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Abstract
Purpose – This paper aims to present a novel embedded-internet robot system based on an internet robot agent and the brain-computer interface
(BCI) scheme.
Design/methodology/approach – A highly flexible and well-integrated embedded ethernet robot (e Robot) was designed with enhanced mobility.
In the e Robot, a circuit core module called a tiny network bridge (TNB) is designed to reduce robotic system cost and increase its mobility and
developmental flexibility. The TNB enables users to control e Robot motion via embedded ethernet technology. Through electroencephalogram (EEG)
feedback training, the command translation unit (CTU) and alertness level detection unit (ADU) allow the e Robot to perform specific motions (for
example, lying down or standing up) to reflect alertness levels of the user, and move forward, turn left or right following the user’s command.
Findings – After a short training period, subjects could achieve at least 70 percent accuracy in the CTU game testing. And the error rate of ADU,
estimated from the results of classifying 496 labeled EEG epochs, was approximately 10.7 percent. Combining an encoding procedure, the commands
issued from the CTU could prevent the robot from performing undesired actions.
Originality/value – The e Robot could reflect some physiological human states and be controlled by users with our economical design and only two
bipolar EEG channels adopted. Thus, users could make the EEG-based e Robot agent his or her representative. Based on the proposed EEG-based
e Robot system, a robot with increased sophistication will be developed in the future for use by disabled patients.
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1. Introduction

Since robots are developed, they are used in various

applications and take on many different forms. Recently, a

scheme called brain-computer interface (BCI), integrated of

medicine and engineering, appears possible to provide a new

choice for controlling a robot. Brain electrical activities

recorded as multichannel electroencephalogram (EEG)

signals have been used to investigate neurological disorders

and brain function. Researchers have speculated that EEG

signals could be used to control devices and the environment.

The idea of a BCI was first introduced in 1973 (Vidal, 1973).

In recent years, more than 40 research groups have attempted

to develop an EEG-based BCI system by exploiting the

advantages of EEG – ease of recording and high temporal

resolution. As has already been stated (Wolpaw et al., 2000), a

BCI is a communication system that does not depend on the

brain’s normal output pathways of peripheral nerves and

muscles. In a BCI system, the EEG or event-related potential

(ERP) of a subject is measured and sampled under a

particular designed protocol (for example, by performing or

imagining a movement of the left/right hand). Appropriate

preprocessing, feature extraction and classification methods

enable a BCI system to translate EEG signals into a series of

commands.
Electrophysiological signals already used in BCI systems

include slow cortical potentials (Karim et al., 2006), visual

evoked potentials (Middendorf et al., 2000) andm or b rhythms

(Pfurtscheller et al., 2000, 2003; Pineda et al., 2003; Wolpaw

and McFarland, 2004). These signals are recorded from the

scalp and then translated in real-time into commands for

performing specific tasks. Pfurtscheller applied different motor

imagery to BCI system control (Pfurtscheller et al., 2000;

Pfurtscheller and Neuper, 2001; Pfurtscheller et al., 2003).

Pfurtscheller focused mainly on the m rhythm (10-12Hz) and

the b band (14-20Hz) at sites C3, Cz and C4, and achieved
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accuracy rates of over 80 percent (Pfurtscheller et al., 2003).

Additionally they designed a mechanical hand controlled by

EEG activity recorded from a tetraplegic patient. After several

months of training, the control accuracy rate was near 100

percent (Pfurtscheller and Neuper, 2001).
While BCI mechanisms have been extensively explored for

online applications, there still exist limitations of low mobility.

