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一、摘要 
 
1.1 中文摘要 

本計畫第一年期之研究內容旨在利用規則探勘模式（genetic rule mining, GRM），建立一

套事故鑑定專家系統，除可供事故責任鑑定之精確預測外，並提供學習所得規則，供進一步

詮譯、後最佳化及訓練之用。本研究共提出三種 GRM 模式，並利用民國 89～91 年之事故鑑

定案例，共計 537 件，1,074 位當事人作為研究對象，透過卡方檢定共評選出 22 個關鍵鑑定

變數，以作為潛在之狀態變數，控制變數則設定為鑑定責任（分別全因、主因、次因、同為

及無因等五個等級）。所有變數均設定為類別變數（categorical variables），俾利變數數值之選

擇。至於 GAs 染色體之編碼，則以每一條染色體代表一條邏輯規則，每一族群代表所組成之

邏輯規則組成。各染色體之適合度值（fitness value）則以三個目標表之，分別為：包含事故

件數最多、與其他染色體重覆最少、與其他染色體矛盾度最低。並與類神經網路及判別分析

方法進行績效評比。結果顯示，本模式之判中率明顯高於類神經網路及判別分析模式，且所

選擇之邏輯規則也可據以了解鑑定委員之推理邏輯。 
另外，本年期也進一步將所建構之 GRM 模式應用於高速公路事故嚴重度之分析。為避

免三級嚴重度之事故件數分佈不均所導致之過度挖掘問題，本研究乃以隨機方式選擇相同數

量之事故件數進行模式訓練與驗證，並將預測結果與決策樹比較，以驗證本模式之績效。結

果顯示，本模式共計選擇了 19 條規則，其訓練準確度達 78.50%，而驗證準確度則達 74.16%
均遠高於決策樹之預測結果。而障礙物及鋪面狀況是兩個最重要的影響事故嚴重度之成因。 
關鍵字：事故鑑定、規則探勘、遺傳演算法、事故嚴重度 

 
1.2 Abstract 
 

The first research year of this project aims to propose an accident appraisal expert system that 
can not only accurately predict the liability degrees of involved parties but also demonstrate 
comprehensive appraisal rules for further investigation, post-adjustment, and training of junior 
accident appraisal committee members. Three genetic rule mining (GRM) models, based on two 
schemes of the Michigan approach (GRM1 and GRM2) and on the Pittsburgh approach (GRM3) 
are respectively proposed by discovering knowledge from historical appraisal cases. A total of 537 
Taiwanese two-car crash accident cases (1,074 parties) are randomly and equally divided into three 
subsets to train and validate the proposed models. The GRM1 model performs the best in both 
training and validation with correctness rates of 78.85% and 70.21%, respectively. We further 
compare the proposed GRM1 model with artificial neural network models (ANN) and 
discrimination analysis (DA) model proposed by Chiou (2006). The GRM1 model can achieve the 
same accuracy as the ANN models and provide more information than the ANN models by 
delivering a comprehensive combination of rules. It can be used to enhance the quality and 
efficiency of accident appraisal. 

In addition, the proposed GRM models have also been applied to freeway accident analysis to 
discover the key rules that determine the most contributing factors to crash severity. To avoid 
over-mining caused by unevenly distributed data across different types of accidents, identical 
numbers of A1-type, A2-type, and A3-type crash cases drawn from 2003-2007 Taiwan freeway 
accident investigation reports are used for the analysis. A total of 19 rules have been mined which 
can achieve overall correct rates of 78.50% in training and of 74.16% in validation, respectively, 
much higher than those yield by the decision tree model. Obstacle and surface condition have been 
found as the two most contributory factors to crash severity in this study. 
Keywords: Accident appraisal; Rule mining; Genetic algorithms; Crash severity. 
 
二、主要研究成果 
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本年期主要研究成果包括兩大部分：事故鑑定及事故分析。分述如下： 

 
2.1 事故鑑定 
 
2.1.1 Background 
 

Almost all countries have official institutes or ad hoc committees responsible for investigating 
the road traffic accident liabilities. In Taiwan, two sorts of such ad hoc committees have long been 
in operation: the local appraisal committee (LAC) and the re-appraisal committee (RAC). The LAC 
is responsible for investigating the liability of disputable cases of road accidents taking place within 
a jurisdiction area; whereas the RAC is authorized to re-investigate the cases that the LAC’s 
judgments are not agreeable to any of the involved parties within a region covering one or several 
LAC territories. Nowadays, there are 14 LACs and 5 RACs are in operation in Taiwan but several 
defects have been identified (Chiou, 2006). The most serious problem is the insufficient number of 
experienced experts because carrying out the accident appraisals requires professional knowledge. 
There has been lack of mechanism to pass the cumulated experiences of senior members over to the 
new members when the terms for senior members are expired or when the committees are 
reshuffled periodically. As a consequence, it is not unusual that the appraisal or re-appraisal 
outcomes for very similar cases judged by different LACs or RACs can be quite diverse or even 
contradictory. It is imperatively important but challenging to develop effective expert systems that 
can help enhance the consistency of the accident appraisals. 

Chiou (2006) developed an artificial neural network (ANN)-based accident appraisal expert 
system wherein two models (party-based and case-based) are proposed and compared. It is found 
that the party-based model has reached correctness rates of 82.43% (training) and 68.75% 
(validation), while the case-based model has achieved 85.72% (training) and 77.91% (validation). 
With such satisfactory correctness rates, the models are in effect of practical helpfulness. However, 
after implementing the proposed ANN models to some RAC members, two major concerns have 
been pointed out. First, the committee members express their hesitations to use the black-box 
characterized ANN models because they fail to clearly get insights into the ANN inference 
mechanism. Second, they question the capability of ANN models in training the junior members 
because the models only predict the liability with lack of explanations. It would be of great 
usefulness if one could develop an expert system that can not only achieve higher correctness rates 
but also convey the knowledge extracted from historical cases to any committee members, i.e., 
mining for knowledge from available historical databases and toward decision support of accident 
appraisals. 

Rule mining, also known as rule generation, rule recovery, or classification/association rule 
mining, is one of data mining techniques intended to mine for knowledge from available databases 
and toward decision support. Rule mining is naturally modeled as multi-objective problems with 
three criteria: (1) predictive accuracy, (2) comprehensibility, and (3) interestingness (Freitas, 1999; 
Ghosh and Nath, 2004). Rule mining problems can be roughly divided into two categories: crisp 
rule mining and fuzzy rule mining, depending upon the fuzziness of the variables in rules. To 
automatically search for the optimal combination of rules from a considerable number of potential 
rules, genetic algorithms (GAs) are perhaps the most commonly used method. In combining with 
GAs, two categories of rule mining algorithms can be found in literature: genetic mining rule (GMR) 
(e.g. Freitas, 1999; Ghosh and Nath, 2004; Dehuri and Mall, 2006) and genetic fuzzy logic 
controller (GFLC) (e.g. Herrera, et al., 1995, 1998; Lekova, 1998; Chiou and Lan, 2005). The 
performances of these rule mining algorithms have been proven and applied in many fields. Since 
the data in the accident appraisal cases are crisp and categorical in nature, GMR is more suitable for 
accident appraisal purposes than GFLC. Thus, this paper will develop GMR models that can 
determine the optimal combination of appraisal rules to achieve the following goals: (1) to 
accurately predict the liability degree of the involved parties (as an expert system); (2) to train the 
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junior LAC or RAC committee members (as a training tool); and (3) to provide the possibility of 
post-adjustment (fine-tune) of the rules mined. Previous relevant studies have seldom considered 
the problems of conflicts and redundancy among the mined rules, our proposed GMR models will 
account for conflicts and redundancy in addition to conventional objectives: coverage ratio and 
predictive accuracy. 
 
