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一、中文摘要
計畫提案人先前與黃大原教授於文獻 [T. Huang,

C. Weng, Pooling spaces and non-adaptive pooling

designs, Discrete Math. 282 (2004) 163–169] 中提出

一種稱為池空間的有秩偏序結構, 並舉許多例子. 在

此成果報告中, 我們提出池半格的結構, 也舉出相當

多對應的例子, 每一個例子都能用來建構一類與群試

設計有關的池設計.

關鍵詞: 池設計, 半格, 池半格, 正規池半格, 池空間

二、英文摘要
In [T. Huang, C. Weng, Pooling spaces and

non-adaptive pooling designs, Discrete Math. 282

(2004) 163–169], Huang and Weng introduced pool-

ing spaces, and constructed pooling designs from a

pooling space. In this report, we introduce the con-

cept of pooling semilattices and prove that a pool-

ing semilattice is a pooling space, then show how to

construct pooling designs from a pooling semilattice.

Moreover, we give many examples of pooling semi-

lattices and thus obtain the corresponding pooling

designs.

Keywords. Pooling design, semilattice, pooling

semilattice, regular pooling semilattice, pooling space

2010 MSC: 05B30, 06A07

三、緣由與目的
The basic problem of group testing is to identify

the set of defective items in a large population of

items. A group testing algorithm is non-adaptive if

all tests must be specified without knowing the out-

comes of other tests. A group test is applicable to an

arbitrary subset of items with two possible outcomes:

a negative outcome indicates that all items in the

subset are negative, and a positive outcome indicates

otherwise. A pooling design is a specification of all

tests such that they can be performed simultaneously

with the goal being to identify all positive items with

a small number of tests [3]. A non-adaptive pooling

design is usually represented by a binary matrix with

columns indexed with items and rows indexed with

pools. A cell (i, j) contains a 1-entry if and only if

the ith pool contains the jth item. By treating a col-

umn as a set of row indices intersecting the column

with a 1-entry, we can talk about the union of sev-

eral columns. A binary matrix is se-disjunct if every

column has at least e + 1 1-entries not contained in

the union of any other s columns [15]. An s0-disjunct

matrix is also called s-disjunct. An se-disjunct ma-
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trix is called fully se-disjunct if it is neither (s+ 1)e-

disjunct nor se+1-disjunct. An se-disjunct matrix is

⌊e/2⌋-error-correcting [5, 11].

Macula [14] proposed a novel way of constructing

disjunct matrices by means of the containment rela-

tion of subsets in a finite set. D’yachkov et al. [5]

discussed the error-correcting capability of Macula’s

designs. Ngo and Du [17] constructed a family of dis-

junct matrices by means of the containment relation

of subspaces in a finite vector space. D’yachkov et al.

[4] discussed the error-tolerance capability of Ngo-

Du’s designs. In [7, 8], Jun Guo and Kaishun Wang

proposed a new model for pooling designs–the inter-

section type incidence construction, and generalized

Macula’s and Ngo-Du’s designs. Under this model,

the pooling designs have surprisingly high degree of

error correction. Huang and Weng [11] generalized

the containment matrix construction of pooling de-

signs to pooling spaces.

Let (X,≼) be a finite partially ordered set (poset)

with the least element 0. For x, y ∈ X, if x ≼ y,

we say that y contains x. Moreover, if there does

not exist element z such that x ≺ z ≺ y, we say

that y covers x. An atom in X is an element in X

that covers 0. The poset X is ranked and has rank

function, if there is a function ℓ from X to the in-

teger set such that ℓ(0) = 0 and ℓ(y) = ℓ(x) + 1

if y covers x. The maximum value of ℓ(x) is called

the rank of X, denoted by N . The fibers (or lev-

els) X0, X1, . . . , XN of the poset are the subsets of X

given by Xi = {x ∈ X | ℓ(x) = i}. Pick any x, y ∈ X

such that x ≼ y. By the interval [x, y], we mean the

subposet [x, y] := {z ∈ X | x ≼ z ≼ y} of X. A

ranked poset X is called atomic whenever each ele-

ment x ∈ X \ {0} is the least upper bound of the set

[0, x]∩X1. A pooling space is a finite poset (X,≼) such

that the subposet induced on w+ = {w ≼ y | y ∈ X}

is atomic for each w ∈ X. Huang and Weng [11]

showed that how to construct pooling designs from

pooling spaces.

Theorem 1. ([11]) Let X be a pooling space with

rank N ≥ 1. For 1 ≤ d ≤ k ≤ N , let M(k,N) be the

binary matrix with rows indexed with Xk and columns

indexed with XN such that M(x, y) = 1 if and only if

x ≼ y. Then M(k,N) is de-disjunct, where

e = min | ∪ ([y, x] ∩Xk)| − 1,

the minimum is taken over all pairs (x, T ) with

T ⊆ XN , |T | ≤ d and x ∈ XN \ T ; the union is

taken over all y ∈ [0, x] ∩Xd such that y ̸≼ z for all

z ∈ T .

Let (X,≼) be a finite poset with with the rank

function ℓ and fibers X0, . . . , XN . We call X a semi-

lattice, if any two elements x and y of X have the

greatest lower bound, denoted by x∧ y. As usual, we

denote by x ∨ y the least upper bound of x and y if

it exists. Note that if X is a semilattice and x, y ∈ X

have a common upper bound, then x ∨ y exists; in-

deed x ∨ y is the greatest lower bound of the set of

upper bounds of x and y. X is a lattice if x∨ y exists

for any x, y ∈ X.