To dealwith this issue, thiswork explored an innovative concept

leading to a design for paralytic patients to efficiently interact

with people and environment through a remote robot. We

present an EEG-based eRobot agent designed by integrating

advanced robot technologies with BCImechanisms. The EEG-

based eRobot agent based on embedded ethernet and BCI

technology enables users to control a remote robot using their

EEG signals. This remote-controlled eRobot is more flexible

with better mobility, in comparison with those popular, well-

developed BCI applications that mostly provide a

communication channel between the environment and

patients (e.g. the spellboard and cursor control applications;

Kostov and Polak, 2000; Cheng et al., 2001; Birch et al., 2003;

Pfurtscheller et al., 2003;WolpawandMcFarland, 2004;Karim

et al., 2006). Except translating EEG into commands to control

the robot, this work also presents an alertness level detection

system that identifies three states of mental alertness (alert,

relaxation and sleep) in the BCI system. With its relatively

economical design andonly twobipolarEEGchannels adopted,

the eRobot can already reflect somephysiological human states.
The rest of this paper is organized as follows. Section 2

briefly describes the EEG-based eRobot agent architecture.

Section 3 then describes experiments in designing CTU.

Next, Section 4 demonstrates the effectiveness of the

proposed platform and presents the results of the BCI

experiment. Conclusions are finally drawn in Section 5, along

with recommendations for future research.

2. System architecture of the EEG-based eRobot
agent

The system architecture of the EEG-based eRobot agent

(Figure 1) comprises two parts – the embedded ethernet-

based robot and the BCI system. The BCI system records a

user’s EEG signals and translates them into commands

according to a user’s intent and alertness level. The BCI

system output is used to manage and control the embedded

ethernet-based robot.

2.1 BCI system

The BCI system consists of two major parts: the command

translation unit (CTU), and the alertness level detection unit

(ADU). The CTU extracts features from raw EEG signals

and then categorizes the signals into requested types of motor

imagery: imagination of right-hand or both-feet movement.

The ADU primarily identifies subject level of alertness (alert,

relaxation and sleep). Following a particular level of alertness,

the eRobot may operate in a power-economical state or

mimic human nature. Two channel EEG signals were

acquired from the scalp, using a bipolar configuration –

FC3-CP3 and FCz-CPz (Figure 2; Guger et al., 2003).

2.1.1 Command translation unit
In this study, the band power scheme proposed in (Guger et al.,
2003) is used to design the CTU.However, a fewmodifications

are made to feature quantification and categorization to

improve the efficacy of the BCI-driven eRobot.
Users are instructed to imagine a right-hand movement or

a both-feet movement to control the robot (Guger et al.,
2003). The EEG features are quantified by band power

estimation. In each channel, the average a (b) power is

estimated by computing the mean square magnitude of the

frequency component within the range of 10-12Hz

(16-20Hz), based on a one-second frame. Consequently, a

four-feature vector is generated for each one-second frame,

that is, average alpha power and average beta power at

channels FC3-CP3 and FCz-CPz. As shown in Figure 3, the

feature vector is then categorized by a subject-specific

classifier developed by linear discriminant analysis (LDA).

The LDA weighs each input parameter by its importance.

The sign of the resulting sum of weighted parameters is used

to determine the class of the input (Bishop, 1995).

Experiments for determining weights of the classifier are

drawn in Section 3.

2.1.2 Alertness level detection unit (ADU)
TheEEGa rhythm,which commonly emerges during relaxation

when eyes are closed, is suppressed by mental activities.

In another aspect, d or u rhythms dominate during sleep

Figure 1 Architecture of the EEG-based e Robot agent
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(Ganong, 1991). Thus, the ADU employs these EEG

characteristics for identifying three mental levels:
1 (alert) suppression of the a rhythm;
2 (relaxation) increase of a power; and
3 (sleep) emergence of d/u rhythms.

Figure 4 schematically presents a block diagram of the ADU.

The subband-AR EEG classifier analyzes the EEG and

determines whether the EEG epoch corresponds to one of the

following patterns: b (14-20Hz), a (7-14Hz) or d/u

(0.5-7Hz). According to classifier output, the alertness level

determination determines the current alertness level (alert,

relaxation, sleep) of the subject.