2.1.2 Data 
 

In Taiwan, the ad hoc committee members at the LAC or RAC levels assess accidents based on 
the investigation reports prepared by the police at accident sites. These reports are finalized with 
some tables, figures, photos, and scripts. The information of the reports are digitized and divided 
into five categories with 39 variables, as shown in Table 1. It includes (1) the background of the 
accident (e.g., date, time, location, type of road, daylight or darkness, weather condition, speed 
limit); (2) demographics of the drivers and characteristics of the vehicles (gender, age, education, 
type of vehicle, length of vehicle); (3) violations (licensing, speeding, invasion, alcohol use); (4) 
behaviors of drivers (e.g., direction, movement, foresight of the accident); (5) evidence (braking 
line of left and/or right wheel, crash spot, self-reported speed, driver injury, passenger injury, driver 
death, passenger death). In each accident case, the committee members summarized their appraisal 
report based on the police investigation report. If a consensus had been reached in the committee, 
the appraisal report was finalized with a clear statement of the accident liabilities for all parties 
involved, with a full explanation of the reasons. The liabilities (y) of all parties are categorized into 
five degrees: full responsibility (y=5), i.e., the one who had to take complete responsibility for 
causing the accident, major responsibility (y=4), equal responsibility (y=3), minor responsibility 
(y=2), and no responsibility (y=1). 

In order to generate appraisal rules, the same dataset of historical accident appraisal cases 
studied by Chiou (2006) is adopted, which is composed of 537 cases, involving 1,074 parties, of 
two-car crash cases with sufficient information indicated in Table 1 and with consistent appraisal 
results between the LAC and the RAC. These cases are selected from an original dataset of 5,641 
historical appraisal cases during the period 2000-2002 from the Taiwan Provincial RAC. For 
training and validation purposes, these 537 cases are randomly and equally divided into three 
subsets, each of which consists of 179 cases (358 parties). 

 
Table 1 
Accident digitalized data summarized from police investigation report 

Category Information Variable Coding Descriptions 
Background Date x1 Character month/date/year 
 Time x2 Character hour/minutes 
 Type of road x3 Categorical 1, national freeway; 2, provincial highway; 3, county 

highway; 4, rural highway; 5, street 
 Location x4 Categorical 1, straight road; 2, curved road; 3, signalized intersection; 4,

flashlight intersection; 5, not signalized intersection 
 Major or minor street x5 Categorical 1, major street; 2, minor street; 3, not clear 
 Lane located x6 Categorical 1, inner lane; 2, outer lane; 3, middle lane; 4, slow lane; 5, 

one way street 
 Day or night x7 Categorical 1, day; 2, night with illumination; 3, night without 

illumination 
 Weather condition x8 Categorical 0, clear; 1, rainy or cloudy,  
 Flash signal  x9 Categorical 1, flash red; 2, flash yellow; 3, no flash signal 
 Speed limits x10 Continuous km/hr 
Demographics Gender of driver x11 Categorical 1, male; 2, female 
 Age of driver x12 Integer years  
 Education x13 Categorical 1, university; 2, college; 3, high school; 4, high vocational 

school; 5, junior high school; 6, elementary school; 7: 
kindergarten  

 Type of vehicle x14 Categorical 1, passenger car; 2, business car; 3, light truck; 4, truck; 5, bus
 Length of vehicle x15 Continuous Meter 
Violations Licensing x16 Categorical 1, yes; 2, no (above licensing age); 3, no (below licensing 

age) 
 Speeding x17 Categorical 1, seriously speeding (over 20km/hr); 2, speeding; 3, no 
 Invasion x18 Categorical 1, invasion to opposing direction; 2, moving backward; 3, no 
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violation; 4, not clear; 5, not follow the signal or markings 
 Alcoholic use x19 Categorical 1, yes (>0.55mg/l); 2, yes (0.25mg/l~ 0.55mg/l); 3, yes (< 

0.25mg/l); 4, no 
Behaviors Movement x20 Categorical 1, forward; 2, right turn; 3, left turn; 4, u turn; 6, stop; 7, 

backward 
 Direction x21 Categorical 1, east to west; 2, west to east; 3, south to north; 4, north to 

south 
 Lane change x22 Categorical 0, no; 1, yes; 2, overtaking 
 Foresight of the accident x23 Categorical 0, no; 1, yes; 2, not clear  
 Foresight distance x24 Continuous meter 
 Reactions x25 Categorical 0, no; 1, flash; 2, flash right; 3, flash left; 4, lane change; 5, 

reverse; 6, detour; 7, horn; 8, flash light; 9, decelerate; 10, 
stop; 11, pass; 12, not clear; 13, escape 

 Braking x26 Categorical 0, no; 1, brake before crash; 2, brake after crash 
Evidences Braking line of left wheel x27 Continuous meter 
 Braking line of right wheel x28 Continuous meter 
 Related direction x29 Categorical 1, opposing direction; 2, same direction; 3, left adjacent 

direction; 4, right adjacent direction 
 Crash spot x30 Categorical 0, no damage; 1, right front; 2, right-hand side; 3,left rear; 4, 

rear; 5, left rear; 6, left-hand side; 7, left front; 8, front 
 Self-reported speed x31 Continuous km/hr 
 Relative position x32 Categorical 1, in the front; 2, in the rear; 3, in the left; 4, in the right; 5, 

start from roadside; 6, opposing direction  
 Crossing the middle of x33 

intersection  
Categorical 1, no; 2, yes; 3, not at an intersection 

 Number of lanes after turn x34 Categorical 1, one; 2, two; 3, more than two 

 Lane after turn x35 Categorical 1, inner lane; 2, outer lane; 3, middle lane; 4, slow lane; 5, 
one-way street 

 Driver injury x36 Categorical 0, no; 1, yes 
 Passenger injury x37 Integer Persons 
 Driver death x38 Categorical 0, no; 1, yes 
 Passenger death x39 Integer Persons 

Source: Chiou (2006) 
 

The cases appealed to Taiwan Provincial RAC for reappraisal have been previously assessed by 
one of the 12 LACs, which consist of completely different committee members. To examine the 
discrepancy of appraisal results concluded by different LACs, a variable (x40), with values of 1-12 
representing the different LACs, is added. Furthermore, right-of-way, the priority in using the road, 
is a critical factor in assessing the liability of involved parties. However, such a judgment is too 
professional for the police officers at site to be concluded in the investigation report. Thus, Chiou 
(2006) propose a total of 38 decision trees to determine the right-of-way of involved party 
according to 12 out of the 39 variables in Table 1, including direction, movement, lane located, lane 
after turn, number of lanes after turn, relative positions, crossing the middle of the intersection, and 
violations, etc. The right-of-way is a dummy variable (x41) with values of 1 and 2. x41 = 1 indicates 
that party is assessed to own the right-of-way; x41 = 2 otherwise. 

In addition, to simultaneously describe the situation of the two drivers (vehicles) involved in an 
accident, a superscript is further added to each variable for each of driver in developing case-based 
models. That is, xi

1 and xi
2 represent the ith variable corresponding to driver 1 (vehicle 1) and driver 

2 (vehicle 2), respectively. Likewise, y1 and y2 represent the appraisal results (responsibility degrees) 
of driver 1 (vehicle 1) and driver 2 (vehicle 2), respectively. 

These 41 variables are not all closely related to liability assessment. The correlated relationships 
between exploratory variables and assessed liability should be first examined to remove unrelated 
variables and reduce the number of potential rules. Since most of the explanatory variables and 
appraisal results are categorical, the table of contingency technique is adopted to investigate the 
significant relationships among them. The results are presented in Table 2, in which 12 variables are 
selected at the 0.05 significance level. To facilitate the rule mining process, all categorical variables 
are re-coded with values started from 1, instead of 0 and all continuous variables (only one in this 
case) are categorized into several classes. 
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Table 2 
Variables selected by table of contingency 

Variable Original 
notation 

New 
notation Value 

Type of road x3 z1 
1, national freeway; 2, provincial highway; 3, county 
highway; 4, rural highway; 5, street. 

Location x4 z2 
1, straight road; 2, curved road; 3, signalized intersection;
4, flashlight intersection; 5, unsignalized intersection. 

Type of vehicle x14 z3 
1, passenger car; 2, business car; 3, light truck; 4, truck; 5, 
bus. 

Speeding x17 z4 1, seriously speeding (over 20 km/hr); 2, speeding; 3, no.

Alcoholic use x19 z5 
1, yes (>0.55mg/l); 2, yes (0.25mg/l~ 0.55mg/l); 3, yes (< 
0.25mg/l); 4, no. 