Let X denote a semilattice with the rank function

ℓ and fibers X0, . . . , XN . We are concerned with the

following axioms:

(A1) For u ∈ Xr and z ∈ Xt with u ≺ z, the num-

ber |[u, z] ∩ Xr+1| is a constant µ(r, r + 1, t),

where 0 ≤ r < t ≤ N. Moreover, the func-

tion µ(0, 1, t) is strictly increasing about t, i.e.

1 = µ(0, 1, 1) < µ(0, 1, 2) < · · · < µ(0, 1, N).

(A2) For x, y ∈ X, if x ∨ y exists, then ℓ(x ∨ y) ≤

ℓ(x) + ℓ(y)− ℓ(x ∧ y).

(A3) For x, y ∈ X, if x ∨ y exists, then ℓ(x ∨ y) =

ℓ(x) + ℓ(y)− ℓ(x ∧ y).

We call X a pooling semilattice, if it satisfies (A1)

and (A2). We call X a regular pooling semilattice,
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if it satisfies (A1) and (A3). Note that (A3) implies

(A2) and thus a regular pooling semilattice is a pool-

ing semilattice. In addition if X is a lattice, we use

lattice to replace the above semilattice. We call X

a geometric lattice if X is a finite atomic lattice and

satisfies (A2).

四、結果與討論
In this project, we mainly focus on the construc-

tion of pooling designs from a pooling semilattice.

We first discuss some properties of pooling semilat-

tices, then show how to construct pooling designs

from a pooling semilattice. We give many families

of examples of pooling semilattices. They fall into

three categories: (i) regular pooling semilattices from

sets, vector spaces and maps; (ii) non-regular pool-

ing semilattices from affine spaces; and (iii) pooling

semilattices from distance-regular graphs. We gener-

alize the intersection type incidence construction to

pooling lattices and give four families of examples of

pooling lattices. All these results will be appeared

in an article coauthored with Jun Guo and Kaishun

Wang. See 附錄 below for details.

五、附錄

1 Pooling semilattices

In this section, we always assume that X denotes a pooling semilattice with the rank function ℓ and

fibers X0, . . . , XN .

A poset can be described by a diagram in the plane in which y covers x if and only if there is a line

moving upwards from x to y.

Lemma 2. A pooling semilattice X is atomic.

Proof. Pick any element w ∈ X \ {0}. Suppose that u is the least upper bound of the set [0, w] ∩X1. Then

u ≼ w and µ(0, 1, ℓ(w)) ≤ µ(0, 1, ℓ(u)). By (A1), one gets ℓ(w) = ℓ(u) and u = w, as desired.

The usage of the term “pooling semilattice” is justified by the following proposition.

Proposition 3. Let X be a pooling semilattice with rank N. Then X is a pooling space. In particular, for

each 1 ≤ r < N, the function µ(r, r + 1, t) is strictly increasing about t where r + 1 ≤ t ≤ N.

Proof. Let w ∈ Xr be given. We shall prove that the subposet w+ is atomic. Pick any x ∈ w+. Then

[0, x] is a semilattice. By Lemma 2, [0, x] is a atomic and hence is a geometric lattice. It is well-known

that an interval in a geometric lattice is a geometric lattice [12, Page 307], [9, Lemma 5.2]. Hence [w, x] is

geometric. Theorem 5.4 in [9] tells us that a geometric lattice is a pooling space, which implies that [w, x] is

a pooling space. In particular x is the least upper bound of [w, x] ∩Xr+1. This proves the first statement.

Fix u1 ∈ Xt−1 and u2 ∈ Xt with w ≺ u1 ≺ u2, Since u1 (resp. u2) is the least bound of the ℓ(r, r + 1, t− 1)

(resp. ℓ(r, r+1, t)) elements in [w, u1]∩Xr+1 (resp. [w, u2]∩Xr+1), we have ℓ(r, r+1, t− 1) < ℓ(r, r+1, t)

to conclude the second statement.
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The following lemma says that the local assumption of (A1) can imply a global property on X.

Lemma 4. Let X be a pooling semilattice and 0 ≤ r ≤ s ≤ t ≤ N . Then for u ∈ Xr and z ∈ Xt with u ≼ z,

the number µ(r, s, t) := |[u, z] ∩Xs| is a constant. Moreover for given r, s with 0 ≤ r ≤ s ≤ N, the function

µ(r, s, t) is strictly increasing about t, where s ≤ t ≤ N.

Proof. Note that µ(r, r, t) = µ(r, t, t) = 1, µ(r, r+1, t) is a constant by (A1) and µ(r, r+1, t−1) < µ(r, r+1, t)

by Proposition 3, where r + 1 ≤ t ≤ N . We prove the lemma by induction on t − r, and assume in the

nontrivial situation r+2 ≤ s ≤ t−1. Fix u ∈ Xr and z ∈ Xt with u ≺ z. Counting pairs (v, w) ∈ Xr+1×Xs

with u ≺ v ≺ w ≺ z in two ways yields a constant

µ(r, s, t) = µ(r, r + 1, t)µ(r + 1, s, t)/µ(r, r + 1, s) (1.1)

by induction. Also µ(r, s, t−1) = µ(r, r+1, t−1)µ(r+1, s, t−1)/µ(r, r+1, s) < µ(r, r+1, t)µ(r+1, s, t)/µ(r, r+

1, s) = µ(r, s, t) since µ(r, r + 1, t− 1) < µ(r, r + 1, t) by Proposition 3, and µ(r + 1, s, t− 1) < µ(r + 1, s, t)

by induction.

