarcyk [5] and Arnold et al. [9].
2.3. Generalized method of cells

With the ingredient properties and the properly selected
RUC, the mechanical behavior of fiber composites can be
simulated using the generalized method of cells (GMC)
micromechanical model proposed originally by Paley and
Aboudi [1]. It is noted that in the GMC analysis, the
RUC is usually divided into Nb · Nc sub-cells as shown
in Fig. 2. Based on the displacement continuity on the
interface of the adjacent sub-cells in conjunction with the
periodicity condition of the RUC, the relation between
overall strain rates and the sub-cell strain rates is expressed
as [1]

AGgs ¼ J�g ð16Þ
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Fig. 2. A typical RUC portioned into Nb · Nc sub-cells in GMC analysis
[1].
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where gs ¼ f�gð11Þ; �gð12Þ; . . . ; �gðNbN cÞg represents the collection
of the engineering strain increments for all sub-cells, and
�g ¼ f�g11; �g22; �g33; 2�g23; 2�g13; 2�g12g indicates the overall strain
increments of the RUC. In addition, AG and J contain
geometry parameters of the sub-cells and the RUC, the
dimension of which are 2(Nb + Nc) + NbNc + 1 by 6NbNc

and 2(Nb + Nc) + NbNc + 1 by 6, respectively.
In addition, from the traction continuity of the sub-cells,

the relation of sub-cell strain increment is established as

AVP
M gs ¼ 0 ð17Þ

where AVP
M involves material properties of the sub-cells.

Combining Eqs. (16) and (17) leads to the following expres-
sion as:

gs ¼ AVP�g ð18Þ

It is noted that AVP is a 6NbNc · 6 matrix, containing the
geometry parameters of the RUC and the material proper-
ties of the associated sub-cells. The AVP matrix can be fur-
ther partitioned into the NbNc entries, and each entry
represents a 6 · 6 square matrix as

AVP ¼

AVPð11Þ

AVPð12Þ

..

.

AVPðNbN cÞ

2
66664

3
77775 ð19Þ

Therefore, the components of the strain increment in the
sub-cells can be expressed explicitly in terms of the overall
strain increments as

�gðbcÞ ¼ AVPðbcÞ�g ð20Þ

where b = 1, . . . ,Nb and c = 1, . . . ,Nc.
The constitutive equations of each sub-cell (bc) is writ-

ten as

�sðbcÞ
ij ¼ CVPðbcÞ

ijkl �gðbcÞ
kl ð21Þ
where CVPðbcÞ
ijkl denotes the elastic–plastic stiffness matrix of

the sub-cell (b,c). It is noted that when the sub-cells are
represented as matrix material, the corresponding stiffness
matrix CVP(bc) is the same as [CM] provided in Eq. (14).
Whereas the sub-cells are denoted as fiber, CVP(bc) is equal
to elastic stiffness matrix of the fiber. By substituting Eq.
(20) into the sub-cell constitutive relation given in Eq.
(21), the sub-cell stress increments are deduced as

�sðbcÞ ¼ CVPðbcÞAVPðbcÞ�g ð22Þ

Based on the average sense, the overall stress rate of the
RUC is written as

�s ¼ 1

hl

XNb

b¼1

XNc

c¼1

hblc�s
ðbcÞ ð23Þ

With Eqs. (22) and (23), the overall stress rate and strain
rate relation of the RUC are established as

�s ¼ B�VP�g ð24Þ

where

B�VP ¼ 1

hl

XNb

b¼1

XNc

c¼1

hblcC
VPðbcÞAVPðbcÞ ð25Þ

With ingredient properties as well as RUC geometry, Eq.
(25) can be used to model the responses of fiber composites.
For the composites subjected to off-axis loading, the ap-
plied loading was decomposed into longitudinal, transverse
and in-plane shear directions in the material principal
directions. Subsequently, these stress components were em-
ployed as input in the overall stress and strain relation gi-
ven in Eq. (24) for the calculation of the global strain.
When the global strain was evaluated, it was substituted
into Eq. (22) to calculate the local stress components of
each sub-cell. The constitutive relation of each sub-cell
was then updated by the calculated local stress components
and through Eq. (25), the overall stress strain relation was
obtained accordingly. By performing the numerical
iteration together with the applied off-axis loading, the
stress–strain curves of the composites with different fiber
orientations were established.