Direction x21 z6 
1, east to west; 2, west to east; 3, south to north; 4, north to 
south. 

Foresight of the accident x23 z7 1, none; 2, yes; 3, not clear. 

Crash spot x30 z8 
1, no damage; 2, right front; 3, right-hand side; 4,left rear; 
5, rear; 6, left rear; 7, left-hand side; 8, left front; 9, front.

Self-reported speed x31 z9 
1, < 31 km/hr; 2, 31-40 km/hr; 3, 41-50 km/hr; 4, 51-60 
km/hr; 5, 61-70km/hr; 6, > 70km/hr; 7, not clear. 

Driver death x38 z10 1, no; 2, yes. 

Area of LAC x40 z11 1-12 corresponding areas of LAC. 

Right-of-way x41 z12 1, yes; 2, no. 

Note: The variable, self-reported speed, which is originally coded as continuous values are then categorized into seven 
classes. Three variables, foresight of the accident, crash spot, driver death, which are originally coded with values 
starting from 0, are re-coded as values starting from 1. 
 
2.1.3 Methodologies 

 
The Pittsburgh approach and the Michigan approach are the two main approaches to encoding 

rules. The former is a natural way to represent an entire rule set as a chromosome, maintain a 
population of candidate rule sets. Historically, this was the approach taken by DeJong and his 
students while at the University of Pittsburgh, which gave rise to the phrase “the Pittsburgh 
approach” (Smith, 1983; DeJong, 1988). The fitness value of a chromosome in such an approach 
can be directly represented as the performance index of the entire rule set, but the number of rules 
mined and the length of a rule of this approach are strictly restrained by the length of chromosome. 
In contrast, the latter is a model of cognition in which the members of the population are individual 
rules and a rule set is represented by the entire survived population. This approach was originally 
taken by Holland and his students while at the University of Michigan, therefore, the approach is 
named as the Michigan approach (Holland and Remitman, 1978; Booker et al., 1989). Compared 
with the Pittsburgh approach, the Michigan approach can accommodate larger number of rules and 
literally lengthy rules, but the fitness value of a chromosome, i.e. a rule, is much more difficult to 
define. Because an expert system constituted of top-performing rules in a survived population may 
not necessarily perform well on the whole, if these rules are conflicting or redundant to each other, 
thus it is challenging to design an appropriate fitness function to measure the performance of a 
chromosome (a rule) such that the entire mined (survived) rules can perform most excellent on the 
whole. The proposed encoding methods and fitness functions of these two approaches are 
respectively described below. 
 
2.1.3.1 Encoding methods 
 



(1) Michigan approach 
In the Michigan approach, each chromosome represents a candidate If-then rule. The conditions 

associated in the “if part” are termed as antecedent and those in the “then part” are named 
consequent. Besides, the antecedent part consists of at least one to at most twelve variables selected 
from Table 2 and the consequent part is composed by, of course, only one variable: liability degree 
of involved party. In general a rule is a knowledge representation of the form If A then C, where A 
is a set of parties satisfying the conjunction of predicting attribute values and C is a set of parties 
with the same predicted class. Thus, a typical rule i can be of the form: 

Rule i: If z1=ai1 and z2=ai2 …and zj=aij … and z12=ai12 Then y=gi 
or of a shorter form: 

Rule i: If Ai Then Ci.  
where, aij is the categorical value of jth attribute variable in rule i. gi is the value of classification 
variable in rule i, which ranges from 1 to 5 to represent five degrees of liability. Ai and Ci, again, are 
the sets of parties satisfying the antecedent part and consequent part of rule i, respectively. 

By encoding a rule as a chromosome, each gene is used to represent a corresponding variable. 
The length of a chromosome is set as 13 to represent twelve state variables in the antecedent part 
and one control variable in the consequent part. Each gene takes one of the categorical values of the 
corresponding variable. It is worthy of noting that the ranges of gene value may differ from each 
other since the range of corresponding variable is different. In addition, a gene in a rule antecedent 
is allowed to take a value of 0 to represent that its corresponding variable is not considered by the 
rule. If all genes in the antecedent part simultaneously take a value of 0 or the gene in the 
consequent part takes 0, then the whole rule is not included in the rule set. 

Based on such an encoding method, a rule of “If speeding=”no” and alcoholic use=”no” and 
right-of- way=”yes”, then liability=”no responsibility” can be encoded as 0003400000011 as 
depicted in Fig. 1. The total number of potential rules equals to 
6 6 6 4 5 5 4 10 8 3 13 3 5 =4,043,520,000, making the number of potential rule 
combinations reaches 24,043,520,000. Obviously, it is barely possible to compare all rule combinations 
by a total enumeration manner. 

 

 
Fig. 1. Encoding methods of party-based Michigan model (GRM1) 

 
In the context of two-car crash accidents, it is interesting to compare the performance of the 

models which simultaneously consider the state variables of both parties involved or only consider 
that of one party alone. Therefore, two GRM models, namely GRM1 and GRM2, are proposed. The 
GRM1 is a party-based Michigan approach model which considers the state variables of one party 
alone to conclude the liability degree for the party as shown in Fig.1, while GRM2 is a case-based 
Michigan approach model which considers both parties involved simultaneously to conclude the 
liability degree of one party. Since the sum of liability degrees of two parties, party 1 and party 2, 
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involved in an accident are always equal to a constant, i.e. 6. For instance, of party 1 is judged as no 
responsibility for the accident, then party 2 must have to take full responsibility. The chromosome 
length of the GRM2 is 25 as depicted in Fig. 2. 
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Fig. 2. Encoding methods of case-based Michigan model (GRM2) 

 
(2) Pittsburgh approach 

In contrast to the Michigan approach, the Pittsburgh approach simultaneously encodes all mined 
rules, a rule set, as a chromosome by simply extending the length of a chromosome to a multiple 
length of the Michigan approach’s chromosome of the number of rules. Therefore, the quality of the 
chromosome, i.e. fitness function, can straightforwardly represent the correctness rate of the rule set. 
Taking a preset number of rules (K)=20 for instance, the party-based encoding method (hereinafter, 
named as GRM3) can be depicted as Fig. 3. The length of chromosome equals to 2602013 =× . 
Obviously, the case-based Pittsburgh approach model will result in a very lengthy chromosome, 
thus it is not considered in this paper. Since the situations that all antecedent genes or the 
consequent gene in a rule take a value of 0, then it indicates that the rule will not be selected. In 
other words, the number of mined rules must be less than or equal to the preset number of rules (K). 

 

 
Fig. 3. Encoding methods of party-based Pittsburgh model (GRM3) 

 
2.1.3.2 Performance indices 

 
For the Michigan approach, the role of the fitness function is to evaluate the quality of the rule 

numerically. In doing so, three common factors to be taken into account are the coverage, the 
completeness and the confidence factor of the rule, respectively defined as follows. The coverage of 
the rule, i.e. the cases satisfied by the rule antecedent, is given by A , the cardinality of set A (the 
number of elements in set A). The completeness of the rule, i.e. the proportion of cases of the target 
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class covered by the rule, is given by CCA /I . The confidence of the rule, i.e. the predictive 

accuracy, is given by ACA /I  (Freitas, 1999). Based upon these three factors, this paper uses 
the performance indices including predictive accuracy, comprehensibility and interestingness 
narrated as follows. 

 
(1) Predictive accuracy 

 
Two ways to measure the predictive accuracy, also called confidence, are found in literature 

(Ghosh and Nath, 2004, Dehuri and Mall, 2006, Dehuri et al., 2008): 
ACAP /)( I=ℜ )                                                   (1) 

)~()~(
~~

)(
CACACACA

CACA
P

IIII

II

+×+
×

=ℜ                            (2) 

where  is the predictive accuracy of rule )(ℜP ℜ . A is a set of cases or parties satisfying the rule 
antecedent. C is a set of cases or parties satisfying the rule consequent.  is the intersection 
operator. ~A and ~C are complement sets of A and C, respectively. 

I

A  is the cardinality of set A. 
 
