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This article proposes a weighted bootstrap procedure, which is an efficient bootstrap technique

for neural model selection. Our primary interest in reducing computer effort is to not resample

(in the original bootstrap procedure) uniformly from the original sample, but to modify this

distribution in order to obtain variance reduction. The performance of the weighted bootstrap is

demonstrated on two artificial data sets and one real dataset. Experimental results show that the

weighted bootstrap procedure permits an approximately 2 to 1 reduction in replication size.
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1. Introduction

Backpropagation multilayer perceptrons (MLPs) are by
far the most commonly used neural network structures
for applications in a wide range of areas, such as pattern
recognition, signal processing, data compression and
automatic control. A backpropagation MLP is an
adaptive network whose nodes (or neurons) perform
the same function on incoming signals; and this node
function is usually a composite of the weight sum and
a differentiable non-linear activation function. Three
of the most commonly used activation functions in
backpropagation MLPs are logistic, hyperbolic tangent
and identity functions. For simplicity, we assume that
the backpropagation MLP in this article uses the logistic
function as its activation function.
Next, we consider a set of independent observations

of a continuous variable y that it has to explain from
a set of p explanatory variables (x1, x2, . . . , xp). We use
an MLP with p inputs, one hidden layer with H hidden
units and one output layer to model these data
as follows:

y ¼ w0 þ
XH

h¼1

wh�
�
bh þ

Xp

j¼1

wjhxj

�
þ �; ð1Þ

where � is the residual term, with zero mean, variance �2

(with normal distribution or not), and � is the logistic

function. Let y(x;�) be the computed value for an input

x¼ (x1, . . . , xp) and a parameter �¼ (w0,w1, . . . ,wH,

w11, . . . ,wpH). For MLPs, the choice of an appropriate

model is an important problem. Recently, Kallel et al.

(2002) applied the bootstrap method for neural

model selection, since it is more effective than the

leave-one-out method.
The bootstrap method was originally proposed by

Efron (1979) for use in setting independent and

identically distributed (i.i.d.) random variables. The

typical bootstrap method can be described as follows.

Consider an i.i.d. sample z¼ {z1, . . . , zn} from a dis-

tribution function F and a statistic of interest s(z). The

ideal bootstrap estimate of the expectation of s(z) is

ê ¼ EF̂sðz
�Þ; ð2Þ

where F̂ is the empirical distribution function, EF̂ is the

expectation under F̂, and z� ¼ fz�1; . . . ; z�ng is drawn

randomly from z with replacement. Unless s(z) is the

mean or some other simple statistic, it is not easy to

compute ê exactly, so we approximate the ideal boot-

strap estimate by

êB ¼
1

B

XB

b¼1

sðz�bÞ; ð3Þ
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where each z�b is a sample of size n drawn with a
replacement from z, B is the number of Monte Carlo
simulations, and s(z� b) is the value of the statistic s
evaluated at z�b.
Formula (3) is an example of a Monte Carlo estimate

of the expectation EF̂sðz
�Þ. Note that êB! ê as B!1

according to the law of large numbers; furthermore
E(êB)¼ ê and var(êB� ê)¼ c/B so that the error (stan-
dard deviation of êB� ê) goes to zero at the rate 1=

ffiffiffiffi
B
p

.
The remaining part of this article is organised as

follows. In section 2, to make the model estimation
robust against outliers, we propose a weighted bootstrap
algorithm to selection model for MLPs, where the
resampling probability distribution varies inversely with
the absolute value of residual. Some numerical simula-
tion results are given in section 3 and conclusions are
presented in section 4.

2. Weighted bootstrap applied to selection model

for MLPs

Let B0 be a dataset of size n, that is, n¼ card{B0},

B0 ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg;

where xi is the ith value of a p-vector of explanatory
variables and yi is the response to xi. First, we use the
dataset B0 to estimate the parameter � of the model (1)
and the resulting least-squares estimator of � is denoted
by �̂. Thus, the residual for the ith observation is
denoted by ei and is defined as follows:

ei ¼ yi � yðxi; �̂Þ:

