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In [T. Huang, C. Weng, Pooling spaces and

non-adaptive pooling designs, Discrete Math. 282
(2004) 163-169], Huang and Weng introduced pool-
ing spaces, and constructed pooling designs from a
pooling space. In this report, we introduce the con-
cept of pooling semilattices and prove that a pool-
ing semilattice is a pooling space, then show how to
construct pooling designs from a pooling semilattice.
Moreover, we give many examples of pooling semi-
lattices and thus obtain the corresponding pooling

designs.
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The basic problem of group testing is to identify
the set of defective items in a large population of
items. A group testing algorithm is non-adaptive if
all tests must be specified without knowing the out-
comes of other tests. A group test is applicable to an
arbitrary subset of items with two possible outcomes:
a negative outcome indicates that all items in the
subset are negative, and a positive outcome indicates
otherwise. A pooling design is a specification of all
tests such that they can be performed simultaneously
with the goal being to identify all positive items with
a small number of tests [3]. A non-adaptive pooling
design is usually represented by a binary matrix with
columns indexed with items and rows indexed with
pools. A cell (4,7) contains a l-entry if and only if
the ith pool contains the jth item. By treating a col-
umn as a set of row indices intersecting the column
with a l-entry, we can talk about the union of sev-
eral columns. A binary matrix is s¢-disjunct if every
column has at least e + 1 1-entries not contained in

the union of any other s columns [15]. An s%-disjunct

matrix is also called s-disjunct. An s¢-disjunct ma-



trix is called fully s®-disjunct if it is neither (s 4 1)¢-

e+1

disjunct nor s°T'-disjunct. An s®-disjunct matrix is

|e/2]-error-correcting [5, 11].

Macula [14] proposed a novel way of constructing
disjunct matrices by means of the containment rela-
tion of subsets in a finite set. D’yachkov et al. [5]
discussed the error-correcting capability of Macula’s
designs. Ngo and Du [17] constructed a family of dis-
junct matrices by means of the containment relation
of subspaces in a finite vector space. D’yachkov et al.
[4] discussed the error-tolerance capability of Ngo-
Du’s designs. In [7, 8], Jun Guo and Kaishun Wang
proposed a new model for pooling designs—the inter-
section type incidence construction, and generalized
Macula’s and Ngo-Du’s designs. Under this model,
the pooling designs have surprisingly high degree of
error correction. Huang and Weng [11] generalized
the containment matrix construction of pooling de-

signs to pooling spaces.

Let (X, <) be a finite partially ordered set (poset)
with the least element 0. For z,y € X, if x X y,
we say that y contains x. Moreover, if there does
not exist element z such that x < z < y, we say
that y covers x. An atom in X is an element in X
that covers 0. The poset X is ranked and has rank
function, if there is a function ¢ from X to the in-
teger set such that £(0) = 0 and £(y) = £(z) + 1
if y covers z. The maximum value of ¢(z) is called
the rank of X, denoted by N. The fibers (or lev-
els) Xo, X1, - .
given by X; = {x € X | £(z) =i}. Pick any =,y € X

., Xn of the poset are the subsets of X

such that < y. By the interval [z,y], we mean the
subposet [z,y] ;= {2z € X |z Xz <y} of X. A
ranked poset X is called atomic whenever each ele-
ment x € X \ {0} is the least upper bound of the set
[0,2)NX7. A pooling spaceis a finite poset (X, <) such
that the subposet induced on w™ = {w <y |y € X}

is atomic for each w € X. Huang and Weng [11]

showed that how to construct pooling designs from

pooling spaces.

Theorem 1. ([11]) Let X be a pooling space with
rank N > 1. For 1 <d <k <N, let M(k,N) be the
binary matriz with rows indexed with Xy and columns
indexed with X such that M(x,y) = 1 if and only if
x =y. Then M(k, N) is d°-disjunct, where

e =min|U ([y,z] N Xx)| — 1,

the minimum is taken over all pairs (x,T) with
T C Xn,|T) < d and x € Xy \T; the union is
taken over all y € [0,2] N X4 such that y A z for all
zeT.

Let (X, =) be a finite poset with with the rank
function ¢ and fibers Xy, ..., Xn. We call X a semi-
lattice, if any two elements x and y of X have the
greatest lower bound, denoted by x Ay. As usual, we
denote by x V y the least upper bound of = and y if
it exists. Note that if X is a semilattice and x,y € X
have a common upper bound, then = V y exists; in-
deed x V y is the greatest lower bound of the set of
upper bounds of z and y. X is a lattice if z V y exists
for any x,y € X.