(2) Comprehensibility 

 
Comprehensibility is used to measure the family size of the rule. The smaller the rule, the more 

comprehensible (specific) it is. There are several ways to measure comprehensibility (Fedelis, 2000, 
Ghosh and Nath, 2004, Dehuri and Mall, 2006, Dehuri et al., 2008) for example: 

cc MNC /)(1)( ℜ−=ℜ                                                 (3) 
)()( ℜ−=ℜ cc NMC                                                   (4) 

ANC −=ℜ)(                                                       (5) 
)1log(/)1log()( kmkC +++=ℜ                                         (6) 

where is the comprehensibility of rule )(ℜC ℜ . )(ℜcN  is the number of conditions in the rule 
.  is the number of at most conditions a rule can have. N is the number of total cases. m and 

k are the number of attributes involved in the antecedent part and consequent part, respectively. 
ℜ cM

 
(3) Interestingness  

 
The third criterion of the rules, called interestingness, is used to measure how surprising, useful 

or novel the rule is. Two simpler expressions of interestingness can be found in literature 
(Piatetsky-Shapiro, 1991, Ghosh and Nath, 2004) as follows: 

NCACAI /)( −=ℜ I                                              (7) 

)1()(
N

CA
C

CA
A

CA
I

III
−−×=ℜ                                    (8) 

where  is the interestingness of rule )(ℜI ℜ . N is the total number of cases or parties. 
 
2.1.3.3 Proposed fitness functions  
 
(1) GRM1 and GRM2 
 

Many studies consider rule mining as a multi-objective problem and employ evolutionary 
algorithms to mine the Pareto-optimal rules with respect to abovementioned three indices. However, 
in mining classification rules instead of association rules, a combination of Pareto-optimal rules 
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might not necessarily perform best on the whole. Besides, the conflict and redundancy among 
mined rules are seldom considered in the literature. High redundancy and conflict among rules will 
cause too many similar or conflicting rules being mined. 

Based on this, this paper designs a two-stage process to select chromosomes (rules). In the first 
stage, a fitness function, a performance index with a combination of coverage ratio, predictive 
accuracy, and predictive error, is defined and used to rank the chromosomes, which can be 
expressed as: 

)
~

(
i

ii

i

iii
i A

CA
A

CA
N
A

f
II

−×=                                       (10) 

where, fi is the performance index of the ith chromosome. The first term of right hand side is 
coverage ratio. The second term is the predictive accuracy rate. The third term is predictive error 
rate. The equation can be then simplified as: 

N
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N
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f iiii
i

~II
−=                                             (11) 

In the second stage, to avoid selecting similar or conflicting rules, two indices, redundancy 
index and conflicting index, are respectively defined and then both used to filter high redundant and 
conflicting chromosomes (rules). The redundancy index of rule i is defined as 
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1
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where li is the redundancy index of the ith chromosome which has already been ranked in a 
descending order. The conflicting index of rule i is defined as 

}
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1
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                                         (13) 

where ti is the redundancy index of the ith chromosome which has been ranked in a descending 
order. jiji ggAA ≠ if I  is the number of cases or parties satisfying both antecedent of rules i and 
j which have different predicted classes. 

To facilitate the filtering process according to li and ti, two thresholds, L and T, for redundancy 
and conflict have to be given. Thus, if a chromosome reaches either  or , then it will 
be replaced by another randomly re-generated chromosome (newly re-born chromosome). These 
two given thresholds will then determine how many chromosomes will survive in each of 
generation. The higher the values of the thresholds are, the more chromosomes will be replaced. Of 
course, if too many chromosomes are replaced by randomly generated chromosomes, the 
competitive genetics can not be successfully preserved and a randomly searching mechanism will 
be resulted. Thus, the values of these two thresholds should be carefully examined. It is worthy of 
noting that the redundancy and conflicting indices are computed through a mutual comparison 
matter by only comparing with the chromosomes ranked in front. 

Lli ≥ Tti ≥

The evolutional process of GRM1 and GRM2 can be depicted in Fig. 4. As shown from the 
figure, after selection, crossover, and mutation, the survived chromosomes are first ranked 
according to their fitness value, and then filtered by their redundancy and conflicting indices. In the 
process all highly redundant and conflicting chromosomes will be replaced by randomly generated 
ones until the stopping condition (a given number of generations in this paper) reaches. However, in 
the final generation, all highly redundant and conflicting chromosomes will be deleted without 
replacement. The finally survived chromosomes are the optimal combination of rules. 
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Lli ≥ Tti ≥  
Fig. 4. Evolutional process of the GRM1 and GRM2 models 

 
Even if the chromosomes have been filtered by redundancy and conflicting indices, it can not be 

avoided that two or more rules with different predicted classes might still be simultaneously fired 
by a sample. To synthesize the predicted class of more then one rules fired, we take an average 
value of predicted classes of all fired rules and round it to a nearest integer, which can be expressed 
as: 

∑
∈

=
Fj

jg
F

Intsg )1(                                                  (14) 

where, G is the predicted class of the algorithm. )(⋅Int  is a rounding operator, which rounds value 
in parenthesis to a nearest integer. F is a set of sequence numbers of fired rules. As such, the 
correctness rate of the model can be then computed as the number of correctly predicted cases or 
parties (that is, the predicted class equal to the target class) divided by total number of cases or 
parties. 
 
(2) GRM3 
 

Since a chromosome of the GRM3 model (the party-based Pittsburgh approach) represents a 
combination of rules, the fitness function of a chromosome can be directly expressed as correctness 
rate. Correctness rate is defined as the number of correctly predicted parties divided by the total 
number of parties in training or validation. In the case of more than one rule fired, Eq.(14) is also 
used to synthesize the predicted classes of all fired rules. The reasons for not taking redundancy and 
conflicting indices into account are that the GRM3 aims to maximize the correctness rate under a 
preset number of rules (K), at optimality, the redundancy and conflicts among rules should be 
largely avoided. 
 
2.1.3.4 Genetic operators 

 
Because the genes in our GRM models are not encoded binary, simple genetic algorithms 

(Goldberg, 1989) cannot be used. Instead, we employ the max-min-arithmetical crossover proposed 
by Herrera et al.(1998) and the non-uniform mutation proposed by Michalewicz (1992). A brief 
description is given below. 
 
(1) Max-min-arithmetical crossover 

Let Gw
t ={ gw1

t ,…, gwk
t ,…, gwK

t } and Gv
t ={ gv1

t ,…, gvk
t ,…, gvK

t }be two 
chromosomes selected for crossover, the following four offsprings will be generated: 

G1
t+1  = aGw

t + (1-a)Gv
t                                             (15) 

G2
t+1  = aGv

t + (1-a)Gw
t                                             (16) 

G3
t+1 with g3k

t+1=min{gwk
t, gvk

t}                                       (17) 
G4

t+1 with g4k
t+1=max{gwk

t, gvk
t}                                       (18) 

where a is a parameter (0 < a < 1) and t is the number of generations. 
 
 11



(2) Non-uniform mutation 
Let Gt = { g1

t ,…, gk
t ,…, gK

t } be a chromosome and the gene gk
t be selected for mutation (the 

domain of gk
t is [gk

l, gk
u]), the value of gk

t+1 after mutation can be computed as follows: 
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where b randomly takes a binary value of 0 or 1. The function )z,(tΔ  returns a value in the range 
of [0, z] such that the probability o ),  approaches to 0 as t increasef s: ( ztΔ

)1(),( )/1( hTtrzzt −−=Δ                                                      (20) 
where r is a random number in the interval [0,1], T is the maximum number of generations and h is 
a given constant. In Eq.(20), the value returned by ),( ztΔ  will gradually decrease as the evolution 
progresses. 
 
2.1.4 Results 
 
2.1.4.1 Parameter settings 
 

The parameters of GAs are set as follows. Population size=100, crossover rate=0.9, a=0.3, 
h=0.5, T=200. Redundancy index threshold (L) and conflicting index threshold (T) are set as 0.75 
and 0.5, respectively. The number of generations is set as 200. 
 