Lemma 5. Let X be a pooling semilattice and 1 ≤ s < t ≤ N . Then the function µ(r, s, t) is strictly

decreasing about r, where 1 ≤ r < s, i.e. µ(1, s, t) > µ(2, s, t) > · · · > µ(s− 1, s, t) > µ(s, s, t) = 1.

Proof. As the above two-way counting argument,

µ(r, s, t)

µ(r + 1, s, t)
=

µ(r, r + 1, t)

µ(r, r + 1, s)
> 1

by Lemma 4.

Definition 1. Suppose that X is a pooling semilattice. For positive integers 1 ≤ d < k < N , let M(d, k;N)

be the binary matrix with rows indexed with Xd and columns indexed with Xk such that M(x, y) = 1 if and

only if x ≼ y.

Theorem 6. Let X be a pooling semilattice. Then the following results hold.

(i) If 1 ≤ s ≤ d, then M(d, k;N) is an se-disjunct matrix, where e = µ(s, d, k)− 1.

(ii) If 1 ≤ s < µ(0, d, k)/µ(0, d, k − 1), then M(d, k;N) is an se-disjunct matrix, where e = µ(0, d, k) −

sµ(0, d, k − 1)− 1.

Proof. (i) Let y0, y1, . . . , ys be any s + 1 distinct columns of M(d, k;N). Note that ℓ(y0 ∧ yj) ≤ k − 1 for

each j ∈ {1, 2, . . . , s}. By (A1) we have µ(0, 1, k) > µ(0, 1, ℓ(y0 ∧ yj)), which implies that there exists some

aj ∈ X1 such that aj ≼ y0 but aj ̸≼ yj for each j ∈ {1, 2, . . . , s}. Since y0 is a common upper bound of

a1, a2, . . . , as, the least upper bound of these elements exists. Suppose that x0 = a1 ∨ a2 ∨ · · · ∨ as. Then

x0 ≼ y0 and x0 ̸≼ yj for each j ∈ {1, 2, . . . , s}. By (A2) we have 1 ≤ ℓ(x0) ≤ s. By Lemma 4, the size of

Xd ∩ [x0, y0] is µ(ℓ(x0), d, k). From Lemma 5, we deduce that µ(ℓ(x0), d, k) is decreasing for 1 ≤ ℓ(x0) ≤ s

and gets its minimum at ℓ(x0) = s, which implies that the size of Xd∩ [x0, y0] is at least µ(s, d, k), as desired.

(ii) Let y0, y1, . . . , ys be any s+ 1 distinct columns of M(d, k;N). Note that y0 contains µ(0, d, k) many

elements in Xd and ℓ(y0 ∧ yj) ≤ k− 1 for each j ∈ {1, 2, . . . , s}. By Lemma 4, each y0 ∧ yj contains at most
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µ(0, d, k − 1) elements in Xd. Thus, the number of elements in Xd contained in y0 but not in yj for each

j ∈ {1, 2, . . . , s} is at least µ(0, d, k)− sµ(0, d, k − 1), as desired.

Theorem 7. Let X be a regular pooling semilattice. If k − d ≥ 2 and 1 ≤ s ≤ (µ(0, d, k) − µ(0, d, k −

1))/(µ(0, d, k−1)−µ(0, d, k−2)), then M(d, k;N) is an se-disjunct matrix, where e = µ(0, d, k)−sµ(0, d, k−

1)+(s−1)µ(0, d, k−2)−1. In particular, if s ≤ min{µ(k−2, k−1, k), (µ(0, d, k)−µ(0, d, k−1))/(µ(0, d, k−

1)− µ(0, d, k − 2))} and |x+ ∩Xk| > 1 for any x ∈ Xk−1, then M(d, k;N) is fully se-disjunct.

Proof. Let y0, y1, . . . , ys be any s+ 1 distinct columns of M(d, k;N). Note that y0 contains µ(0, d, k) many

elements in Xd and ℓ(y0 ∧ yj) ≤ k − 1 for each j ∈ {1, 2, . . . , s}. To obtain the maximum elements with

rank d in
∪s

j=1{x ∈ Xd | x ≼ (y0 ∧ yj)}, by Lemma 4 we may assume that y0 ∧ y1, . . . , y0 ∧ ys are s

distinct elements in Xk−1. Then the element y0 ∧ y1 contains at most µ(0, d, k − 1) elements in Xd. Since

(y0∧y1)∨(y0∧yj) ≼ y0 and ℓ(y0∧y1∧yj) ≤ k−2 for each j ∈ {2, . . . , s}, by (A3) ℓ((y0∧y1)∨(y0∧yj)) = k and

ℓ(y0∧y1∧yj) = k−2. By Lemma 4, each of y0∧y2, . . . , y0∧ys can contain at most µ(0, d, k−1)−µ(0, d, k−2)

elements in Xd not contained in y0 ∧ y1. Thus, the number of elements in Xd contained in y0 but not in yj

for each j ∈ {1, 2, . . . , s} is at least µ(0, d, k)− µ(0, d, k − 1)− (s− 1)(µ(0, d, k − 1)− µ(0, d, k − 2)). Hence

M(d, k;N) is se-disjunct.