Let X denote a semilattice with the rank function
¢ and fibers X, ...,

Xy. We are concerned with the

following axioms:

(Al) For u € X, and z € X; with u < z, the num-
ber |[u,z] N X,41| is a constant u(r,r + 1,t),
where 0 < r < t < N. Moreover, the func-
tion w(0,1,¢) is strictly increasing about ¢, i.e.
1 ::u(o71’1) < H’(Oa]-?Q) << ,LL(O,].,N)
For z,y € X, if z V y exists, then {(z Vy) <
0(x) + L(y) — Lz Ny).

For z,y € X, if x V y exists, then {(z V y) =
(x) +L(y) — bz Ny).

We call X a pooling semilattice, if it satisfies (A1)
and (A2). We call X a regular pooling semilattice,



if it satisfies (A1) and (A3). Note that (A3) implies
(A2) and thus a regular pooling semilattice is a pool-
ing semilattice. In addition if X is a lattice, we use
lattice to replace the above semilattice. We call X

a geometric lattice if X is a finite atomic lattice and

satisfies (A2).
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In this project, we mainly focus on the construc-

tion of pooling designs from a pooling semilattice.

We first discuss some properties of pooling semilat-

from a pooling semilattice. We give many families
of examples of pooling semilattices. They fall into
three categories: (i) regular pooling semilattices from
sets, vector spaces and maps; (ii) non-regular pool-
ing semilattices from affine spaces; and (iii) pooling
semilattices from distance-regular graphs. We gener-
alize the intersection type incidence construction to
pooling lattices and give four families of examples of
pooling lattices. All these results will be appeared
in an article coauthored with Jun Guo and Kaishun

Wang. See Ff#% below for details.

tices, then show how to construct pooling designs

h - HER

1 Pooling semilattices

In this section, we always assume that X denotes a pooling semilattice with the rank function ¢ and
fibers Xg,..., Xn.
A poset can be described by a diagram in the plane in which y covers z if and only if there is a line

moving upwards from z to y.

Lemma 2. A pooling semilattice X is atomic.

Proof. Pick any element w € X \ {0}. Suppose that u is the least upper bound of the set [0,w] N X;. Then
u = w and u(0,1,4(w)) < w(0,1,4(u)). By (A1), one gets £(w) = ¢(u) and v = w, as desired. O O

The usage of the term “pooling semilattice” is justified by the following proposition.

Proposition 3. Let X be a pooling semilattice with rank N. Then X is a pooling space. In particular, for

each 1 <1 < N, the function p(r,r + 1,t) is strictly increasing about t where r +1 <t < N.

Proof. Let w € X, be given. We shall prove that the subposet w™ is atomic. Pick any € w™. Then
[0, 2] is a semilattice. By Lemma 2, [0,z] is a atomic and hence is a geometric lattice. It is well-known
that an interval in a geometric lattice is a geometric lattice [12, Page 307], [9, Lemma 5.2]. Hence [w, 2] is
geometric. Theorem 5.4 in [9] tells us that a geometric lattice is a pooling space, which implies that [w, z] is
a pooling space. In particular x is the least upper bound of [w,z] N X, 1. This proves the first statement.
Fix u1 € X;—1 and ug € X; with w < u; < ug, Since u; (resp. us) is the least bound of the ¢(r,r + 1,¢t — 1)
(resp. £(r,r+1,t)) elements in [w,u1] N X141 (resp. [w,us] N X, 11), we have £(r,r +1,t —1) < £(r,r + 1,%)

to conclude the second statement. O O



The following lemma says that the local assumption of (A1) can imply a global property on X.

Lemma 4. Let X be a pooling semilattice and 0 < r < s <t < N. Then for u € X, and z € X; with u < z,
the number p(r, s,t) := |[u, z] N X,| is a constant. Moreover for given r,s with 0 < r < s < N, the function

w(r, s, t) is strictly increasing about t, where s <t < N.

Proof. Note that u(r,r,t) = p(r,t,t) = 1, u(r,r+1,¢) is a constant by (Al) and p(r,r+1,t—1) < p(r,r+1,t)
by Proposition 3, where r +1 <t < N. We prove the lemma by induction on ¢ — r, and assume in the
nontrivial situation r+2 < s <t¢t—1. Fix u € X, and z € X; with u < z. Counting pairs (v, w) € X411 X X5

with u < v < w < z in two ways yields a constant
w(r,s,t) = plryr + L, Hu(r+1,8,t)/p(r,r + 1, ) (1.1)

by induction. Also u(r,s,t—1) = u(r,r+1,t—=1)u(r+1,s,t=1)/p(r,r+1,s) < p(r,r+1,t)p(r+1,s,t)/p(r, r+
1,8) = p(r, s, t) since p(r,r+ 1,t — 1) < p(r,r + 1,t) by Proposition 3, and pu(r +1,s,t — 1) < pu(r+1,s,t)
by induction. O U

Lemma 5. Let X be a pooling semilattice and 1 < s < t < N. Then the function u(r,s,t) is strictly

decreasing about v, where 1 <r <'s, i.e. pu(l,s,t) > pu(2,s,t) > > uls—1,s,t) > p(s,s,t) =1.