2.1.2.1 Subband-AR EEG classifier. The EEG signal is first

decomposed into subband components using tree-structured

filter banks (Figure 5). According to Gabor’s uncertainty

principle (Oppenheim et al., 1998), downsampling enables the

AR model to characterize the narrow-band, low-frequency

EEG with enhanced accuracy (Liao and Lo, 2006).

Accordingly, to improve frequency resolution and reduce

computational load, a subband-filtering scheme is applied

before the frequency analysis by AR model. A linear-phase

lowpass FIR filter H(z) with a cutoff frequency of 30Hz is

employed as an anti-aliasing filter before downsampling. Then,

the AR(2) model is applied to the decimated signal. Consider

the EEG signal, x[n ], generated by an autoregressive (AR(2))

process that is driven by unit-variance white noise w[n ].

An AR(2) model can be expressed as:

x½n � þ a2½1�x½n 2 1� þ a2½2�x½n 2 2� ¼ w½n � ð1Þ

By solving the autocorrelation normal equations, model
coefficients a2½k �; k ¼ 1; 2 can be determined and the

conjugated pole pair is 2ða2½1�=2Þ^ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2½2�2 a2

2½1�
p

=2
� �

.

The root frequency of output1 and output2 can be estimated from

the phase of the pole. The phase (root frequency fr,1, fr,2) can be
derived as:

f r ¼ sin21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2½2�2 a2

2½1�ð Þ=4
p

ffiffiffiffiffiffiffiffiffiffi
a2½2�

p
 !

ð2Þ

The magnitude of pole (jp2j) also can be derived. Notably, p2
denotes the AR(2)’s pole of output2 in Figure 5. The filtering-
and-downsampling process is again repeated to maximize
accuracy in discriminating between a and d/u rhythms and the

equivalent cutoff frequency is 15Hz. Root frequency and
magnitude are used to design an algorithm for classifying the

EEG signal. The algorithm examines each windowed segment
to check for the following criteria in order:

Criterion2d=u : f r ;1,7Hz and f r ;2,7Hz and jp2j.0:7;

Criterion2a :7Hz, f r ;1,14Hz and 7Hz, f r ;2 ; ð3Þ
Criterion2b :7Hz, f r ;1 excluding segments recognized as a:

The window length is 1 s, moving at a step of 0.5 s in this study.
The criteria checkup is ordered according to characteristics

ofEEG.The d/u anda rhythmsare first recognizedby their large
amplitude and easily identifiable features. The root frequency

Figure 3 Block diagram of feature quantifier in the CTU
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Figure 4 Block diagram of the alertness level detection unit (ADU)
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fr,1 is used to differentiate between the rhythmic band 0-7Hz

and 7-30Hz band; fr, 2 and jp2j are used to identify the d/u

rhythms. The length of p2 constrains signal amplitude and

indicates the significance of the root frequency. The large

amplitude of the d/u rhythm enables the constraints on jp2jto
be applied. The segments not satisfying any criterion in (3) are

identified as b rhythms since, according to the hypothesis of the

oscillatory model of the neuronal network, mental activity

normally causes incoherent oscillation that results in amplitude

cancellation (low power) and multi-frequency components

(Klimesch, 1996).
The overall scheme is called a “subband-AR EEG

classifier.” Notably, output1 and output2 are downsampling

results (Figure 5), and the root frequency fr,i should be further

divided by 2i.
2.1.2.2 Alertness level determination. As mentioned in

Section 2.1.2, d/u, a and b rhythms are employed to

identify the mental states of sleep, relaxation and alert,

respectively. A strategy that smoothly displays and tolerates

errors is applied to improve ADU performance. A Dsec buffer

(D ¼ 5 herein) is created to store classification results

(Figure 4). The current alertness level depends on the

nearest 2 s classification results. That is, the class that appears

most often is regarded as the user’s current alertness level.

The alertness level is updated every t s (herein, t ¼ 1).