2.4. Calculation of thermal residual stress

In order to investigate the thermal stress effect on the
responses of fiber composites, the thermal residual stress
induced during curing needs to be evaluated. These stress
components can be calculated from the thermal–elastic
analysis with the assistance of the GMC micromechanical
model. For the sub-cell (b,c), the constitutive equation
can be described as

�sðbcÞ
ij ¼ CðbcÞ

ijkl ð�g
ðbcÞ
kl � aðbcÞDT Þ ð26Þ

where the CðbcÞ
ijkl represents the elastic stiffness matrix of the

constituents; a(bc) is the thermal coefficient corresponding
to the sub-cell (b,c); and DT is the temperature change in



Table 1
Material and thermal properties of the ingredients used in the GMC
analysis

Fiber Matrix

E1 (GPA) 234 3.4
E2 (GPA) 14
G12 (GPA) 27.6
G23 (GPA) 5.5
v12 0.2 0.37
v23 0.25
a (1/�C) 1.18 · 10�4

A 6.42 · 10�11

n 4.11
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the RUC. The fiber composites were assumed to be stress
free at curing temperature and the residual stresses were in-
duced during the cooling process. Thus, DT indicates the
temperature drop from the curing to the room tempera-
ture. It should be noted that the CðbcÞ

ijkl presented in Eq.
(26) is different from the CVPðbcÞ

ijkl given in Eq. (21) where
both elastic and plastic deformations were considered.
Based on the interface traction continuity between adjacent
sub-cells, the relations for the sub-cell strain increment
were deduced as

AMðgs � aDT Þ ¼ 0 ð27Þ
It is noted that the expression of Eq. (27) is quite similar to
that in Eq. (17), except that the matrix AM is replaced by
AVP

M . This occurs because only elastic constitutive relation
was utilized for deriving the thermal stress. In Eq. (27),
a ¼ fað11Þ; að12Þ; . . . ; aðNbN cÞg is denoted as the collection of
coefficients of thermal expansion of all sub-cells. In con-
junction with the displacement rate continuity given in
Eq. (16), the traction continuity equations were further ex-
pressed as

AM

AG

� �
gs �

AM

0

� �
aDT ¼

0

J

� �
�g ð28Þ

From Eq. (28), the sub-cell strain increments were corre-
lated to the overall strain increments of the composites in
terms of the temperature changes. Eq. (28) can be written
in a simple form as

gs ¼ eA�1K�gþ eA�1eApaDT ð29Þ

where eA ¼ AM

AG

� �
, eAp ¼ AM

0

� �
and K ¼ 0

J

� �
. It is noted

that both eA and eAp are square matrix with the dimensions
6NbNc · 6NbNc. The dimension of matrix K is 6NbNc · 6.
If A ¼ eA�1K and Ap ¼ eA�1eAp are further defined, Eq. (29)
can be simplified as

gs ¼ A�gþ APaDT ð30Þ
The explicit form of Eq. (30) for each sub-cell (b,c) was ex-
pressed as

�gðbcÞ ¼ AðbcÞ�gþ APðbcÞaðbcÞDT ð31Þ
By substituting Eq. (31) into Eq. (26), the thermal stress
components for each sub-cell, after cooling, was written
in terms of overall strain increment and temperature
change as

�sðbcÞ ¼ CðbcÞðAðbcÞ�gþ APðbcÞaðbcÞDT � aðbcÞDT Þ ð32Þ

where �g was the overall strain increment. Thus, once the
overall deformation was determined, the residual stress
for each sub-cell can be evaluated from Eq. (32). In addi-
tion, the overall stress states of the composites can be cal-
culated based on the average concept of the stresses in each
sub-cell. By substituting Eq. (32) into Eq. (23), the overall
stress and strain relation of the composites corresponding
to the temperature change was expressed as
�s ¼ 1

hl

XNb

b¼1

XNc

c¼1

hblcC
ðbcÞðAðbcÞ�gþ APðbcÞaðbcÞDT � aðbcÞDT Þ

ð33Þ

It is noted that during cooling, there is no mechanical load-
ing applied; therefore, the overall stress state of the com-
posites should be equal to zero. In other words, the
overall stress �s in Eq. (33) is zero. Through mathematical
manipulation, the overall strain components for the com-
posites during the temperature change was derived as

�g¼�B�
�1 1

hl

XNb

b¼1

XNc

c¼1

hblcC
ðbcÞðAPðbcÞaðbcÞDT �aðbcÞDT Þ ð34Þ

where B� ¼ 1
hl

PNb

b¼1

PNc

c¼1hblcC
ðbcÞAðbcÞ.