Proof. As the above two-way counting argument,

p(r,s,t)  p(rr+1,t)

plr+1,8t)  plr,r+1,s)

by Lemma 4. O O

Definition 1. Suppose that X is a pooling semilattice. For positive integers 1 < d < k < N, let M(d, k; N)
be the binary matrix with rows indexed with X4 and columns indexed with X}, such that M (z,y) = 1 if and

only if x < y.
Theorem 6. Let X be a pooling semilattice. Then the following results hold.
(i) If 1 <s<d, then M(d, k; N) is an s¢-disjunct matriz, where e = p(s,d, k) — 1.

(i) If 1 < s < pu(0,d,k)/p(0,d, k — 1), then M(d,k;N) is an s®-disjunct matriz, where e = pu(0,d, k) —
sp(0,d, k—1) — 1.

Proof. (i) Let yo,y1,...,ys be any s + 1 distinct columns of M(d, k; N). Note that {(yo Ay;) < k —1 for
each j € {1,2,...,s}. By (Al) we have p(0,1,%k) > p(0,1,¢(yo A y;)), which implies that there exists some
a; € X; such that a; < yo but a; A y; for each j € {1,2,...,s}. Since yo is a common upper bound of
ai,as,...,as, the least upper bound of these elements exists. Suppose that o = a3 Vas V ---V as. Then
zo = yo and zg A y; for each j € {1,2,...,s}. By (A2) we have 1 < {(zg) < s. By Lemma 4, the size of
X4 N [xo,y0] is p(€(zo),d, k). From Lemma 5, we deduce that u(€(zg),d, k) is decreasing for 1 < £(xg) < s
and gets its minimum at £(z) = s, which implies that the size of X4N[xo, yo] is at least u(s, d, k), as desired.

(ii) Let yo,y1,..-,Ys be any s + 1 distinct columns of M (d, k; N). Note that yo contains u(0, d, k) many

elements in Xy and £(yo Ay;) < k—1 for each j € {1,2,...,s}. By Lemma 4, each yo A y; contains at most



1(0,d, k — 1) elements in X4. Thus, the number of elements in Xy contained in yo but not in y; for each

je{1,2,...,s} is at least u(0,d, k) — sp(0,d, k — 1), as desired. O O

Theorem 7. Let X be a regular pooling semilattice. If k —d > 2 and 1 < s < (u(0,d, k) — pn(0,d, k —
1))/(u(0,d, k—1)— u(0,d, k—2)), then M(d, k; N) is an s°-disjunct matriz, where e = p(0,d, k) —sp(0,d, k —
)+ (s=1)u(0,d, k—2) — 1. In particular, if s < min{u(k—2,k—1,k), (u(0,d, k) — p(0,d, k—1))/(u(0,d, k —
1) — u(0,d, k —2))} and |27 N Xy| > 1 for any v € Xi_1, then M(d, k; N) is fully s¢-disjunct.

Proof. Let yo,y1,---,ys be any s + 1 distinct columns of M (d, k; N). Note that yo contains (0, d, k) many
elements in Xg and ¢(yo Ay;) < k —1 for each j € {1,2,...,s}. To obtain the maximum elements with
rank d in Uj:l{x € X4 | x =< (yoAy;)}, by Lemma 4 we may assume that yo A y1,...,y0 A ys are s
distinct elements in Xj_;. Then the element yo A y1 contains at most u(0,d, k — 1) elements in X4. Since
(YoAy1)V (YoAy;) = yo and £(yoAy1Ay;) < k—2foreach j € {2,...,s}, by (A3) £((yoAy1)V(YoAy;)) = k and
L(yoAy1 Ay;) = k—2. By Lemma 4, each of ygAya, ..., yoAys can contain at most (0, d, k—1)—p(0,d, k—2)
elements in X4 not contained in gy A y1. Thus, the number of elements in X4 contained in yo but not in y;
for each j € {1,2,...,s} is at least u(0,d, k) — pu(0,d, k — 1) — (s — 1)(u(0,d, k — 1) — u(0,d, k — 2)). Hence
M(d, k; N) is s®-disjunct.