Let s ≤ min{µ(k− 2, k− 1, k), (µ(0, d, k)−µ(0, d, k− 1))/(µ(0, d, k− 1)−µ(0, d, k− 2))} and |x+ ∩Xk| >

1 for any x ∈ Xk−1. We show that M(d, k;N) is fully se-disjunct. Let u ∈ Xk−2 with u ≼ y0. By

Lemma 4 the number of elements x ∈ Xk−1 such that u ≼ x ≼ y0 is µ(k − 2, k − 1, k), and so we can

choose s distinct ones among them, say xj (1 ≤ j ≤ s). Since |x+
j ∩ Xk| > 1 we can choose pairwise

distinct yj in Xk \ {y0} such that xj = y0 ∧ yj . Then the number of elements in Xd contained in y0

but not in yj for each j ∈ {1, 2, . . . , s} is e + 1. Therefore M(d, k;N) is not se+1-disjunct. View the

function e = e(s) = µ(0, d, k)− sµ(0, d, k − 1) + (s− 1)µ(0, d, k − 2)− 1 as a function of s, and notice that

e(s+ 1)− e(s) = µ(0, d, k − 2)− µ(0, d, k − 1) < 0. The above argument with s+ 1 to replace s implies that

M(d, k;N) is not (s+ 1)e-disjunct.

2 Examples

In this section we give many examples of pooling semilattices, and give their parameters. By Theorems 6

and 7, we can construct pooling designs from these pooling semilattices.

Let q be a positive integer. Fix a positive integer n. The Gaussian binomial coefficients with basis q is

defined by [
n

i

]
q

=


i−1∏
j=0

n−j
i−j if q = 1,

i−1∏
j=0

qn−qj

qi−qj if q ̸= 1.

In the case q = 1, for convenience, we write
(
n
i

)
instead of

[
n
i

]
1
.

2.1 Regular pooling semilattices from sets, vector spaces and maps

In this subsection we give thirteen families of regular pooling semilattices with rank N .
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Example 1. ([5, 14] The Boolean Algebra). Let X be the collection of all subsets of [N ] := {1, 2, . . . , N}.

Ordered by inclusion, X is a regular pooling semilattice with the rank function ℓ(x) = |x| and the parameters

|Xr| =
(
N

r

)
, µ(r, s, t) =

(
t− r

s− r

)
.

Example 2. ([4, 17] The Projective Geometry). Let FN
q be the N -dimensional vector space over the finite

field Fq and X be the collection of all subspaces of FN
q . Ordered by inclusion, X is a regular pooling

semilattice with the rank function ℓ(x) = dimx and the parameters

|Xr| =
[
N

r

]
q

, µ(r, s, t) =

[
t− r

s− r

]
q

.

Example 3. ([11] The Attenuated Space). For fixed positive integers n and N , let w be a fixed n-dimensional

subspace of Fn+N
q . Let X be the collection of all subspaces x of Fn+N

q with x∩w = {0}. Ordered by inclusion,

X is a regular pooling semilattice with the rank function ℓ(x) = dimx and the parameters

|Xr| = qrn
[
N

r

]
q

, µ(r, s, t) =

[
t− r

s− r

]
q

.

Example 4. ([10] The Classical Polar Space). Classical finite polar spaces are incidence structures, consisting

of all the totally isotropic subspaces of Fn
q with respect to a certain non-degenerate sesquilinear or quadratic

form f . The rank of the polar space is the algebraic dimension of the maximal totally isotropic subspaces,

denoted by N . The summary is given in the following table:

name n form |Xr|

[CN (q)] 2N symplectic
[
N
r

]
q

r−1∏
i=0

(qN−i + 1)

[BN (q)] 2N + 1 quadratic
[
N
r

]
q

r−1∏
i=0

(qN−i + 1)

[DN (q)] 2N quadratic (with rank N)
[
N
r

]
q

r−1∏
i=0

(qN−i−1 + 1)

[2DN+1(q)] 2N + 2 quadratic (with rank N)
[
N
r

]
q

r−1∏
i=0

(qN−i+1 + 1)

[2A2N (r)] 2N + 1 Hermitian (q = r2)
[
N
r

]
q

r−1∏
i=0

(qN−i+1/2 + 1)

[2A2N−1(r)] 2N Hermitian (q = r2)
[
N
r

]
q

r−1∏
i=0

(qN−i−1/2 + 1)

Let X be the collection of all totally isotropic subspaces of Fn
q . Ordered by inclusion, X is a regular pooling

semilattice with the rank function ℓ(x) = dimx and the parameters

|Xr| =
[
N

r

]
q

r−1∏
i=0

(qN+e−i−1 + 1), µ(r, s, t) =

[
t− r

s− r

]
q

.

where e = 1, 1, 0, 2, 3/2, 1/2 according to [CN (q)], [BN (q)], [DN (q)], [2DN+1(q)], [
2A2N (r)], [2A2N−1(r)], re-

spectively.

For fixed positive integers n and m, let w be an l-dimensional subspace of Fn+m
q , denote also by w an

l× (n+m) matrix of rank l whose rows span the subspace w and call the matrix w a matrix representation

of the subspace w.
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Example 5. (The Attenuated Classical Polar Space). For fixed positive integers n and m, let Fn
q be the

classical polar space with rank N as in Example 4 and w = (0(m,n) I(m)). Then the quotient space Fn+m
q /w

is isomorphic to Fn
q . Let X be the collection of all subspaces x = (x1 x2) of Fn+m

q with x ∩ w = {0}, where

x1 is a totally isotropic subspace of Fn
q and x2 is a matrix. Ordered by inclusion, X is a regular pooling

semilattice with the rank function ℓ(x) = dimx and the parameters

|Xr| = qrm
[
N

r

]
q

r−1∏
i=0

(qN+e−i−1 + 1), µ(r, s, t) =

[
t− r

s− r

]
q

.

where e as in Example 4.