2.1.4.2 Comparisons 
 

A k-fold (k=3 in this paper) cross-validation method is adopted for algorithm comparisons. A 
total of 537 accident cases (1,074 parties) are randomly and equally divided into three subsets, each 
of which contains 179 cases (358 parties). Each model is trained and validated three times 
separately. The average training and validation results of various algorithms are reported in Table 3. 
As noted from Table 3, GRM1 performs the best, both in training and validation, with correctness 
rates of 78.85% and 70.21%, respectively, followed by GRM2 with training and validation 
correctness rates of 74.34% and 69.33%, respectively. GRM3 performs the worst with training and 
validation correctness rates ranging from 69.20%~71.21% and 65.84%~67.55% under various 
preset numbers of rules, respectively. It is worthy of noting that the correctness rate of GRM3 does 
not increase monotonically as anticipated as the preset number of rules gets larger. It might be 
partly due to the searching space being exponentially increased as the preset number of rules gets 
larger, making the optimal combination of rules rather difficult to be mined. In terms of the number 
of rules mined, the GRM1 model selects the largest number of rules (34 rules), followed by 30 rules 
mined by GRM3 with K=35. Even under the limitation of at most 10 rules mined (GRM3 with 
K=10), the correctness rates can still reach 69.20% in training and 66.46% in validation. 
 
Table 3 
The training and validation results of various GRM models 

Correctness rate (%) Models Maximum number 
of rules allowed 

Number of rules 
mined Training Validation 

GRM1 100 34 78.85 70.21 
GRM2 100 28 74.34 69.33 

10 10 69.20 66.46 
15 15 69.60 66.15 
20 20 70.00 67.08 
25 24 69.47 65.84 
30 28 69.23 66.87 

GRM3 

35 30 71.21 67.55 



 13

 
To get an in-depth investigation to the rules mined by the best performing model, GRM1, the 

fitness value, coverage ratio, predicted accuracy, redundancy index and conflicting index of a total 
of 34 mined rules are shown in Table 4. These rules are ranked according to fitness value fi in 
Eq.(11). Note that in terms of coverage ratio, R17 can cover the largest number of parties (46% of 
1,074 parties, i.e. 494 parties), followed by R1 (43% of 1,074 parties, i.e. 462 parties). In contrast, 
R33 and R34 are customized to rather few parties with a low coverage ratio of 1%. In general, the 
more explanatory variables introduced into the antecedent of a rule, the lower the coverage ratio of 
the rule will be. 

In terms of predicted accuracy, R19 and R21 perform the best with predicted accuracy of 91%, 
followed by R4 and R20 with predicted accuracy of 85%. R33 and R34 have the lowest predicted 
accuracy of 50%. In terms of redundancy index, R7 has the highest value of 72%, which is found to 
be highly overlapping with R2, followed by R4 of 65% overlapping with R2. Actually, both R7 and 
R4 are belonging to the family rules of R2. There are still many rules having no redundancy to their 
previous rules. In terms of conflicting, R23 performs the worst with conflicting index as high as 
42%, which highly conflicts with R3, followed by R12 with conflicting value of 21% which 
conflicts with R8. 

Also note that a total of 17 rules (the largest number) are mined of the predicted class of “no 
responsibility,” followed by six rules with the predicted class of “full responsibility.” Only two rules 
with the predicted class of “equal responsibility” are mined. 



Table 4 
Combination of rules mined by the GRM1 model 
Rules Antecedent Consequent Fitness 

value 
Coverage 
ratio 

Predicted 
accuracy 

Redundancy 
index 

Conflicting 
index 

Rule 1 If location=“straight road” and right-of-way=“yes” Then liability=“no” 0.28  0.43  0.83 0.00  0.00  

Rule 2 If alcoholic use=“no” and relative direction=“opposing direction” 
and right-of-way=“yes” Then liability=“no” 0.22  0.33  0.83 0.21  0.00  

Rule 3 If relative direction=“same direction” and right-of-way=“no” Then liability=“full” 0.20  0.34  0.79 0.00  0.00  

Rule 4 If type of vehicle=“passenger car” and alcoholic use=“no” and 
relative direction=“opposing direction” and right-of-way =“yes” Then liability=“no” 0.16  0.22  0.85 0.65  0.00  

Rule 5 If location=“straight road” and type of vehicle=“passenger car” and 
speeding=“no” and right-of-way=“yes” Then liability=“no” 0.15  0.23  0.81 0.55  0.00  

Rule 6 If location=“straight road” and foresight of the accident=“no” and 
driver death =“no” and right-of-way =“yes” Then liability=“no” 0.14  0.22  0.82 0.48  0.00  

Rule 7 If speeding=“no” and relative direction=“opposing direction” and 
right-of-way=“yes” Then liability=“no” 0.11  0.37  0.65 0.72  0.00  

Rule 8 If relative direction =“right adjacent direction” and 
right-of-way=“yes” Then liability=“minor” 0.11  0.27  0.71  0.17  0.00  

Rule 9 If relative direction=“left adjacent direction” and right-of-way=“no” Then liability=“major” 0.10  0.28  0.69  0.00  0.00  

Rule 10 If relative direction=“opposing direction” and right-of-way=“no” Then liability=“full” 0.09  0.35  0.63  0.00  0.00  

Rule 11 If location=“unsignalized intersection” and right-of-way=“yes” Then liability=“minor” 0.09  0.34  0.63  0.25  0.00  

Rule 12 If location=“signalized intersection” and speeding=“no” and driver 
death =“no” and right-of-way =“yes” Then liability=“no” 0.09  0.19  0.73  0.32  0.21  

Rule 13 If type of vehicle=“passenger car” and foresight of the accident=“not 
clear” and right-of-way =“no” Then liability=“full” 0.08  0.28  0.65  0.12  0.08  

Rule 14 If speeding=“no” and alcoholic use=“no” and relative 
direction=“opposing direction” and driver death =“no” and 
right-of-way =“yes” 

Then liability=“no” 0.08  0.27  0.66  0.52  0.00  

Rule 15 If speeding=“seriously” and relative direction=“opposing direction” 
and right-of-way =“no” Then liability=“full” 0.07  0.21  0.67  0.45  0.00  
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Rule 16 If location=“unsignalized intersection” and right-of-way=“no” Then liability=“major” 0.07  0.36  0.59  0.00  0.00  

Rule 17 If speeding=“no” and foresight of the accident=“yes” and 
right-of-way=“yes” Then liability=“no” 0.06  0.46 0.57  0.32  0.00  

Rule 18 If alcoholic use=“no” and foresight of the accident=“not clear” and 
right-of-way =“yes” Then liability=“no” 0.06  0.29 0.60  0.25  0.00  

Rule 19 If foresight of the accident=“no” and relative direction=“same 
direction” and right-of-way =“yes” Then liability=“no” 0.06  0.07  0.91  0.00  0.00  

Rule 20 If location=“straight road” and type of vehicle =“truck” and driver 
death=“no” and right-of-way =“yes” Then liability=“no” 0.06  0.08  0.85  0.21  0.00  

Rule 21 If location=“straight road” and type of vehicle =“light truck” and 
right-of-way =“no” Then liability=“full” 0.05  0.07  0.91  0.00  0.00  

Rule 22 If foresight of the accident=“not clear” and driver death=“no” and 
right-of-way=“yes” Then liability=“no” 0.04  0.27  0.57  0.69  0.00  

Rule 23 If speeding =“no” and foresight of the accident=“no” and driver 
death=“no” and right-of-way =“no” Then liability=“major” 0.03  0.33  0.55  0.57  0.42  

Rule 24 If location=“flashlight intersection” and type of vehicle =“passenger 
car” and relative direction=“same direction” and right-of-way =“yes” Then liability=“minor” 0.03  0.06  0.78  0.17  0.08  

Rule 25 If type of vehicle=“light truck” and relative direction=“same 
direction” and driver death =“no” and right-of-way =“yes” Then liability=“no” 0.03  0.06  0.74  0.39  0.00  

Rule 26 If type of vehicle=“passenger car” and foresight of the 
accident=“no” and right-of-way=“yes” Then liability=“no” 0.02  0.41  0.53  0.55  0.00  

Rule 27 If foresight of the accident=“no” and relative direction=“left adjacent 
direction” and right-of-way =“yes” Then liability=“minor” 0.02  0.05  0.69  0.05  0.03  