Let s < min{u(k—2,k—1,k), (u(0,d, k) — pu(0,d, k — 1)) /(u(0,d, k — 1) — (0,d, k — 2))} and |2+ N Xg| >
1 for any x € Xj_1. We show that M(d,k; N) is fully s®-disjunct. Let u € Xj_o with u < yo. By
Lemma 4 the number of elements x € Xj_; such that v < = < yo is u(k — 2,k — 1,k), and so we can
choose s distinct ones among them, say z; (1 < j < s). Since |xj' N Xk| > 1 we can choose pairwise
distinct y; in Xj \ {yo} such that «; = yo A y;. Then the number of elements in X, contained in yg
but not in y; for each j € {1,2,...,s} is e + 1. Therefore M(d,k; N) is not s*T!-disjunct. View the
function e = e(s) = p(0,d, k) — sp(0,d, k — 1) + (s — 1)p(0,d, k — 2) — 1 as a function of s, and notice that
e(s+1)—e(s) = u(0,d, k —2) — pu(0,d, k — 1) < 0. The above argument with s+ 1 to replace s implies that
M(d, k; N) is not (s + 1)°-disjunct. O O

2 Examples

In this section we give many examples of pooling semilattices, and give their parameters. By Theorems 6
and 7, we can construct pooling designs from these pooling semilattices.
Let g be a positive integer. Fix a positive integer n. The Gaussian binomial coefficients with basis q is

defined by
i—1
1T 2= ifg=1,
o

i—1 qn_qj .

1;[0 =g ifg#1.

J

—
<. 3
[ I
Q
I
S

In the case ¢ = 1, for convenience, we write () instead of [7].

2.1 Regular pooling semilattices from sets, vector spaces and maps

In this subsection we give thirteen families of regular pooling semilattices with rank V.



Example 1. ([5, 14] The Boolean Algebra). Let X be the collection of all subsets of [N] := {1,2,...,N}.

Ordered by inclusion, X is a regular pooling semilattice with the rank function ¢(z) = |z| and the parameters

xi= () woeso=(127).

Example 2. ([4, 17] The Projective Geometry). Let ]Ff]V be the N-dimensional vector space over the finite
field F, and X be the collection of all subspaces of IF(]]V . Ordered by inclusion, X is a regular pooling

semilattice with the rank function ¢(x) = dim x and the parameters

= ]3] mmsa= 17

s—r
Example 3. ([11] The Attenuated Space). For fixed positive integers n and N, let w be a fixed n-dimensional

subspace of IF;“FN . Let X be the collection of all subspaces x of IB‘Z“FN with zNw = {0}. Ordered by inclusion,

X is a regular pooling semilattice with the rank function ¢(x) = dim 2 and the parameters

N
-]
T

Example 4. ([10] The Classical Polar Space). Classical finite polar spaces are incidence structures, consisting

S—7Tr

;s t) = [t_ TL

q

of all the totally isotropic subspaces of Iy’ with respect to a certain non-degenerate sesquilinear or quadratic
form f. The rank of the polar space is the algebraic dimension of the maximal totally isotropic subspaces,

denoted by N. The summary is given in the following table:

name n form | X, |

[Cn(q)] 2N symplectic [JX] , :H:(qu 1)
[Bn(q)] 2N +1 quadratic [ﬂq :_:(qu 1)
[Dn(q)] 2N quadratic (with rank N) []:f]q :H:(qul +1)
2Dy41(q)] 2N +2 quadratic (with rank N) D’]q :H:(quJrl 1)
[2A2N(T)] 2N +1 Hermitian (¢ = r2) [f]q :lj:(quH/z 1)
[2Asn-1(r)] 2N Hermitian (¢ = 72) [f]q ::(qulﬂ +1)

Let X be the collection of all totally isotropic subspaces of Fy. Ordered by inclusion, X is a regular pooling
semilattice with the rank function ¢(z) = dimx and the parameters
=[] et vn, s =[]
g s—rl,

where e = 1,1,0,2,3/2,1/2 according to [Cn(q)], [Bn ()], [Dn ()], 2Dn+1(q)], [ZA2n(r)], PAan_1(r)], Te-

spectively.

For fixed positive integers n and m, let w be an [-dimensional subspace of ]F;"*‘m, denote also by w an
I x (n+m) matrix of rank [ whose rows span the subspace w and call the matrix w a matrix representation

of the subspace w.