Example 6. (The Map). Let X be the collection of all pairs (w, f), where w is a subset of [N ] :=

{1, 2, . . . , N} and f : w → [N ] is a map. Ordered by inclusion, that is (w, f) ≼ (u, g) if w ⊆ u and

g|w = f , X is a regular pooling semilattice with the rank function ℓ(w, f) = |w| and the parameters

|Xr| = Nr

(
N

r

)
, µ(r, s, t) =

(
t− r

s− r

)
.

Example 7. (The Injective Map). Let X be the collection of all pairs (w, f), where w is a subset of [N ]

and f : w → [N ] is an injective map. Ordered by inclusion, X is a regular pooling semilattice with the rank

function ℓ(w, f) = |w| and the parameters

|Xr| =
(
N

r

)
N(N − 1) · · · (N − r + 1), µ(r, s, t) =

(
t− r

s− r

)
.

Example 8. (The Bilinear Form). Let X be the collection of all pair (w, f), where w is a subspace of FN
q

and f : w → FN
q is a linear map. Ordered by inclusion, X is a strongly pooling semilattice with the rank

function ℓ(w, f) = dimw and the parameters

|Xr| = qrN
[
N

r

]
q

, µ(r, s, t) =

[
t− r

s− r

]
q

.

Example 9. (The Injective Linear Map). Let X be the collection of all pair (w, f), where w is a subspace

of FN
q and f : w → FN

q is an injective linear map. Ordered by inclusion, X is a regular pooling semilattice

with the rank function ℓ(w, f) = dimw and the parameters

|Xr| = qr(r−1)/2
N∏

i=N−r+1

(qi − 1)

[
N

r

]
q

, µ(r, s, t) =

[
t− r

s− r

]
q

.

Example 10. (The Square Bilinear Form). Let X be the collection of all pair (w, f), where w is a subspace

of FN
q and f : w → w is a bilinear form on w. Ordered by inclusion, X is a regular pooling semilattice with

the rank function ℓ(w, f) = dimw and the parameters

|Xr| = qr
2

[
N

r

]
q

, µ(r, s, t) =

[
t− r

s− r

]
q

.

Example 11. (The Alternating Form). Let X be the collection of all pair (w, f), where w is a subspace

of FN
q and f : w → w is an alternating bilinear form on w. Ordered by inclusion, X is a regular pooling

semilattice with the rank function ℓ(w, f) = dimw and the parameters

|Xr| = qr(r−1)/2

[
N

r

]
q

, µ(r, s, t) =

[
t− r

s− r

]
q

.
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Example 12. (The Hermitian Form). Let X be the collection of all pair (w, f), where w is a subspace of

FN
q and f : w → w is a Hermitian form on w, where q = r2 is square. Ordered by inclusion, X is a regular

pooling semilattice with the rank function ℓ(w, f) = dimw and the parameters

|Xr| = qr
2/2

[
N

r

]
q

, µ(r, s, t) =

[
t− r

s− r

]
q

.

Example 13. (The Symmetric Bilinear Form). Let X be the collection of all pair (w, f), where w is a

subspace of FN
q and f : w → w is a symmetric bilinear form on w. Ordered by inclusion, X is a regular

pooling semilattice with the rank function ℓ(w, f) = dimw and the parameters

|Xr| = qr(r+1)/2

[
N

r

]
q

, µ(r, s, t) =

[
t− r

s− r

]
q

.

2.2 Pooling semilattices from affine spaces

In this subsection we give four families of examples of non-regular pooling semilattices with rank N + 1.

These examples are from an affine space.

Example 14. ([9, 10] The Affine Geometry). Let FN
q and X be as in Example 2. Let X ′ be the collection

of all cosets of subspaces in X together with the empty set ∅. We define ℓ(∅) = 0. Ordered by inclusion, X ′

is a pooling semilattice with the rank function ℓ(x) = dimx+ 1 and the parameters

|X ′
r+1| = qN−r

[
N

r

]
q

, µ(r + 1, s+ 1, t+ 1) =

[
t− r

s− r

]
q

.

Example 15. (The Affine Attenuated Space). Let Fn+N
q and X be as in Example 3. Let X ′ be the collection

of all cosets of subspaces in X together with the empty set ∅. Ordered by inclusion, X ′ is a pooling semilattice

with the rank function ℓ(x) = dimx+ 1 and the parameters

|X ′
r+1| = qn+N+rn−r

[
N

r

]
q

, µ(r + 1, s+ 1, t+ 1) =

[
t− r

s− r

]
q

.

Example 16. ([10] The Affine Classical Polar Space). Let Fn
q and X be as in Example 4. Let X ′ be the

collection of all cosets of subspaces in X together with the empty set ∅. Ordered by inclusion, X ′ is a pooling

semilattice with the rank function ℓ(x) = dimx+ 1 and the parameters

|X ′
r+1| = q2N+δ−r

[
N

r

]
q

r−1∏
i=0

(qN+e−i−1 + 1), µ(r + 1, s+ 1, t+ 1) =

[
t− r

s− r

]
q

,

where δ = 0, 1, 0, 2, 1, 0 according to [CN (q)], [BN (q)], [DN (q)], [2DN+1(q)], [
2A2N (r)], [2A2N−1(r)], respec-

tively, and e is as in Example 4.