Frequently, in applications, the dataset contains some
cases that are extreme; that is, the observations for these
cases are well separated from the remainder of the data.
These extreme cases may involve large residuals and
often have dramatic effects on the fitted model. It is
therefore important to study the extreme cases carefully
and their influence should be reduced in the fitting
process. However, in uniform resampling, that is,
random resampling with replacement from B0, each
sample value is drawn with the same probability 1/n.
This resampling technique discards the influence of these
extreme cases. An alternative to discarding extreme
cases that is less severe is to dampen the influence of
these cases. This is the purpose of our proposed
weighted bootstrap approach.
Under weighted bootstrap (sampling is conducted

with replacement), each data point (xi;yi) is assigned a
probability qi of being selected on any given draw, whereP

qi¼ 1. Taking qi¼ 1/n for each i, we obtain the

original bootstrap method. To determine what qi’s

should be used, we intuitively want to reduce the

influence of extreme cases so that the qi varies inversely

with the size of absolute value |ei|. It is well-known that

an exponential operation is highly useful in dealing with

a similarity relation (cf. Zadeh 1971), Shannon entropy

(cf. Pal and Pal 1991, 1992) and in cluster analysis

(cf. Wu and Yang 2002; Yang and Wu 2004). We

therefore choose

qi / expð�jeijÞ:

That is,

qi ¼
expð�jeijÞPn
j¼1 expð�jejjÞ

; i ¼ 1; . . . ; n:

Based on the above discussion, we give the weighted

bootstrap algorithm as follows:

Weighted Bootstrap Algorithm:

(S1) Define the resampling probability distribution

{qi|i¼ 1, . . . , n} of B0¼ {(xi;yi)|i¼ 1, . . . , n} to be

qi ¼
expð�jeijÞPn
j¼1 expð�jejjÞ

; i ¼ 1; � � � ; n:

(S2) With the original sample B0¼ {(xi; yi)|i¼ 1, . . . , n}

fixed, draw a ‘bootstrap sample’ of size n called

By ¼ fðxyi ; y
y

i Þji ¼ 1; . . . ; ng, under resampling

probability distribution {qi| i¼ 1, . . . , n}. For this

bootstrap sample to estimate � by minimizingPn
i¼1ðy

y

i � yðxyi ; �ÞÞ
2, we get �̂y. Then we have the

mean of the squares of the residuals on the test

base B0:

TMSE ¼
1

n

Xn
i¼1

�
yyi � yðxyi ; �̂

yÞ

�2
:

(S3) Repeat S2 B times, we obtain B bootstrap

replications corresponding to each bootstrap

sample:

TMSEð1Þ; . . . ;TMSEðBÞ:

Thus, we get the mean value and the standard

deviation of the B bootstrap replications:

�boot ¼
1

B

XB

b¼1

TMSEðbÞ;

�boot ¼
� 1

B� 1

XB

b¼1

ðTMSEðbÞ � �bootÞ
2
�1=2

:
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The question is here: is there another resampling
probability distribution of B0? The following is
an investigation into this question. The answer is
affirmative. The generalised bootstrap uses a different
heuristic. It consists mainly of generating a random
probability measure ~F from the empirical one.
The probability measure ~F puts some random weight
Wi on each data point (xi, yi), where

Pn
i¼1 Wi ¼ 1. The

choices for the weights may be found in Praestgaard and
Wellner (1993). The recent work of Barbe and Bertail
(1995) involving Edgeworth expansions for a class of
weighted bootstrap versions of general von Mises
differentiable functionals provides the basis for this
study. Prior to their work, most of the results on
Edgeworth expansions for the weighted bootstrap has
been relegated to the case of the sample mean. Related
works include papers by Weng (1989), Haeusler et al.
(1992), Lo (1993), Hall and Mammen (1994) and
Guillou (1995). Their results indicated that one could
indeed choose weights which are as accurate as the
classical bootstrap in approximating the sampling
distribution of the sample mean. Shao and Tu (1995)
gave a survey of weighted bootstrap methods in other
settings as well. The random weighted bootstrap
algorithm is as follows:

Random Weighted Bootstrap Algorithm:

(S1) Generate i.i.d. random variables Z‘, ‘¼ 1, . . . , n
according to a given distribution G with
G(0)¼ 0. Define the random weighted bootstrap
empirical measures ~F, where ~F puts the random
weight

Wi ¼
ZiPn
‘¼1 Z‘

on each data point (xi, yi), i¼ 1, . . . , n.
The remainder follows the steps (S2) and (S3) of the

weighted bootstrap algorithm.

According to equation (3), we have

�boot ¼
1

B

XB

b¼1

TMSEðbÞ !
1

n

Xn
i¼1

e2i ðsayMSEÞ; asB!1:

Usually, MSE is an estimate of �2 and, by using the law
of large number, we have

MSE ¼
1

n

Xn
i¼1

e2i ! �2; as n!1:

It is natural to pose the question: ‘how accurate is
MSE?’. �boot is the bootstrap procedure for
estimating the standard error of MSE from the observed

dataset B0. Notice that a good model should have the
small �boot and �boot. Therefore, to choose between
several models M1, M2, . . . , the best one will be the one
that has the best compromise to simultaneously mini-
mise �boot and �boot.