Example 5. (The Attenuated Classical Polar Space). For fixed positive integers n and m, let Fj be the
classical polar space with rank N as in Example 4 and w = (O(m’”) I (m)). Then the quotient space F2+m Jw
is isomorphic to F7'. Let X be the collection of all subspaces 2 = (z; 2) of Fi ™™ with x Nw = {0}, where
z1 is a totally isotropic subspace of Fy and z2 is a matrix. Ordered by inclusion, X is a regular pooling

semilattice with the rank function ¢(z) = dim « and the parameters

N o ; t—r
= [N Tt +n, ursn =177
q

S—7Tr
q =0

where e as in Example 4.

Example 6. (The Map). Let X be the collection of all pairs (w, f), where w is a subset of [N] :=
{1,2,...,N} and f : w — [N] is a map. Ordered by inclusion, that is (w, f) =< (u,g) if w C u and

glw = f, X is a regular pooling semilattice with the rank function £(w, f) = |w| and the parameters

| X,| = N7 (f) plrys,t) = C—Z)

Example 7. (The Injective Map). Let X be the collection of all pairs (w, f), where w is a subset of [N]
and f:w — [N] is an injective map. Ordered by inclusion, X is a regular pooling semilattice with the rank

function ¢(w, f) = |w| and the parameters

IX,| = (f)N(N_U.-.(N—rH), u(r, s, 6) = (t_r).

s—r
Example 8. (The Bilinear Form). Let X be the collection of all pair (w, f), where w is a subspace of Ff]\f
and f:w — IFéV is a linear map. Ordered by inclusion, X is a strongly pooling semilattice with the rank

function ¢(w, f) = dimw and the parameters

N t—r
|X7"| = qu|: :| ’ /j’(rv Sat) = |: _ :| .
1, s—rl,
Example 9. (The Injective Linear Map). Let X be the collection of all pair (w, f), where w is a subspace

of Fév and f:w — IE‘éV is an injective linear map. Ordered by inclusion, X is a regular pooling semilattice

with the rank function ¢(w, f) = dimw and the parameters

N
(r— i N t—r
xl=at T @ -0)] . s =[170]
q q

i=N—r+1 sor

Example 10. (The Square Bilinear Form). Let X be the collection of all pair (w, f), where w is a subspace
of ]Fév and f:w — w is a bilinear form on w. Ordered by inclusion, X is a regular pooling semilattice with
the rank function £(w, f) = dim w and the parameters

xl=a* V] s =170

q q

Example 11. (The Alternating Form). Let X be the collection of all pair (w, f), where w is a subspace
of IF(]IV and f : w — w is an alternating bilinear form on w. Ordered by inclusion, X is a regular pooling
semilattice with the rank function ¢(w, f) = dimw and the parameters

N t—
|XT|=qT<T-1>/2[ ] , u(r,s,w:[ ] .
' q S—7T q



Example 12. (The Hermitian Form). Let X be the collection of all pair (w, f), where w is a subspace of

2

Fév and f: w — w is a Hermitian form on w, where ¢ = r* is square. Ordered by inclusion, X is a regular

pooling semilattice with the rank function £(w, f) = dim w and the parameters

2 N t—r
xl=a 2| s = {077
q q

S—T

Example 13. (The Symmetric Bilinear Form). Let X be the collection of all pair (w, f), where w is a
subspace of IFfIV and f : w — w is a symmetric bilinear form on w. Ordered by inclusion, X is a regular

pooling semilattice with the rank function ¢(w, f) = dimw and the parameters

N t—
IquT(T“)/z{ ] : u(r,s,t)[ r} :
T q S—7r q

2.2 Pooling semilattices from affine spaces

In this subsection we give four families of examples of non-regular pooling semilattices with rank N + 1.

These examples are from an affine space.

Example 14. ([9, 10] The Affine Geometry). Let F) and X be as in Example 2. Let X’ be the collection
of all cosets of subspaces in X together with the empty set §. We define £(0)) = 0. Ordered by inclusion, X’

is a pooling semilattice with the rank function ¢(x) = dim« + 1 and the parameters

N t—r
N—r
Kal=a" V] sy = 7]

q
Example 15. (The Affine Attenuated Space). Let IF;”FN and X be as in Example 3. Let X’ be the collection
of all cosets of subspaces in X together with the empty set (). Ordered by inclusion, X’ is a pooling semilattice

with the rank function ¢(z) = dimz + 1 and the parameters

N t—r
X7l‘+1|:qn+N+rn—r[T:| , M(T+1,S+1,t+1): |: :| .
q

S—7r
q

Example 16. ([10] The Affine Classical Polar Space). Let F} and X be as in Example 4. Let X' be the
collection of all cosets of subspaces in X together with the empty set (). Ordered by inclusion, X’ is a pooling

semilattice with the rank function ¢(x) = dim« + 1 and the parameters
N t—r
X, ] = N [T} [T@ "+, pr+1s+1,t+1)= L B J :
4 §=0 q

where § = 0,1,0,2,1,0 according to [Cn(q)], [Bn(q)],[Dn(q)], ?Dn+1(q)], [2A2n(r)], [2Aan—1(r)], respec-

tively, and e is as in Example 4.