Example 17. (The Affine Attenuated Classical Polar Space). Let Fn+m
q and X be as in Example 5. Let

X ′ be the collection of all cosets of subspaces in X together with the empty set ∅. Ordered by inclusion, X ′

is a pooling semilattice with the rank function ℓ(x) = dimx+ 1 and the parameters

|X ′
r+1| = q2N+δ+m+rm−r

[
N

r

]
q

r−1∏
i=0

(qN+e−i−1 + 1), µ(r + 1, s+ 1, t+ 1) =

[
t− r

s− r

]
q

.
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2.3 Pooling semilattices from distance-regular graphs

In this subsection, we give four families of examples of pooling semilattices with rank N . These examples

are from distance-regular graphs.

Let Γ be a connected regular graph. We identify Γ with the set of vertices. For two vertices u and v,

let ∂(u, v) denote the usual distance between u and v. The maximum value of the distance function in Γ is

called the diameter of Γ, denoted by D(Γ). For vertices u and v at distance i, define

C(u, v) = Ci(u, v) = {w | ∂(u,w) = i− 1, ∂(w, v) = 1},

A(u, v) = Ai(u, v) = {w | ∂(u,w) = i, ∂(w, v) = 1}.

For the cardinalities of these sets we use lower case letters ci(u, v) and ai(u, v). A connected regular graph

Γ with diameter D is called distance-regular if ci(u, v) and ai(u, v) depend only on i for all 1 ≤ i ≤ D. The

reader is referred to [2] for general theory of distance-regular graphs.

Let Γ be a distance-regular graph. A r-subset {x1, x2, . . . , xr} ⊆ Γ is said to be a t-clique of Γ with size

r if any two distinct vertices in {x1, x2, . . . , xr} are at distance t.

Example 18. ([1, 20] The Johnson Graph). Let N = ⌊n/t⌋ and X be the collection of all t-cliques of the

Johnson graph J(n, t) together with the empty set ∅. Ordered by inclusion, X is a regular pooling semilattice

with the rank function ℓ(x) = |x| and the parameters

|Xr| =
(
n

rt

)
(rt)!/(t!)rr!, µ(r, s, t) =

(
t− r

s− r

)
.

A distance-regular graph Γ with diameter D ≥ 2 is said to be antipodal, if ∂(x, y) = ∂(x, z) = D and

y ̸= z implies ∂(y, z) = D. For u ∈ Γ, the size of the set {v ∈ Γ | ∂(u, v) = D} depends only on D, denoted

by kD.

Example 19. ([1] The Antipodal Distance-Regular Graph). Suppose that Γ is an antipodal distance-regular

graph with diameter D. Let N = kD + 1 and X be the collection of all D-cliques of Γ together with the

empty set ∅. Ordered by inclusion, X is a regular pooling semilattice with the rank function ℓ(x) = |x| and

the parameters

|Xr| =
(
kD + 1

r

)
|Γ|/(kD + 1), µ(r, s, t) =

(
t− r

s− r

)
.

A distance-regular graph Γ is said to be of order (l, k) if, for each vertex x ∈ Γ, the induced subgraph

on Γ(x) is a disjoint union of k + 1 cliques with size l. Then each maximal clique is of size l + 1, and each

vertex is contained in k + 1 maximal cliques.

Example 20. ([1] The Distance-Regular Graph of Order (l, k)). Suppose that Γ is a distance-regular graph

of order (l, k). Let N = l + 1 and X be the collection of all cliques of Γ together with the empty set ∅.

Ordered by inclusion, X is a regular pooling semilattice with the rank function ℓ(x) = |x| and the parameters

|Xr| =
(
l + 1

r

)
n(k + 1)/(l + 1), µ(r, s, t) =

(
t− r

s− r

)
.

Recall that a subgraph induced on a subset ∆ of Γ is called strongly closed if C(u, v) ∪ A(u, v) ⊆ ∆ for

every pair of vertices u, v ∈ ∆. A distance-regular graph Γ with diameter D is called D-bounded, if every
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strongly closed subgraph of Γ is regular, and any two vertices x and y are contained in a common strongly

closed subgraph with diameter ∂(x, y). A regular strongly closed subgraph of Γ is called a subspace of Γ.

For any two subspaces ∆1 and ∆2 of Γ, ∆1 +∆2 denotes the minimum subspace containing ∆1 and ∆2.

Proposition 8. ([6, Lemma 2.1]). Let Γ be a D-bounded distance-regular graph with diameter D ≥ 2. For

1 ≤ i + 1 ≤ i + s ≤ i + s + t ≤ D, suppose that ∆ and ∆′ are two subspaces satisfying ∆ ⊆ ∆′, D(∆) = i

and D(∆′) = i + s + t. Then the number of the subspaces with diameter i + s containing ∆ and contained

in ∆′, denoted by N(i, i+ s, i+ s+ t), is

(bi − bi+s+t)(bi+1 − bi+s+t) · · · (bi+s−1 − bi+s+t)

(bi − bi+s)(bi+1 − bi+s) · · · (bi+s−1 − bi+s)
.

Example 21. ([19] The D-Bounded Distance-Regular Graph). Let Γ be a D-bounded distance-regular

graph with D = N . For x ∈ Γ, let X be the collection of all subspaces ∆ containing x in Γ. Ordered by

inclusion, X is a pooling semilattice with the rank function ℓ(∆) = D(∆) and the parameters

|Xr| = N(0, r,D), µ(r, s, t) = N(r, s, t).