However, a blinking eye, which could be classified as a d/u

rhythm, affects output. The sleep state must be further

constrained to prevent misjudgment. The current alertness

level is regarded as the sleep state unless the d/u rhythm
exceeds 80 percent in the Dsec buffer. The buffer length was

experimentally determined to improve performance of ADU.

2.2 Embedded ethernet-based robot (eRobot)

For combining with the BCI system adequately, an expression

platform, called the embedded ethernet-based robot

(eRobot), was designed. As stated in the Introduction,

intelligent computing equipment can easily be integrated into
the BCI system using ethernet. Design issues, electronic and

mechanical systems of eRobot are described as follows.

2.2.1 Design issues of the e Robot system
The eRobot design is based on the characteristics of the

BCI system. Two primary issues should be considered.

First, since commands of present BCI systems could not be

sophisticated enough and classification requires process time,

a user cannot control the robot precisely. Hence, the robot

should have autonomous motion control. Second,

the proposed e Robot is considered a future home

appliance application. Thus, it should be low cost, flexible,

highly integrated, and small. Additionally, the communication

protocol must be sufficiently general, high speed and low cost,

and the electrical design should be modularized so that users

can extend more functions by adding different modules. The

three-layer concept and implementation of the eRobot system

are presented in the following sections.

2.2.2 The three layers concept of the e Robot system
The eRobot electronic system uses a general TCP/UDP/IP

network and a combination of:
1 control and sensing layer (CSL);
2 gateway layer (GL); and
3 internet layer (IL).

The proposed three layers are as follows (Figure 6).

2.3 Control and sensing layer

The CSL manages motors control signals and sensor feedback

(Figure 6). According to time trigger protocol, this layer can

access each sensor datum and motor behavior. This layer is

used by the robot to collect and dispatch environmental data.

2.4 Gateway layer

The GL manages the CSL data and provides low-level real-

time control abilities, such as motion control, digital signal

processing of sensor data, robot balance control, and

embedded TCP/UDP/IP network packet translating. This

layer also manages and determines which signals should be

dispatched up a layer (IL) or processed in the GL. Some data

types, such as that for streaming robot vision, are dispatched

to the IL. Function of the GL is similar to the human spinal

cord, facilitating robot reflex actions in real-time. In this

manner, the GL reduces the computation effort of the robot

agent and works effectively.

2.5 Internet layer

By utilizing TCP/UDP/IP integration, the robot can be

connected to numerous computing resources, such as

personal computers, PDAs and supercomputers. The robot

can access infinite storage space and calculation resources.

With a wide area network, the BCI system, which is regarded

as the The IL, can be used in distant locations.
The three-layer concept has been extensively applied in

theses (Smith, 1998) and (Wu and Hu, 2005) works. In the

eRobot system, the GL and CSL are realized as a hardware

module (tiny network bridge, TNB) embedded with ethernet

technology, and comprise a low-cost, highly integrated

distributed architecture in a high speed and flexible ethernet

environment for small robotic systems (Wu and Hu, 2004;

Wu and Hu, 2005). Thus, the three-layer concept could

Figure 5 Tree-structured filter banks used to implement the subband-AR EEG classifier
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overcome design issues of the eRobot system described in

Section 2.2.1.

2.5.1 Electronic and mechanical systems
Figure 7 shows the electronic architecture of eRobot.

The primary electronic parts of eRobot are the TNB,

multi-motor controller (MMC) units and sensor interface

controller (SIC) units. The TNB, which consists of an 8-bit

MCU (PIC-18F452), is based mainly on sensor network

protocol (I2C bus) and a serial motion control network. The

TNB coordinates eRobot actions and behaviors. Each MMC

unit consists of an 8-bit MCU (PIC-16F877) that controls 16

motors (Futaba S-9402). The SIC unit is an 8-bit MCU

(PIC-18F452) device with an 8-channel analog-to-digital

converter (ADC) and numerous digital interfaces, such as

pulse width modulation and the I2C EEPROM file system

(Bentham, 2002). By using the SIC units and time trigger

protocol, the robot can detect in real-time information about

its environment, including temperature, potential collision

hazards, GYRO data, and acceleration values (Wu and Hu,

2004).
An elaborate TNB was designed to reduce robot system

cost, increase its mobility, and flexibility during development.