Example 17. (The Affine Attenuated Classical Polar Space). Let FZ*’” and X be as in Example 5. Let
X' be the collection of all cosets of subspaces in X together with the empty set (). Ordered by inclusion, X’

is a pooling semilattice with the rank function £(z) = dimz + 1 and the parameters

N r—1 ] t—
| X! | = g?NFotmarmr [ } [[@ " 41, pr+1,s+1,t+1) = L - ﬂ :
q9 4=0 q



2.3 Pooling semilattices from distance-regular graphs

In this subsection, we give four families of examples of pooling semilattices with rank N. These examples
are from distance-regular graphs.

Let T" be a connected regular graph. We identify I" with the set of vertices. For two vertices v and v,
let d(u,v) denote the usual distance between u and v. The maximum value of the distance function in T is

called the diameter of T, denoted by D(T'). For vertices u and v at distance i, define

Clu,v) = Ci(u,v) ={w|d(u,w) =i—1,0(w,v) =1},
A(u,v) = Ai(u,v) ={w | O(u,w) =14,0(w,v) = 1}.

For the cardinalities of these sets we use lower case letters ¢;(u,v) and a;(u,v). A connected regular graph
I’ with diameter D is called distance-regular if ¢;(u,v) and a;(u,v) depend only on i for all 1 <4 < D. The
reader is referred to [2] for general theory of distance-regular graphs.

Let T be a distance-regular graph. A r-subset {x1,za,...,2,} C T is said to be a t-clique of T’ with size

r if any two distinct vertices in {1, 2, ..., 2, } are at distance t.

Example 18. ([1, 20] The Johnson Graph). Let N = |n/t] and X be the collection of all ¢-cliques of the
Johnson graph J(n, t) together with the empty set (). Ordered by inclusion, X is a regular pooling semilattice
with the rank function ¢(z) = |z| and the parameters
X, | = (Z) OUE), s, t) = C::)
A distance-regular graph I with diameter D > 2 is said to be antipodal, if O(x,y) = d(x,z) = D and
y # z implies O(y,z) = D. For u € T', the size of the set {v € " | d(u,v) = D} depends only on D, denoted
by kp.

Example 19. ([1] The Antipodal Distance-Regular Graph). Suppose that I' is an antipodal distance-regular
graph with diameter D. Let N = kp + 1 and X be the collection of all D-cliques of I" together with the

empty set (). Ordered by inclusion, X is a regular pooling semilattice with the rank function ¢(z) = |z| and

= (2 o+, s = (127).

sS—7T

the parameters

A distance-regular graph I' is said to be of order (I, k) if, for each vertex x € I'; the induced subgraph
on I'(x) is a disjoint union of k + 1 cliques with size [. Then each maximal clique is of size [ + 1, and each

vertex is contained in k 4+ 1 maximal cliques.

Example 20. ([1] The Distance-Regular Graph of Order (I, k)). Suppose that I is a distance-regular graph
of order (I,k). Let N = [+ 1 and X be the collection of all cliques of T' together with the empty set 0.

Ordered by inclusion, X is a regular pooling semilattice with the rank function ¢(z) = |x| and the parameters

1X,| = (ltl)n(k—&-l)/(l—i-l), 1y s,t) = (t_’").

s—r
Recall that a subgraph induced on a subset A of T is called strongly closed if C(u,v)U A(u,v) C A for

every pair of vertices u,v € A. A distance-regular graph I' with diameter D is called D-bounded, if every
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strongly closed subgraph of I' is regular, and any two vertices x and y are contained in a common strongly
closed subgraph with diameter 9(x,y). A regular strongly closed subgraph of T is called a subspace of T.

For any two subspaces A; and Ay of I, A; + Ay denotes the minimum subspace containing Ay and As.

Proposition 8. ([6, Lemma 2.1)). Let I be a D-bounded distance-regular graph with diameter D > 2. For
1<i+1<i+s<i+s+t<D, suppose that A and A’ are two subspaces satisfying A C A', D(A) =i
and D(A") =i+ s+ t. Then the number of the subspaces with diameter i + s containing A and contained
in A, denoted by N(i,i+ s,i+s+1), is

(bl - b’L+S+t)(b’L+1 - b’L+S+t) e (bi+571 - bz+s+t)
(bi = bits)(bit1 = bits) - (Diys—1 — bits)

Example 21. ([19] The D-Bounded Distance-Regular Graph). Let I' be a D-bounded distance-regular

graph with D = N. For z € T, let X be the collection of all subspaces A containing x in I'. Ordered by

inclusion, X is a pooling semilattice with the rank function ¢(A) = D(A) and the parameters
|X,|=N(0,r,D), u(rst)=N(rs,t).