In particular, if D(∆1)+D(∆2) = D(∆1+∆2)+D(∆1∩∆2) for any ∆1,∆2 ∈ X, then the pooling semilattice

X is a regular pooling semilattice.

3 Pooling lattices

In this section, we show how to construct pooling designs from the pooling lattices by the intersection

type incidence method.

Lemma 9. Let X be a pooling lattice with rank N and 0 ≤ r ≤ s, t ≤ N . For u ∈ Xr, x ∈ Xs with

u ≼ x, the number of elements z ∈ Xt such that x ∧ z = u is a constant π(r, s, t). Moreover, for given r

and t, the function π(r, s, t) is decreasing about s and is indeed strictly decreasing until its value is zero, i.e.

π(r, r, t) > π(r, r + 1, t) > · · · > π(r, p, t) > π(r, p+ j, t) = 0 for some p ≥ r and any 1 ≤ j ≤ N − p.

Proof. We prove the first statement by induction on s − r. The case s − r = 0 follows from Lemma 4

with π(r, r, t) = |[u, 1] ∩ Xt| = µ(r, t,N), where the element 1 is the greatest element of X. Suppose

s − r ≥ 1. Choose any u ∈ Xr and x ∈ Xs with u ≼ x. Note that the set u+ ∩ Xt is partitioned into

Ui = {z | z ∈ u+ ∩Xt, ℓ(x ∧ z) = i} for r ≤ i ≤ s. Since each element z ∈ Ui has the greatest lower bound

x ∧ z ∈ [u, x] ∩Xi, |Ui| = µ(r, i, s)π(i, s, t) by induction for r < i. Hence

π(r, s, t) = µ(r, t,N)−
s∑

i=r+1

µ(r, i, s)π(i, s, t) (3.1)

is a constant, where π(i, s, t) = 0 if i > t. The first statement follows. Let x1 ∈ Xs and x2 ∈ Xs+1 with

u ≼ x1 ≺ x2, where r ≤ s ≤ N − 1. Then {z ∈ Xt | x1 ∧ z = u} ⊇ {z ∈ Xt | x2 ∧ z = u}, which implies

that π(r, s, t) ≥ π(r, s + 1, t). Choose the largest p ≤ N such that π(r, p, t) > 0, and restrict to s ≤ p − 1

in the above proof. Pick y ∈ Xt with x1 ∧ y = u, a ∈ [u, y] ∩ Xr+1 and let x2 = x1 ∨ a. Then x1 ∧ a = u

and a ≼ x2 ∧ y, which implies that ℓ(x2) = s + 1. Hence y ̸∈ {z ∈ Xt | x2 ∧ z = u}. The second statement

follows.
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Lemma 10. Let X be a pooling lattice with rank N and 1 ≤ r ≤ s, t ≤ N . For x ∈ Xs, the number of

elements z ∈ Xt such that ℓ(x ∧ z) = r is µ(0, r, s)π(r, s, t).

Proof. This is clear by Lemma 9, since for x ∈ Xs the number µ(0, r, s)π(r, s, t) = |[0, x]∩Xr|π(r, s, t) counts

the desired z.

Definition 2. Suppose that X is a pooling semilattice. For positive integers i, d, k,N with 1 ≤ i ≤ d < k <

N , let M(i; d, k;N) be the binary matrix with rows indexed with Xd and columns indexed with Xk such

that M(x, y) = 1 if and only if ℓ(x ∧ y) = i.

Theorem 11. Suppose that X is a pooling lattice and 1 ≤ i ≤ d < k < N . Then the following results hold.

(i) Let s satisfies 1 ≤ s ≤ i and N − (s+ 1)k ≥ d− i. Then M(i; d, k;N) is an se-disjunct matrix, where

e = µ(s, i, k)π(i, (s+ 1)k, d)− 1.

(ii) Let s satisfies 1 ≤ s < µ(0, i, k)/µ(0, i, k − 1) and N − (s + 1)k ≥ d − i. Then M(i; d, k;N) is an

se-disjunct matrix, where e = (µ(0, i, k)− sµ(0, i, k − 1))π(i, (s+ 1)k, d)− 1.

Proof. (i) Let y0, y1, . . . , ys be any s+1 distinct columns of M(i; d, k;N). Similar to the proof of Theorem 6

(i), there exists an aj ∈ X1 such that aj ≼ y0 but aj ̸≼ yj for each j ∈ {1, 2, . . . , s}. Suppose a0 =

a1∨a2∨· · ·∨as. By the proof of Theorem 6 (i), the size of Xi∩[a0, y0] is at least µ(s, i, k). Let x0 ∈ [a0, y0]∩Xi

and x ∈ Xd satisfy x∧(y0∨y1∨· · ·∨ys) = x0. Then x∧y0 = x0 and x∧yj ≼ x0 for each j ∈ {1, 2, . . . , s}, which

implies that ℓ(x∧yj) < i by a0 ̸≼ yj . Since x∧ (y0∨y1∨· · ·∨ys) = x0, by (A2) ℓ(y0∨y1∨· · ·∨ys) ≤ (s+1)k

and ℓ(x∨ y0 ∨ y1 ∨ · · · ∨ ys) ≤ d+ (s+1)k− i ≤ N . By Lemma 9, the number of elements x ∈ Xd satisfying

x ∧ (y0 ∨ y1 ∨ · · · ∨ ys) = x0 is at least π(i, (s+ 1)k, d). Therefore, the number of elements x ∈ Xd satisfying

ℓ(x ∧ y0) = i and ℓ(x ∧ yj) ̸= i for each j ∈ {1, 2, . . . , s} is at least µ(s, i, k)π(i, (s+ 1)k, d), as desired.