It provides a wireless LAN interface, allowing for easy

implementation of the platform concept and integration using

TCP/UDP/IP protocol. The IEEE802.11b and IEEE802.3

Figure 6 The proposed design of the system employs an embedded TCP/UDP/IP network and the three layers concept

Internet

Internet
Layer

Gateway
Layer

Control and
Sensing Layer

Robot body

Tiny network bridge (TNB)

Network Processor

Wireless LAN
(IEEE 802.11)

Network Infrastructure
Internet computing and

storage resources

Sensor Processors / Motors Controllers
/ Information Processor

Figure 7 e Robot electronic architecture

Ethernet

IEEE 802.3
(For parallel Integration/computing)

IEEE 802.11
Receive from EEG-Based Agent

Embedded Ethernet RF(WLAN)

Tiny Network Bridge

Serial Bus

Sensor Interface
Controller

Sensor Interface
Controller

Multi-Motor
controller unite

Multi-Motor
controller unite

I2C Bus

Sensor 1 Sensor 2 AD/DA/IO Flash
Memory

Motors

Brain-controlled robot agent

Li-Wei Wu, Hsien-Cheng Liao, Jwu-Sheng Hu and Pei-Chen Lo

Industrial Robot: An International Journal

Volume 35 · Number 6 · 2008 · 507–519

511



dual-mode network structures are adopted. The local area

network interface uses the RTL8019 Chipset (10Mbps) to

access the IEEE802.3 network. Figure 8 presents a

photograph of the TNB. The IEEE802.3 network provides

many TNBs for parallel computing, linked according to TCP/

UDP/IP protocol (Wu and Hu, 2004). Table I presents the

TNB sensors.
After the user’s EEG has been translated into commands

and the alertness level has been determined, eRobot receives

a motion command packet from the eRobot agent. The

eRobot agent has a predefined motion command database

from which a user selects a motion. The foregoing Figure 6

presents the principle interconnections structures involved in

robot control. The motor systems are roughly arranged in a

hierarchy. The upper levels (IL or GL) of the hierarchy send

modulatory commands to lower levels (CSL), which in turn

send back processed sensory and state information.
Figure 9 presents the mechanical design of the eRobot. This

biped robot has 12 degrees of freedom. Actuators of eRobot

consist of 12 sets of motors, gears, drivers and controllers. To

achieve speed control, a quasi speed control system was

developed by utilizing the direct kinematics of eRobot and

Jacobian matrices that denote velocity relationships between

joint angles, positions and the posture of each foot with respect

to a robot coordinate frame fixed to the eRobot body.

The eRobot forward kinematics, backward kinematics and

balance of eRobot are controlled in coordinated motions, to

move the eRobot forward or backward, to cause it to turn, walk,

bend and stand up. Furthermore, walking and stable posture

control approaches are described in (Hwang et al., 2005).
The eRobot agent is set up at a remote station, so weight of

robot can be reduced, thereby reducing robot power

requirements. A motion integration program allows for

prerecording and editing of robot behavior, and integration

of various sensors. This set-up facilitates use of other robot

types for special applications.

3. Experiments

3.1 Command translation unit

Currently, implementation of the CTU has two phases:

training and controlling (Figure 10). During the training

phase, the classifier is trained off-line to maximize the

accuracy of classification results. During the controlling

phase, the subject-specific linear classifier is used to translate

the EEG signals into commands in a real-time manner.
The training phase is based mainly on Pfurtscheller’s

experimental paradigm (Guger et al., 2001). The training

phase for each subject comprised 5 sessions over 3 days. Each

session was divided into 4 experimental runs, each run with

40 trials. Two types of training, training with and without

biofeedback, were employed alternately to derive weight

vectors of classifier to be used later in the controlling phase.