In particular, if D(A;)+D(Agz) = D(A1+A2)+D(A1NAy) for any A1, Ag € X, then the pooling semilattice

X is a regular pooling semilattice.

3 Pooling lattices

In this section, we show how to construct pooling designs from the pooling lattices by the intersection

type incidence method.

Lemma 9. Let X be a pooling lattice with rank N and 0 < r < s,t < N. Foru € X,, v € X, with
u = x, the number of elements z € Xy such that x A z = u is a constant w(r,s,t). Moreover, for given r
and t, the function 7(r,s,t) is decreasing about s and is indeed strictly decreasing until its value is zero, i.e.

w(ryryt) > w(r,r + 1,6) > - >a(r,p,t) > w(r,p+j,t) =0 for somep>r and any 1 < j < N —p.

Proof. We prove the first statement by induction on s — r. The case s — r = 0 follows from Lemma 4
with 7(r,r,t) = |[u,1] N X¢| = p(r,t, N), where the element 1 is the greatest element of X. Suppose
s —7 > 1. Choose any v € X, and z € X, with u < 2. Note that the set u™ N X; is partitioned into
U ={z]|zeutNXy, l(xAz)=1i} for r <i<s. Since each element z € U; has the greatest lower bound

x Az € [u,z] N X, |U;| = p(r, i, s)m(i, s,t) by induction for r < i. Hence

S

w(r,s,t) = p(r,t, N) — Z w(r,i, 8)m(i, s,t) (3.1)
i=r+1

is a constant, where (i, s,t) = 0 if ¢ > ¢t. The first statement follows. Let 21 € X and zo € X141 with
u =1 < T, where r < s < N—1. Then {z € X; | z1 Az =u} 2 {z € X; | 22 A z = u}, which implies
that 7(r,s,t) > m(r,s + 1,t). Choose the largest p < N such that w(r,p,t) > 0, and restrict to s < p — 1
in the above proof. Pick y € X; with 21 Ay = u, a € [u,y] N X,41 and let 29 = 21 V a. Then 21 Aa = u
and a < xa Ay, which implies that ¢(z3) = s+ 1. Hence y & {z € X; | 22 A z = u}. The second statement
follows. O O
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Lemma 10. Let X be a pooling lattice with rank N and 1 < r < s,t < N. For x € X,, the number of

elements z € Xy such that l(x A z) =1 is p(0,r, s)w(r, s, t).

Proof. This is clear by Lemma 9, since for z € X the number u(0,r, s)7(r, s,t) = |[0, ] N X, |7 (r, s, t) counts
the desired z. O O

Definition 2. Suppose that X is a pooling semilattice. For positive integers ¢,d, k, N with 1 < <d <k <
N, let M(i;d,k; N) be the binary matrix with rows indexed with X, and columns indexed with X} such
that M (z,y) =1 if and only if {(z A y) = i.

Theorem 11. Suppose that X is a pooling lattice and 1 < i < d < k < N. Then the following results hold.

(i) Let s satisfies 1 < s <iand N — (s+ 1)k >d —1i. Then M(i;d,k; N) is an s°-disjunct matriz, where
e=u(s,i,k)m(i,(s+ 1)k,d) — 1.

(ii) Let s satisfies 1 < s < p(0,4,k)/u(0,i,k —1) and N — (s + 1)k > d —i. Then M(i;d,k; N) is an
s¢-disjunct matriz, where e = (u(0,1,k) — sp(0,4,k — 1))m(i, (s + 1)k, d) — 1.

Proof. (i) Let yo,y1,...,ys be any s+ 1 distinct columns of M (i;d, k; N). Similar to the proof of Theorem 6
(i), there exists an a; € Xy such that a; < yo but a; A y; for each j € {1,2,...,s}. Suppose ag =
a1VasV---Vas. By the proof of Theorem 6 (i), the size of X;N[ag, yo] is at least u(s, i, k). Let zg € [ag, yo]NX;
and z € Xy satisfy 2A(yoVy1 V- - -Vys) = 9. Then zAyy = xo and zAy; = o foreach j € {1,2,..., s}, which
implies that £(x Ay;) <iby ag Z y;. Since A (yoVy1V---Vys) = xo, by (A2) l(yoVyi1V---Vys) < (s+1)k
and {(xVyoVy1 V---Vys) <d+ (s+ 1)k —i < N. By Lemma 9, the number of elements x € X, satisfying
xA(yoVuyr V.- Vys) =z is at least w(i, (s + 1)k, d). Therefore, the number of elements x € X, satisfying
Lz ANyo) =i and £(x Ay;) # i for each j € {1,2,...,s} is at least u(s,i,k)m(i, (s + 1)k, d), as desired.