By substituting the overall strain components given by
Eq. (34) into Eq. (32), the thermal residual stress of each
sub-cell was evaluated. The thermal residual stress compo-
nents were regarded as the initial stress states of each sub-
cell that were then used to modify the initial constitutive
relation of matrix phase provided in Eq. (11). All the ingre-
dient properties of the fiber composites used for the follow-
ing simulations are summarized in Table 1.
3. Results and discussion

3.1. Convergence of GMC analysis

In the GMC analysis, the RUC is divided into the num-
bers of sub-cells to represent either fiber or matrix phases.
The number of the sub-cells is dependent on the micro-
structure of the RUC, including fiber geometry and pack-
ing arrangement. In general, when a RUC consists of
round fibers embedded in matrix, significant amounts of
sub-cells are required in an attempt to precisely simulate
the circular geometry of the fiber. Nevertheless, as more
sub-cells are taken into account, more computation time
is needed. In order to compromise the computation time
with the accuracy of the simulation, the converging tests
have to be carried out on RUCs with different fiber
arrangements, i.e., square edge, diagonal edge, and hexag-
onal packing. Fig. 3 demonstrates the RUC with square
edge packing, containing 28 · 28 and 39 · 39 sub-cells,



Fig. 3. a RUC with square edge packing portioned into 28 · 28 sub-cells (a) and 39 · 39 sub-cells (b), respectively.

Fig. 4. a RUC with square diagonal packing partitioned into 27 · 27 sub-cells (a) and 39 · 39 sub-cells (b), respectively.
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respectively, where the gray ones denote the fibers, and the
white ones are the surrounding matrix. In addition, the
RUCs with square diagonal packing and hexagonal pack-
ing were also partitioned into different sub-cells as shown
in Figs. 4 and 5, respectively. Based on the different discret-
izations of RUCs, the stress and strain curves of the com-
posites with 45�fiber orientation were calculated and the
results were then compared in Fig. 6. It was shown that
for each fiber arrangement, the constitutive curves
Fig. 5. a RUC with hexagonal packing partitioned into 20 · 35 sub-cells
(a) and 31 · 49 sub-cells (b), respectively.
obtained from the RUCs with coarse sub-cells demonstrate
good agreements with those derived from the fine sub-cells.
In light of the above verification, it was depicted that
the rough partitions of the RUCs have accomplished the
converged results and are suitable for characterizing
the nonlinear responses of composites with round fibers
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embedded. Moreover, the work by Pindera and Bednarcyk
[5] also suggested that the RUC discretizations employed in
the study are sufficient for accurate macro-level response
and thus the results shown in Fig. 6 are not surprising.
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3.2. Thermal stress effect

The nonlinear stress strain curves for 15�, 30�, 45�, 60�
and 90� fiber composites with different fiber arrays are
demonstrated, respectively, in Figs. 7–11. For comparison
purposes, the composites disregarding the thermal stress
effect were also enclosed in the Figures. In the simulations,
the temperature drop was assumed to be 200�. Results
show that the composites with different fiber arrays exhibit
different stress and strain curves. Moreover, the square
Strain

S
tr

es
s 

(M
P

a)

0 0.0025 0.005 0.0075 0.01
0

50

100

150

200

250

300

Square edge (Thermal)
Square edge
Square diagonal (Thermal)
Square diagonal
Hexagonal (Thermal)
Hexagonal

Fig. 7. Thermal residual stress effects on the stress and strain curves of 15�
off-axis fiber composites with three different fiber arrays. (fiber volume
fraction 60%).
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Fig. 8. Thermal residual stress effects on the stress and strain curves of 30�
off-axis fiber composites with three different fiber arrays (fiber volume
fraction 60%).

Fig. 9. Thermal residual stress effects on the stress and strain curves of 45�
off-axis fiber composites with three different fiber arrays (fiber volume
fraction 60%).
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Fig. 10. Thermal residual stress effects on the stress and strain curves of
60� off-axis fiber composites with three different fiber arrays (fiber volume
fraction 60%).
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edge packing yields more stiffening behaviors than other
fiber packing arrangements. Regarding the thermal stress
effect, it is revealed that for the composites with square
edge packing, the mechanical behaviors are affected appre-
ciably by the thermal residual stress. Nevertheless, the com-
posites with hexagonal packing and square diagonal
packing are relatively less sensitive to the thermal residual
stress. In addition, it was found that the effect of the fiber
array architecture would be more important at high rather
than low off-axis angles. Similarly, the residual stress
appeared to have a greater effect at high rather than low
off-axis angles for the square edge packing than the remain-
ing packing. It is interesting to mention that for the 15�,
30�, 45�, 60� composites, the effect of residual stress
seems to have the samples stiffer. In contrast, for the 90�
composite, the constitutive behaviors become softer when
the thermal residual stress is taken into account in the
predictions.
4. Conclusions

The GMC micromechanical model was successfully
extended to calculate the thermal residual stress of the fiber
composites with different fiber arrays, i.e., square edge
packing, square diagonal packing, and hexagonal packing.
From the micromechanical analysis, it was indicated that
for the composites with square edge packing, the constitu-
tive behaviors are affected appreciably by the thermal resid-
ual stress. However, for the composites with hexagonal
packing and square diagonal packing, the thermal residual
stress exhibits little effects on their properties.
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