Rule 28 If location=“straight road” and type of vehicle=“light truck” and 
speeding=“no” and right-of-way =“no” Then liability=“minor” 0.02  0.16  0.56  0.00  0.00  

Rule 29 If type of vehicle=“truck” and alcoholic use=“no” and relative 
direction=“opposing direction” and right-of-way =“no” Then liability=“full” 0.01  0.03  0.70  0.21  0.00  

Rule 30 If speeding =“seriously” and foresight of the accident=“yes” and 
right-of-way =“yes” Then liability=“equal” 0.01  0.04  0.61  0.07  0.05  

Rule 31 If type of vehicle =“passenger car” and foresight of the 
accident=“no” and relative direction=“opposing direction” and 
right-of-way =“yes” 

Then liability=“no” 0.01  0.05  0.56  0.11  0.00  

Rule 32 If type of vehicle=“light truck” and foresight of the accident=“yes” 
and right-of-way =“no” Then liability=“major” 0.00  0.06  0.53  0.05  0.00  
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Rule 33 If relative direction=“same direction” and driver death=“yes” and 
right-of-way=“yes” Then liability=“no” 0.00  0.01  0.50  0.01  0.00  

Rule 34 If location=“straight road” and type of vehicle=“truck” and 
speeding=“yes” and right-of-way =“yes” Then liability=“equal” 0.00  0.01  0.50  0.00  0.00  
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Table 5 further compares the results from our proposed GRM1 model and from the ANN and 
DA models developed by Chiou (2006). In terms of correctness rate, ANN2 model (case-based) 
with 10 hidden neurons performs the best both in training and validation, followed by ANN1 model 
(party-based) with 10 hidden neurons, ANN1 (12-10-1), in training and the proposed GRM1 model 
in validation. The DA model still performs the worst. In consideration of model’s accuracy and 
complexity, Chiou (2006) finally selected ANN1 (12-5-1) as the best performed model according to 
SBC. However, it is hard to identify the number of parameters of genetic algorithms, thus SBC of 
the proposed GRM1 model is not computed. Nonetheless, it is worth noting that the correctness 
rates of training and validation of GRM1 model are both higher than ANN1 (12-5-1). 
 
Table 5 
Comparisons with ANN and DA models developed by Chiou (2006) 

Training Validation 
Models H 

Correctness rate (%) SBC Correctness rate (%) SBC 
GRM1 – 78.85 – 70.21 – 
 
 5 78.17 -0.82* 66.10 0.13* 
ANN1 10 82.43 -0.35 68.75 1.04 
 15 80.72 0.38 55.27 2.39 
 
 5 78.92 0.55 64.14 2.70 
ANN2 10 85.72* 2.56 77.91* 5.73 
 15 70.59 4.70 65.25 9.84 
 
DA – 59.05 -0.82* 54.09 0.13* 

Note: SBC stands for Schwarz’s Bayesian Criterion. SBC=ln(MSE)+Pln(N)/N, where, MSE is 
mean squared error, P is the number of parameters. * indicates the best performing model in terms 
of corresponding criterion. H is the number of hidden neurons. 

 
To gain in-depth investigation on the validation results of different models, the number of 

parties with degrees of liabilities predicted by DA, ANN1 (12-5-1), and GRM 1 are reported in 
Tables 6~8, respectively. Note that the DA model has the highest correctness rate of 66.90% for the 
category of real y = 5 and the lowest correctness rate of 5.00% for the category of real y = 3, 
suggesting that DA model performs rather poorly in the cases of equal liability. In contrast, ANN1 
(12-5-1) model can achieve over 60% of correctness rate almost for all categories, except for the 
category of real y = 4. Besides, the degrees of liabilities even incorrectly predicted by ANN do not 
deviate over one degree from their real ones; except for a total of 19 (1.77%) parties which are 
deviated two degrees. The proposed GRM1 model can accurately predict the liability for the 
categories of y = 1 or 5 with correctness rates of 92.25% and 91.90%. Even for the categories of y = 
2 or 4, the proposed model can still reach about 60% of correctness rate. However, the proposed 
model is unable to predict the liability for the category of y = 3. The correctness rate of that 
category is only 8.33%. Nonetheless, the degrees of liabilities, even incorrectly predicted by GRM, 
do not deviate over one degree from their real ones; except for a total of 3 parties which are 
deviated two degrees. Besides, the proposed GRM1 model tends to produce much more predicted 
classes at both extremes: y=1 or y=5 than at the middle, i.e. y=3. 
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Table 6 
The number of parties with degrees of liabilities predicted by the DA model 

Predicted y     
Real y 

1 2 3 4 5 
Total 

1 157 (55.28)  98 (34.51)  20 (7.04) 9 (3.17) 0 (0.00) 284 (100.00)  
2 86 (38.57)  125 (56.05)  0 (0.00) 11 (4.93) 1 (0.45) 223 (100.00)  
3 18 (30.00)  12 (20.00)  3 (5.00)  12 (20.00) 15 (25.00) 60 (100.00)  
4 2 (0.90)  36 (16.14)  0 (0.00) 106 (47.53)  79 (35.43) 223 (100.00)  
5 0 (0.00)  3 (1.06)  30 (10.56) 61 (21.48) 190 (66.90)  284 (100.00)  
Total 263  274  53 199 285 1074  

Note: The percentages are given in the parentheses. 
 
Table 7 
The number of parties with degrees of liabilities predicted by the ANN1 model 

Predicted y      
Real y 

1 2 3 4 5 
Total 

1 202 (71.13)  69 (24.30)  13 (4.58) 0 (0.00) 0 (0.00) 284 (100.00)  
2 54 (24.22)  139 (62.33)  30 (13.45) 0 (0.00) 0 (0.00) 223 (100.00)  
3 0 (0.00)  11 (18.33)  41 (68.33)  8 (13.33) 0 (0.00) 60 (100.00)  
4 0 (0.00)  4 (1.79)  44 (19.73) 107 (47.98)  68 (30.49) 223 (100.00)  
5 0 (0.00)  0 (0.00)  2 (0.70) 61 (21.48) 221 (77.82)  284 (100.00)  
Total 256  223  130 176 289 1074  

Note: The percentages are given in the parentheses. 
 
Table 8 
The number of parties with degrees of liabilities predicted by the GRM1 model 

Predicted y     
Real y 

1 2 3 4 5 
Total 

1 262 (92.25)  20 (7.04)  2 (0.71) 0 (0.00) 0 (0.00) 284 (100.00)  
2 88 (39.46)  133 (59.64)  2 (0.90) 0 (0.00) 0 (0.00) 223 (100.00)  
3 0 (0.00)  24 (40.00)  5 (8.33)  31 (51.67) 0 (0.00) 60 (100.00)  
4 0 (0.00)  3 (1.35)  0 (0.00) 137 (61.43)  83 (37.22) 223 (100.00)  
5 0 (0.00)  0 (0.00)  0 (0.00) 23 (8.10) 261 (91.90)  284 (100.00)  
Total 350  180 9 191 344 1074  

Note: The percentages are given in the parentheses. 
 
2.1.4.3 Discussions 
 

The proposed GRM1 models may not exhibit remarkably higher correctness rate than all of 
ANN models developed by Chiou (2006); however, the proposed models can generate meaningful 
rules for further examination and demonstration, making the GRM-based expert system much more 
understandable than the black-box ANN approach. Consequently, decision makers might feel more 
confident in using this GRM-based expert system. Besides, with rules mined, the accident appraisal 
knowledge can be clearly displayed and used to train junior members. And, it also offers a 
post-optimization mechanism which can further fine-tune the mining rules by interviewing the 
accident appraisal experts. 

To further investigate the rules mined in Table 4, only eight out of twelve explanatory variables 
appeared in at least one rule, including location, type of vehicle, speeding, alcoholic use, foresight 
of the accident, relative direction, driver death, and right-of-way. Particularly, all of the rules 
introduce the variable of right-of-way, explaining its importance in accident appraisal. Furthermore, 
most of the rules with right-of-way=“yes” will also lead to the consequents of liability=“no 
responsibility” or “minor responsibility.” In contrast, the rules with right-of-way=“no”, then the 
liabilities are most likely to be “major responsibility” or “full responsibility.” As such, one may 
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argue that the accident appraisal can be conducted solely depending upon right-of-way. However, in 
doing so, the correctness rate is only 48.65%, which is even lower than that of the DA model. 