(ii) Let yo,y1,.-.,ys be any s + 1 distinct columns of M (i;d, k; N). By Theorem 6 (ii), the number of
elements in X, contained in yo but not in y; for each j € {1,2,...,s} is at least (0,4, k) — su(0,¢,k — 1).
Given zy € X; with 29 < yo but zo A y; for each j € {1,2,...,s}. By the proof of (i), the number of
elements x € Xy satisfying © A yo = x¢ and £(x Ay;) < i for each j € {1,2,...,s} is at least (4, (s + 1)k, d).
Therefore, the desired result follows. O U

Theorem 12. Suppose that X is a regular pooling lattice. Let s,i,d,k and N satisfy k —i > 2,1 < s <
(u(0,4,k) — (0,4, k — 1)) /(p(0,4,k — 1) — p(0,4,k — 2)) and N — k — s(k — max{2i — d,0}) > d —i. Then
M(i;d, k; N) is an s®-disjunct matriz, where e = (u(0,4, k) — (0,4, k — 1) — (s = 1) (p(0,4, k — 1) — p(0, 4, k —
2)))mw(i, k + s(k — max{2i — d,0}),d) — 1.

Proof. Let yo,y1,---,Yys be any s+1 distinct columns of M (i;d, k; N). By Theorem 7 the number of elements
of X, contained in yo but not in y; for each 1 < j < s is at least (0,4, k) — (0,4, k — 1) — (s — 1)(p(0,4, k —
1) — p(0,4,k — 2)). Let « € Xg satisfy £(x Ayo) = i. If there exists j € {1,2,...,s} such that {(z Ay;) =1,
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by (x Ayo) V (x Ay;) = = and (A3), we have

Lyo Nyj) > Lz Ayo Ayj)
= lUxAyo)+LlxNy;)—L(zAyo)V (zAy,))

> max{2i —d,0}.
Suppose £(yo Ay;) > max{2i — d,0} for each j € {1,2,...,s}. By (A3) we have

LyoVyLV---Vys)

LyoVir V- Vys—1) +0(ys) = (Yo Vyr V- Vys—1) Nys)

(
(
Eyo Vyr V- Vys—1) + L(ys) — £(yo A ys)
(
(

<
< lyoVyrV---Vys—1)+k—max{2i —d,0}
< L(yo) + s(k — max{2i — d,0})

k + s(k — max{2i — d,0}).

Given z¢ € X; with x9p < yo but 9 A y; for each j € {1,2,...,s}. By the proof of Theorem 11, the
number of elements = € Xy satisfying = A yo = xo and {(z A y;) < i for each j € {1,2,...,s} is at least
(i, k + s(k — max{2i — d,0}), d). Therefore, the desired result follows. O O

Now we give four families of pooling lattices. By Theorems 11 and 12, we can construct pooling designs

from these lattices.

Example 22. ([7] The Boolean Algebra). Let X be as in Example 1. Then X is a regular pooling lattice

IX,| = (7) 1y s,t) = C::) w(rys,t) = (JZ__:)

Example 23. ([8] The Projective Geometry). Let X be as in Example 2. Then X is a regular pooling

with the parameters

lattice with the parameters

N t— N —
|X7“| = |: :l ) ,U(T, Sat) = |: T:| B 7T(7‘, S,t) = q(sfr)(tfr) |: S:| X
"lyq s—Tl, t—r],

Example 24. (The Affine Geometry). Let X’ be as in Example 14. Then X’ is a pooling lattice with the

parameters
N t— N
|X7'-+1|=qNT{ ] : u(r+1,s+1,t+1)=[ T} , 7T(T+1,3+1,t+1):q(5T)(tr)Jrsr[t 8} .
r s—r oy
q q .

Example 25. (The D-Bounded Distance-Regular Graph). Let X be as in Example 21. Then X is a pooling

lattice with the parameters
| X, | =N(0,r,D), u(r,st)=N(rs,t), =(rs,t),

where 7(r, s,t) can be computed using (3.1). In particular, if D(A;) + D(As) = D(A1 + As) + D(A; N AQ)
for any Ay, As € X, then the pooling lattice X is a regular pooling lattice.
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