3. Examples

In this section, we present several examples to compare
the original bootstrap (OB), weighted bootstrap (WB)
and random weighted bootstrap (RWB) algorithms.
In RWB algorithm, we choose Z‘ to be uniform U(0, 1)
or �(4, 2) random variables, which corresponds to the
Bayesian bootstrap (BB) (cf. Rubin 1981) or Bayesian
bootstrap clones (BBC) (cf. Lo 1991). According to
Efron and Tibshirani’s (1993) experience, there are two
rules of thumb to evaluate how large B should be to
evaluate �boot and �boot: (i) even a small number of
bootstrap replications, say B¼ 25, is usually informa-
tive, while B¼ 50 is often enough to use; (ii) only very
seldom are more than B¼ 200 replications needed for
computing �boot and �boot. Therefore, we consider
B¼ 50 and 100 for OB algorithm. However, WB is an
efficient bootstrap computation. In some cases, it can
achieve a small error for a given number of function
evaluations B, or equivalently, require a smaller value of
B to achieve a specified accuracy. Thus, B¼ 25 and 50
are considered in WB, BB and BBC algorithms.

Example 1 Consider the problem of fitting a poly-
nomial model:

y ¼ �0 þ �1xþ �2x
2 þ � � � þ �px

p þ �:

A dataset B0 is generated by putting

xi ¼ i1=3; yi ¼ 4þ xi þ 2x2i þ 3x3i þ �i; i ¼ 1; . . . ; 500;

where �i is a random error term which has the standard
normal distribution. We consider three models

Model M1 : p ¼ 1; y ¼ �0 þ �1xþ �:

Model M2 : p ¼ 2; y ¼ �0 þ �1xþ �2x
2 þ �:

Model M3 : p ¼ 3; y ¼ �0 þ �1xþ �2x
2 þ �3x

3 þ �;

ðtrue modelÞ:

For each model, we also compute �boot and �boot
based on OB, WB, BB and BBC algorithms. The results
are listed in table 1, indicating that the best model for
WB algorithm isM3 with B¼ 25, 50. It is natural to pose
the question: ‘which one is appropriate?’. Since the
difference between 1.0872 and 1.0698 is negligible,
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we choose B¼ 25 for the WB algorithm. However, the

best model for OB algorithm is M2, and the difference

between 1.1113 and 1.1032 is also negligible. Thus, we
choose B¼ 50 for the OB algorithm. On the other hand,

comparing B¼ 25 with B¼ 50 in BB and BBC algo-

rithms, we find that the values of �boot and �boot are
larger with B¼ 25. Hence, we choose B¼ 50 for BB and

BBC algorithms and the best model is M2. But M2 is not
a true model. Therefore, the WB algorithm not only

permits a reduction in replication size but also selects the

correct model.

Example 2 Kallel et al. (2002) used equation (1) with

sigmoid transfer function � to simulate a dataset

B0 ¼ ðx
ðiÞ
1 ; x

ðiÞ
2 ; yiÞ; i ¼ 1; . . . ; 500

by computing yi as a noisy output of a multilayer

perceptron, defined by p¼ 2 input variables, x1� N(0.2, 4),
x2� N(–0.1, 0.25), there is one hidden layer and

4 neurons on the hidden layer, �¼ (0.5, �0.1,0.2, 0.5,

�0.4, 0.2, 0.1, 3, 0.3, 2, 0.5, 0.1, 0.2, 2, 0.2, 3, 0.1), as

defined in section 1, 2� N(0,0.04). They considered

three models:
Model M2: two inputs, one hidden layer with 2 hidden

neurons.
Model M4: two inputs, one hidden layer with 4 hidden

neurons: true model.
Model M6: two inputs, one hidden layer with 6 hidden

neurons.
For each model, we compute �boot and �boot based on

OB, BB, BBC and WB algorithms. Table 2 shows that

the best model for these algorithms is M2. However, the

number of bootstrap replications B equals 50 for OB,

BB and BBC algorithms. This is because the values of

�boot and �boot are larger with B¼ 25 in BB and BBC
algorithms. But the WB algorithm only needs B¼ 25.

Although M2 is not a true model, it is the best

because the multilayer perceptrons are generally

overparameterised. Therefore, it is not surprising that
M2 is selected as the best.