Unlike the right-of-way being a decisive factor, some variables appearing in the rules are more 
likely to act like an environmental factor, such as location and relative direction, to determine 
whether the accident situation is clear or ambiguous. In a relatively clearer situation, such as 
location=“straight road,” or relative direction=“same direction” or “opposing direction”, the 
liability degree tends to be overwhelmingly assessed as either “no responsibility” or “full 
responsibility” solely depending on right-of-way, such as the rules of R1, R2, R3, R5, and R6 etc. 
In contrast, in a relatively more ambiguous situation, such as location=“unsignalized intersection” 
or “flashlight intersection” or relative direction=“left adjacent direction” or “right adjacent 
direction,” then the liability degree are more conservatively assessed as “minor responsibility” and 
“major responsibility,” such as the rules of R8, R9, R11, and R16 etc. 

On the other hand, some variables operate like an incremental factor to further raise or alleviate 
the liability degree accompanying with the ownership of right-of-way. These variables are violation 
variables, including speeding and alcoholic use. Taking R30 for instance, the liability degree is 
suggested as “equal responsibility,” when the party was seriously speeding even with the ownership 
of right-of-way. 

High redundancy relationship can still be found among rules mined. Taking R4 for instance, it 
belongs to the family rules of R2. It is said that R4 is more specific than R2 by further specifying 
the type of vehicle. Due to the high redundancy between these two rules, deleting any one of them 
may not seriously deteriorate the correctness rate, if the number of rules is strictly limited. 

In comparing the degree of liability predicted with different models, the proposed GRM model 
performs worse in predicting the category of liability=“equal responsibility,” because very few 
related rules (with consequent part of liability=“equal”) have been mined. Two reasons could be 
identified. First, the number of parties with liability=“equal responsibility” in the dataset is only 
approximately one fourth of other degrees, thus it is difficult to learn representative rules from 
limited parties. Second, since the right-of-way is very decisive to liability assessment, all predicted 
results are clearly divided into two distinct categories: no (minor) and full (major) degrees, leaving 
no much room for middle degree. 

Four explanatory variables: type of road, direction, crash spot, and LAC, are not included in any 
rule of a total of 34 rules. It can be explained that they are not key factors to the accident appraisal. 
However, it might also be possible that these variables are categorized into too many classes, e.g. 
crash spot (8 classes) and LAC (12 classes). In general, GRM tends not to choose a variable with 
too many classes, because the number of cases or parties belonging to each class will be small and 
lower the coverage ratio. Thus, it would be very helpful to collect more cases with equal 
responsibility for training or to approximately merge some classes into fewer categories. 
 
 
2.1.5 Concluding remarks 
 

This paper employs genetic rule mining (RGM) to develop accident appraisal expert systems by 
discovering knowledge from historical appraisal cases, which can not only accurately predict the 
liability degrees of involved parties but also demonstrate comprehensive appraisal rules and further 
provide the flexibility of post-adjustment of mined rules. Three GRM models based on the 
Michigan approach (GRM1 and GRM2) and the Pittsburgh approach (GRM3) have been developed 
in this study. To effectively mine rules based on the Michigan approach, a novel two-stage rule 
selection procedure is proposed. The first stage is to rank the chromosomes survived from selection, 
crossover, and mutation operations according to a fitness function composed by coverage ratio, 
predicted accuracy and predicted error. The second stage is then to filter the ranked chromosomes 
depending on whether their redundancy and conflicting indices are larger than the preset thresholds. 

For training and validating the proposed three models, a total of 537 two-car crash accident 
cases (1074 parties) are randomly and equally divided into three subsets, each of which contains 
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179 cases (358 parties). Each model is trained and validated three times separately. The results 
show that the GRM1 model, party-based Michigan approach, performs the best with training and 
validation correctness rates of 78.85% and 70.21%, respectively. Comparisons with the ANN1, 
ANN2, and DA models proposed by Chiou (2006) also show that the proposed GRM1 model can 
achieve the accuracy level of ANN models, but more importantly, the GRM1 model can generate a 
comprehensive combination of rules. Through an in-depth investigation on a total of 34 rules mined 
by GRM1 model, some underlying accident appraisal knowledge can be extracted. First, 
right-of-way is found to be a decisive factor which not only shows in every rule mined but also 
determines most of the liability degree as two distinct categories: no (or minor) responsibility vs. 
full (or major) responsibility depending upon which party owns the right-of-way. Second, some 
environmental variables, such as location and relative direction, appear in rules to determine how 
clear the accident situation was, which then lead the liability degree to be either an overwhelming 
result: no responsibility vs. full responsibility or to be a conservative result: minor responsibility vs. 
major responsibility. Third, some violation variables, such as speeding or alcohol use, are then used 
to add or relieve liability degree which has been assessed based on other facts. 

Several directions can be identified for future studies. First, the encoding method for the 
Pittsburgh approach proposed in this paper is rather lengthy, as a result that the case-based 
Pittsburgh model can not be considered. A more compact and efficient encoding method for 
Pittsburgh approach deserves further studies. Besides, the proposed two-stage chromosome ranking 
and filtering procedure of the Michigan approach is somewhat inefficient because of ranking 
process involved. A more efficient procedure deserves further explorations. Although the proposed 
GRM1 model can accurately predict the liability degrees of y = 1 or 5 with correctness rate over 
90%, and can still predict at a satisfactory correctness rate for the liability degrees of y = 2 or 4 
(about 60%), it performs rather poorly in predicting the liability degree of y = 3. Since the number 
of training samples with such a liability degree is only one-fourth of samples with other degrees, we 
believe that it can further enhance the predictive capability of proposed models by collecting more 
such accident appraisal cases. It is also essential to fine-tune the rules mined by interviewing senior 
accident appraisal experts through an interactive manner. Last but not least, the fact that some 
variables do not appear in any rule might partly contribute to their values being classified into too 
many categories, leading to a rather small share of cases or parties covered in each category. To 
properly merge their categories without losing too much meaningful knowledge is also worthy of 
exploration. 
 
 
2.2 事故分析 
 
2.2.1 Introduction 
 
Crash data analysis can be carried out by two main approaches: collective approach and individual 
approach (Abdel-Aty and Pande, 2007). The collective approach is characterized by crash 
frequency modeling. Frequency of crashes is aggregated over specific time periods (months or years) 
and locations (segments or intersections). Most of these studies attempt to explore the relationship 
between crash counts and explanatory variables, such as roadway geometry, traffic control facilities, 
traffic conditions, and so on by using Poisson or Negative Binomial regression models (e.g. Poch 
and Mannering, 1996; Milton and Mannering, 1998; Ivan et al., 1999, Abdel-Aty and Radwan, 
2000, Greibe, 2003, Abdel-Aty and Pande, 2007, Wong et al., 2007). For the collective approach, 
however, individual contributing factors to the crash (e.g., driver demographics, driver behaviors, 
vehicle types) are not considered and factors affecting the crash severity cannot be identified either. 
Therefore, some studies employed individual approach to crash data analysis. The individual 
approach is characterized by each individual crash case. The main focus of these studies was to 
associate the crash severity with driver, vehicle and roadway factors by using ordered probit/logit  
model or logistic regression (e.g., Shanker, et al., 1996; Shanker and Mannering, 1996; Dissanayake 
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et al., 2002, Al-Ghamdi, 2002; Delen, et al., 2002; Tay and Rifaat, 2007; Sze and Wong, 2007). 
 