The present design of the CTU requires it to make only two

distinct motions controlled by two identifiable commands that

are translated from two EEG features. Each subject was thus

asked to perform two tasks: imagining either moving his or

her right hand or moving both feet (Guger et al., 2003). We

used a stimulation unit, g.STIMunit (Guger Technologies

OEG, Graz, Austria), to control the experimental paradigm.

A real-time processing system, g.RTsys (Guger Technologies

OEG, Graz, Austria), was applied to the data acquisition and

EEG classification. The subject sat in a comfortable chair in

front of a computer screen. In the beginning, a cross (þ) was

displayed in the screen center. At the 2nd second, a beep was

sounded to draw the subject’s attention. At the 3rd second, an

arrow (cue stimulus) pointing to the right (or left) appeared

for 1.25 s instructing the subject to imagine moving his or her

Figure 8 Photograph of the tiny network bridge module

I/O & Sensor Interface
MAC Controller(RTL 8019AS) RS232

8 bit MCU
RJ45 (IEEE 802.3) WLAN (IEEE 802.11b)

Top View Bottom View

Table I Integrated sensors

Sensor Type Number

Tilt sensor (2-axis) CXTA02 (Crossbow Technology, Inc.) 1

GYRO sensor CRS 03-02 (Silicon Sensing Systems, Inc.) 1

Accelerometer (3-Axis) CXL02LF3 (Crossbow Technology, Inc.) 1

Force sensing resistor FS-101 (FlexiForce, Inc.) 6

Temperature/humidity sensor SHT11 (Sensirion, Inc.) 1

Wireless vision module OV18PW (ChinTAHO Technology, Inc.) 2
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right hand or both feet until the trial ended. Each trial lasted

8 s. The EEG signals were digitized at a rate of 128Hz.
About 160 trials were collected in one session. Each single

trial contained an 8 s EEG, from which a four-feature vector

was generated on a per-second basis. Accordingly, eight

feature vectors were generated for each single trial. In the

validation process, the data sets were randomly mixed and

divided into ten partitions of equal size (that is, each partition

contained 16 trials). To find the particular second (within the

8 s duration) with the lowest classification error, we

conducted a ten times ten-fold cross validation: each

partition was used in turn as the testing set to testify the

error rate of the linear classifier trained by the remaining nine

partitions. This resulted in ten error-rate sequences, which

were averaged. This is the error rate of a ten-fold cross

validation. To further improve the estimate the ten-fold cross

validation is repeated ten times and all error rates are again

averaged. Figure 11 presents the time courses for the error

rates in one session. The weight vector of the classification

time points with the lowest error rate (in the example, the

Second 4) was employed during the feedback session in the

training phase or later in the controlling phase.
During the feedback training, the EEG was classified online

and the classification result was converted into a feedback

stimulus – a horizontal bar displayed in the center of the

monitor (Figure 12(a)). The bar varied in length according to

the output of classifier, which used the weights calculated

from LDA to classify the feature vectors (Guger et al., 2001).
During the controlling phase, classifier output was

accumulated and shown on the monitor (Figure 12(b)).

When accumulated output exceeded a predefined threshold,

one command was issued. Then, the CTU switched to an

inhibition period (1s herein), during which no action was

undertaken (Figure 12(c)). The scheme presented in

Figure 12(b) was designed to extend the horizontal bar

leftward or rightward as the subject imagined moving both

feet (F) or the right hand (H).
A simple game was designed to test the performance of the

proposedCTU. In the game, a yellow target randomly appeared

on the left or right side of the computer screen (Figure 13).

Subjects were asked to imagine moving their right hand (both

feet) when a right (left) target appeared. The purpose of

imagined movement was to generate EEG patterns, to yield

sufficient accumulated output to exceed the threshold,meaning

that the targetwas reached.The subject earned1pointwhen the

target was hit; the target then disappeared.