Example 3 In this example, we discuss a real dataset
from Draper and Smith (1998, p. 296). A proposed
model for this dataset, based on theoretical considera-
tions, is

log10Y ¼ log10 �þ � log10X1 þ � log10X2 þ 	 log10X3 þ �;

where �¼ 0.05. In the following, we consider four
models

Model M123 : log10Y¼ log10�þ � log10X1þ � log10
X2þ 	log10X3þ � (true model).

Model M12 : log10Y¼ log10�þ � log10X1þ � log10
X2þ �.

Model M13 : log10Y¼ log10�þ � log10X1þ 	 log10
X3þ �.

Model M23 : log10Y¼ log10�þ � log10X2þ 	 log10
X3þ�.

For each model, we compute �boot and �boot based on
OB, BB, BBC and WB algorithms. Table 3 shows that
the best model for these algorithms is M123. Besides, the
values of �boot and �boot are larger with B¼ 25 in
BB and BBC algorithms. This means that B¼ 25 is not
suitable in BB and BBC algorithms. Therefore, we
choose B¼ 50 for OB, BB and BBC algorithms. But the
WB algorithm only needs B¼ 25. It indicates that
the WB algorithm does permit a reduction in replication
size.

4. Conclusions

To reduce computer effort of the bootstrap method for
neural model selection, we propose the WB algorithm
based on exponential operation on the absolute value of
residuals. Compared with OB, BB and BBC algorithms,

Table 1. Comparison results of OB, BB, BBC and WB algorithms with different bootstrap replications B.

M1 M2 M3

B �boot �boot �boot �boot �boot �boot

WB 25 21.3598 1.8513 1.1032 0.0574 1.0872 0.0554

50 21.3293 1.8046 1.0901 0.0561 1.0698 0.0518

BB 25 25.0765 2.3519 1.2424 0.0935 1.2620 0.0940

50 22.4747 2.1096 1.1135 0.0839 1.1311 0.0843

BBC 25 24.9511 2.3425 1.2374 0.0931 1.2557 0.0935

50 22.3623 2.0991 1.1090 0.0835 1.1266 0.0839

OB 50 22.4298 2.1074 1.1113 0.0838 1.1288 0.0842

100 22.3245 1.8893 1.1032 0.0801 1.1144 0.0811

Note: Bold values represent the smallest value in each row.
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the numerical results show that the WB algorithm not
only is an effective means of reducing the bootstrap
replications but also selects the correct model.
Therefore, the proposed algorithm should be considered
in the neural model selection.
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Table 3. Comparison results of OB, BB, BBC and WB algorithms with different bootstrap replications B.

M123 M12 M13 M23

B �boot �boot �boot �boot �boot �boot �boot �boot

WB 25 0.0242 0.0050 0.0275 0.0057 0.3070 0.0530 0.0285 0.0052
50 0.0237 0.0040 0.0273 0.0053 0.3053 0.0490 0.0277 0.0047

BB 25 0.0281 0.0059 0.0308 0.0077 0.3572 0.0657 0.0319 0.0064
50 0.0250 0.0053 0.0275 0.0070 0.3179 0.0585 0.0286 0.0057

BBC 25 0.0283 0.0058 0.0309 0.0076 0.3504 0.0659 0.0320 0.0063
50 0.0251 0.0052 0.0275 0.0070 0.3122 0.0586 0.0287 0.0057

OB 50 0.0250 0.0053 0.0275 0.0069 0.3192 0.0587 0.0285 0.0057
100 0.0244 0.0050 0.0273 0.0061 0.3101 0.0554 0.0278 0.0053

Note: Bold values represent the smallest value in each row.

Table 2. Comparison results of OB, BB, BBC and WB algorithms with different bootstrap replications B.

M2 M4 M6

B �boot �boot �boot �boot �boot �boot

WB 25 0.0422 0.0027 0.0433 0.0028 0.0440 0.0029
50 0.0420 0.0026 0.0424 0.0027 0.0426 0.0029

BB 25 0.0480 0.0030 0.0489 0.0032 0.0499 0.0034

50 0.0429 0.0027 0.0439 0.0029 0.0447 0.0031

BBC 25 0.0482 0.0030 0.0490 0.0032 0.0500 0.0034

50 0.0430 0.0027 0.0440 0.0029 0.0449 0.0031

OB 50 0.0431 0.0027 0.0439 0.0029 0.0448 0.0031

100 0.0430 0.0026 0.0435 0.0028 0.0447 0.0030

Note: Bold values represent the smallest value in each row.
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