(ii) Let y0, y1, . . . , ys be any s + 1 distinct columns of M(i; d, k;N). By Theorem 6 (ii), the number of

elements in Xi contained in y0 but not in yj for each j ∈ {1, 2, . . . , s} is at least µ(0, i, k) − sµ(0, i, k − 1).

Given x0 ∈ Xi with x0 ≼ y0 but x0 ̸≼ yj for each j ∈ {1, 2, . . . , s}. By the proof of (i), the number of

elements x ∈ Xd satisfying x∧ y0 = x0 and ℓ(x∧ yj) < i for each j ∈ {1, 2, . . . , s} is at least π(i, (s+1)k, d).

Therefore, the desired result follows.

Theorem 12. Suppose that X is a regular pooling lattice. Let s, i, d, k and N satisfy k − i ≥ 2, 1 ≤ s ≤

(µ(0, i, k) − µ(0, i, k − 1))/(µ(0, i, k − 1) − µ(0, i, k − 2)) and N − k − s(k − max{2i − d, 0}) ≥ d − i. Then

M(i; d, k;N) is an se-disjunct matrix, where e = (µ(0, i, k)−µ(0, i, k− 1)− (s− 1)(µ(0, i, k− 1)−µ(0, i, k−

2)))π(i, k + s(k − max{2i− d, 0}), d)− 1.

Proof. Let y0, y1, . . . , ys be any s+1 distinct columns of M(i; d, k;N). By Theorem 7 the number of elements

of Xi contained in y0 but not in yj for each 1 ≤ j ≤ s is at least µ(0, i, k)− µ(0, i, k− 1)− (s− 1)(µ(0, i, k−

1)− µ(0, i, k − 2)). Let x ∈ Xd satisfy ℓ(x ∧ y0) = i. If there exists j ∈ {1, 2, . . . , s} such that ℓ(x ∧ yj) = i,
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by (x ∧ y0) ∨ (x ∧ yj) ≼ x and (A3), we have

ℓ(y0 ∧ yj) ≥ ℓ(x ∧ y0 ∧ yj)

= ℓ(x ∧ y0) + ℓ(x ∧ yj)− ℓ((x ∧ y0) ∨ (x ∧ yj))

≥ max{2i− d, 0}.

Suppose ℓ(y0 ∧ yj) ≥ max{2i− d, 0} for each j ∈ {1, 2, . . . , s}. By (A3) we have

ℓ(y0 ∨ y1 ∨ · · · ∨ ys)

= ℓ(y0 ∨ y1 ∨ · · · ∨ ys−1) + ℓ(ys)− ℓ((y0 ∨ y1 ∨ · · · ∨ ys−1) ∧ ys)

≤ ℓ(y0 ∨ y1 ∨ · · · ∨ ys−1) + ℓ(ys)− ℓ(y0 ∧ ys)

≤ ℓ(y0 ∨ y1 ∨ · · · ∨ ys−1) + k − max{2i− d, 0}

≤ ℓ(y0) + s(k − max{2i− d, 0})

= k + s(k − max{2i− d, 0}).

Given x0 ∈ Xi with x0 ≼ y0 but x0 ̸≼ yj for each j ∈ {1, 2, . . . , s}. By the proof of Theorem 11, the

number of elements x ∈ Xd satisfying x ∧ y0 = x0 and ℓ(x ∧ yj) < i for each j ∈ {1, 2, . . . , s} is at least

π(i, k + s(k − max{2i− d, 0}), d). Therefore, the desired result follows.

Now we give four families of pooling lattices. By Theorems 11 and 12, we can construct pooling designs

from these lattices.

Example 22. ([7] The Boolean Algebra). Let X be as in Example 1. Then X is a regular pooling lattice

with the parameters

|Xr| =
(
N

r

)
, µ(r, s, t) =

(
t− r

s− r

)
, π(r, s, t) =

(
N − s

t− r

)
.

Example 23. ([8] The Projective Geometry). Let X be as in Example 2. Then X is a regular pooling

lattice with the parameters

|Xr| =
[
N

r

]
q

, µ(r, s, t) =

[
t− r

s− r

]
q

, π(r, s, t) = q(s−r)(t−r)

[
N − s

t− r

]
q

.

Example 24. (The Affine Geometry). Let X ′ be as in Example 14. Then X ′ is a pooling lattice with the

parameters

|X ′
r+1| = qN−r

[
N

r

]
q

, µ(r + 1, s+ 1, t+ 1) =

[
t− r

s− r

]
q

, π(r + 1, s+ 1, t+ 1) = q(s−r)(t−r)+s−r

[
N − s

t− r

]
q

.

Example 25. (The D-Bounded Distance-Regular Graph). Let X be as in Example 21. Then X is a pooling

lattice with the parameters

|Xr| = N(0, r,D), µ(r, s, t) = N(r, s, t), π(r, s, t),

where π(r, s, t) can be computed using (3.1). In particular, if D(∆1) +D(∆2) = D(∆1 +∆2) +D(∆1 ∩∆2)

for any ∆1,∆2 ∈ X, then the pooling lattice X is a regular pooling lattice.
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