3.2 Alertness level detection unit

The subject was asked to sit in a comfortable chair in front of

a computer with a bio-feedback function. Ten-minute EEG

was collected and used for offline classification. The EEG at

channel FCz-CPz was examined to determine the ongoing

Figure 10 The two phases in CTU design
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alertness level because the frontal lobes have been found to be

involved in such higher cognitive functions like motor

function, judgment, memory, social behavior, problem

solving, etc. Output was transmitted to the eRobot Agent

via ethernet. The display on the feedback computer was

divided into two parts. The heights of bars reflected the

percentages of the three EEG patterns within a 2-second

frame. The alertness level determination (ALD) based on

classification results in the buffer yielded the current alertness

level, which was displayed above the bars (Figure 14).

Figure 11 Average error-rate sequence for one session containing 160 trials
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Figure 12 (a) Biofeedback display during the training phase; (b) biofeedback display during the controlling phase
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4. Results

The LDA and the Subband-AR EEG Classifier were

implemented under Simulink (MathWorks, Inc., Natick,

MA, USA) with Real-Time Workshop on a Pentium-M 1.4

(GHz) notebook. Real-Time Workshop can generate real-

time code for operating in a real-time manner under Windows

(Guger et al., 2001).

4.1 Command translation unit
4.1.1 Offline classification
The weights of the classification time points associated with

the lowest classification error are then used to set up the

classifier for each subject (Figure 10). Three healthy male

volunteers at the mean age of 26 ^ 3.8 years participated in

this experiment. The lowest classification error rates obtained

by the three subjects were 22 percent, 38 percent, and

34 percent during the training phase (Table II). No subject

had any experience with BCI before this experiment. The

error rates were collected over five sessions, each consisting of

160 trials.

4.1.2 A game testing
The subject had ten targets to be reached each round

(Figure 13). All three subjects could achieve at least

70 percent accuracy after a short training period. Table III

lists the average time required by each subject to issue a
command under an accuracy rate of 70 percent.

4.2 Alertness level detection unit

Figure 15 presents a part of our classification results.
Empirical EEG data were firstly labeled by an experienced

EEG expert based on naked-eye examination. Results of
interpretation conclude 184 d/us, 131 as, and 181 bs. The
error rate, estimated from the results of classifying 496 labeled
EEG epochs, was approximately 10.7 percent. Table IV is the
confusion matrix. Each row represents the classification result

for each class. According to the table, b activities tended to be
classified as d/u activities, which might be due to the EOG
interference.

4.3 Overall system

Figure 16 presents the combination of the CTU and the
ADU. The sequence of the issuing commands from the CTU
is encoded to prevent the robot from performing undesired
actions. For instance, a user may generate four consecutive L
commands (L/R represent the horizontal bar extending

leftward/rightward), representing the action “turn left”
(shown on the top of the right-hand column in Figure 16).
According to game testing results, the probability of making

Table III Results of game testing

Time required

per round (s)

Mean time

per command (s)

Subject 1 105 10.5

Subject 2 129 12.9

Subject 3 118 11.8

Figure 14 Display on the feedback computer

I d / q a b

sleep
relaxation

alert

Notes: Bar heights reflected the percentages for the
three EEG patterns within a 2-second frame. The
bar "I" represents initiation

Table II Error-rate sequences (in percentages) for three subjects are
listed in (a)-(c). Results for five sessions are evaluated for each subject.
The italicized numbers are the lowest error rates within a session

Session 1st s 2nd s 3rd s 4th s 5th s 6th s 7th s 8th s

(a) Subject 1
1 50 46 47 50 35 31 38 45

2 46 52 48 49 36 24 22 29

3 42 49 49 55 37 30 33 31

4 52 48 44 46 43 34 30 34

5 51 47 50 53 32 33 42 34

(b) Subject 2
1 49 54 49 42 41 55 50 50

2 64 49 48 42 47 47 50 46

3 49 51 52 40 48 55 45 42

4 52 46 44 42 45 51 50 50

5 54 53 56 49 49 38 44 54

(c) Subject 3
1 41 49 55 54 60 49 39 56

2 53 54 48 44 34 50 52 49

3 54 47 38 35 46 47 43 36

4 45 46 55 55 49 54 40 48

5 45 44 42 44 40 49 40 51

Figure 13 Game for testing CTU performance
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a false action “turn right” (desired action is “turn left”) is

around 0.0081 (0.3 £ 0.3 £ 0.3 £ 0.3). Figure 17 presents

the overall system after the CTU and ADU have been

applied. A user can control the remote robot in real-time, and

the user’s alertness level can be represented using a pre-

defined motion.

5. Conclusion and discussion

This work presents a novel embedded ethernet robot system,

which is controlled by human EEG signals. This preliminary

study focuses on implementing the entire system and the BCI

schemes integrated with alertness level detection to improve

robot performance. As the accuracy of the CTU is not very

high, care must be taken to avoid false actions. Hence, the

encoding process is adopted to determine robot action. The

TNB and only two bipolar EEG channels were adopted to

decrease the cost of the robotic system and increase its

mobility and developmental flexibility. Based on the proposed

EEG-based eRobot system, a robot with increased

sophistication will be developed in the future for use by

disabled patients.

Since the EEG patterns we can use are limited nowadays, we

could adopt encoding methods to increase commands for

controlling the robot. However, more commands would result

in higher error rate. Thus, classification methods would be a

core technology for improving CTU performance. Support

vector machines or linear programming machines (LPMs) are

potential tools for reducing the classification error rate.

Moreover, in the field of electro-neurophysiology, researchers

are prospecting for other controllable EEG patterns that may

facilitate further development of BCI technology.
Furthermore, a robot agent should provide a subject with

sufficient environmental information. However, excessive

information (visual or sound) fed back by the robot will

likely distract a subject, and may reduce BCI system accuracy.

However, this issue of appropriate interface design, which is

seldom addressed, is worthy of further investigation.
The eRobot architecture has also been utilized to develop a

humanoid robot, “YamBall Man.” This novel architecture has

a flexible and funny humanoid body, and because of the

proposed EEG-based eRobot agent, it can perform various

services. For instance, a patient could use the BCI system to

control “YamBall Man” virtually, enabling it interact with a

family. Additionally, if a user has health risks, the proposed

robot agent can generate an alarm message and send it to

hospital via e-mail, and issue a text message via a short

message service (SMS) to a cell phone or PDA of a family

member. Accordingly, this integration of BCI technology with

the robot can support a novel home robot service. Figure 18

depicts this novel concept.

Figure 15 Classification results for real EEG signals

100

0

–100

β

1 sec

µV
(a)

–100

100

0

ββ

1 sec

δ /θ

µV

(b)

–100

100

0

βα α

1 sec

µV

(c)

–100

100

0

ββ β βα α α α

1 sec

µV

(d)

Table IV The confusion matrix

d/u A b

d/u 177 2 5

a 5 122 4

b 27 10 144
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Figure 16 Combination of the CTU and the ADU

alert
RRRR->Turn Right

RRLL->Go
LLLL->Turn Left

L L L L
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The resolved

action

A sequence of
commands
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Notes: The left column presents the ADU results and the right column
represents commands issued by the user. The top right of the screen
displays a sequence of commands. An action will be determined according
to the pre-defined R-L sequence

Figure 17 EEG-Based e Robot agent uses embedded TCP/UDP/IP technology and the BCI system
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Notes: The eRobot is controlled only by the user's EEG. The user and the eRobot were separated (in different rooms). When an action command "go"
was issued, the eRobot generated the walking trajectory of two leg gaits to make the biped robot move forward
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