Although statistic models are the most commonly used methods in the context of crash data analysis 
either collectively or individually, most of them have their own assumptions and complexity in 
model estimation and interpretation. Once the assumptions were violated, the model could lead to 
erroneous estimation results. Especially for the individual approach, most of the variables 
explaining the individual crashes are categorical, such as driver gender, road type, lighting 
condition, violation, weather condition, and severity degree, etc. It is difficult to develop parametric 
statistical models based upon such categorical data. Therefore, a number of distribution-free 
methods, particularly for dealing with classification and prediction problems such as decision tree 
(Chang and Chen, 2005; Chang and Wang, 2006) and artificial neural network (Chiou, 2006; Delen 
et al., 2006), were adopted. However, two gaps still remain. First, the interpretations of 
classification results with such methods are weak. The knowledge lying in the crash data cannot be 
fully discovered, because artificial neural network is a black-box characterized method and the 
prediction error of decision tree is usually high. Second, most of statistical methods only provide 
calibrated parameters with significance tests, which are then used to examine the effects of the 
corresponding variables on crash counts or crash severity. The interrelationship among explanatory 
factors cannot be examined in details. According to “error chain theory,” a crash is often caused by 
a series of errors, not solely by a single factor. As such, mining the explanatory rules is deemed 
necessary for crash data analysis. 
 
Rule mining, also known as rule generation, rule recovery, or classification/association rule mining, 
is one of data mining techniques intended to mine for knowledge from available databases and 
toward decision support. Rule mining is naturally modeled as multi-objective problems with three 
criteria: (1) predictive accuracy, (2) comprehensibility, and (3) interestingness (Freitas, 1999; Ghosh 
and Nath, 2004). To automatically search for the optimal combination of rules from a considerable 
number of potential rules, genetic algorithms (GAs) are perhaps the most commonly used method. 
By employing GAs to learn of rules is named as genetic mining rule (GMR) (e.g. Freitas, 1999; 
Shin and Lee, 2002; Ghosh and Nath, 2004; Dehuri and Mall, 2006; Chen and Hsu, 2006). The 
performances of rule mining algorithms have been proven and applied in many fields. Thus, this 
paper aims to develop GMR model that can determine the optimal combination of appraisal rules to 
achieve the following goals: (1) to discover the key rules that determine the combination of 
contributing factors’ level to crash severity; (2) to provide the possibility of post-adjustment 
(fine-tune) of the rules mined; (3) to accurately predict the crash severity. Previous relevant studies 
have seldom considered the problems of conflicts and redundancy among the rules mined, our 
proposed GMR model will account for the conflicts and redundancy, in addition to conventional 
objectives: coverage ratio and predictive accuracy. 
 
 
2.2.2 Data 
 
The crash data was collected from 2003-2007 National Traffic Accident Investigation Reports 
compiled by National Police Agency, Taiwan. Each accident investigation report has been digitized 
and maintained in the database from which detailed individual crash data of freeway accidents are 
obtained. Each individual crash data include detailed information regarding injury severity of each 
involved individual, time of accident, driver demographics (age, gender, driver sobriety), involved 
vehicle types, roadway geometry, traffic control condition, weather condition (clear, rain, fog), 
pavement conditions (wet, dry), lighting condition, vehicle actions (moving straight, right-turn, 
left-turn, lane-change), and collision types. 
 
There are 52,117 crash cases occurring on Taiwan freeways from 2003 to 2007. The injury severity 
of crashes is determined according to the injury degree of the worst-injured victims in the accident. 



 

 22

After screening out incomplete police investigation report, a total of 45,744 crashes are used for this 
study. Table 1 presents the definition and description of potential explanatory variables to crash 
severity. 
 

Table 1 Crash data summarized from police accident investigation reports 
Information Variable Type Description 
Surface condition x1 Categorical 1, dry; 2, wet or slippery 
Signal control x2 Categorical 1, none; 2, yes 
Driver gender x3 Categorical 1, male; 2, female 
Weather x4 Categorical 1, sunny; 2, cloudy; 3, rain, storm, fog, etc. 
Obstacle x5 Categorical 1, none; 2, work zone; 3, others 
Lighting condition x6 Categorical 1, daytime; 2, dawn or dusk; 3, nighttime with illumination; 4, nighttime without 

illumination 
Speed limit x7 Categorical 

(discretized) 
1, 110 KPH; 2, 100KPH; 3, 90-70KPH; 4, 60-40KPH 

Road status x8 Categorical 1, straight road; 2, grade and curved road; 3, tunnel, bridge, culvert,  overpass; 4, 
others 

Marking x9 Categorical 1, lane line with marker; 2, lane line without marker; 3, no lane-changing line; 4, 
no lane line 

Use of safety belt x10 Categorical 1, safety belt fastened; 2, safety belt not fastened; 3, unknown; 4, others 
Use of cell phone x11 Categorical 1, use; 2, not in use; 3, unknown; 4, not driver 
License x12 Categorical 1, with license; 2, without license; 3, unknown 
Driver occupation x13 Categorical 1, in job; 2, student; 3, jobless; 4, unknown 
Driver age x14 Categorical 

(discretized) 
1, under 30 years old; 2, 30-40 years old; 3, 40-50 years old; 4, 50-65 years old; 5, 
above 65 years old  

Travel period x15 Categorical 
(discretized) 

1, 07:01-09:00 morning peak; 2, 09:01-16:00 day off-peak; 3, 16:01-19:00 
afternoon peak; 4, 19:01-23:00 night-peak; 5, 23:01-07:00 midnight to morning 

Location x16 Categorical 1, fast lane, general lane; 2, shoulder, edge; 3, median; 4, accelerating or 
decelerating lane, ramp; 5, toll plaza and others 

Vehicle type x17 Categorical 1, passenger car; 2, truck; 3, bus; 4, heavy truck, trailer truck, tractor; 5, others 
Action x18 Categorical 1, forward; 2, left lane-change; 3, right lane-change; 4, urgent deceleration or stop; 

5, others 
Alcoholic use x19 Categorical 1, no; 2, under 0.25 mg/l (or 0.05%); 3, over 0.25 mg/l (or 0.05%); 4, cannot be 

tested; 5, unknown 
Journey purpose x20 Categorical 1, work trip or school trip; 2, business trip; 3, transportation activity; 4, visiting, 

shopping; 5, others or unknown 
Major cause x21 Categorical 1, improper lane-change; 2, speeding; 3, fail to keep a safe distance; 4, alcoholic 

use; 5, fail to pay attention to the front; 6, other driver’s liability; 7, factors not 
attributed to drivers 

Collision type x22 Categorical 1, head-on or rear-end; 2, sideswipe (common direction); 3, angle or other crash; 4, 
single-car collision with fixed object; 5, other single-car crash; 6, collision with 
pedestrian 

Severity y Categorical 1, fatality; 2, injury; 3, no-injury 

 
In Taiwan, crash severity in police investigation report is classified into three degrees: A1 (fatal 
crash), A2 (injury crash), and A3 (non-injury crash). The numbers of cases for these three degrees 
of crash severity are 494, 4,073, and 41,177, respectively—an uneven distribution commonly seen 
in the context of crash analysis. To avoid misleading results caused by sample disproportionate 
problem, A2 and A3 crash cases are randomly re-selected to the same number of A1 crash cases 
(494), thus making a total of 1,482 crash cases for our analysis. Furthermore, 70% of these 1,482 
crash cases are randomly chosen for training (i.e., 1,037 cases) and the remaining 445 cases are 
used for model validation. χ2-test is performed and the result shows that severity distributions 
between training and validation datasets do not significantly differ. 
 
 
2.2.3 Genetic rule mining 
 
Genetic rule mining (GMR), which can automatically learn of comprehensive rules from available 
dataset and toward decision support, has been shown as a useful tool in accident analysis (Clarke et 
al., 1998). The encoding method, fitness function, genetic operators, and rule selection of the 
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proposed GMR model are narrated below. 
 
2.2.3.1 Encoding Method 
 
To represent the relationship between explanatory variables and crash severity, each chromosome is 
used to represent a potential if-then rule. The conditions associated in the “if part” are termed as 
antecedence part and those in the “then part” are named as consequent part. Besides, the antecedent 
part consists of at least one variable, but at most 22 variables, selected from Table 2. And the 
consequent part is composed by, of course, only one variable: severity degree. In general, a rule is a 
knowledge representation of the form “If A Then C,” where A is a set of cases satisfying the 
conjunction of predicting attribute values and C is a set of cases with the same predicted degree. 
Thus, a typical rule i can be of the form: Rule i: If x1=ai1 and x2=ai2 …and xj=aij … and x22=ai22 
Then y=gi. Or, in a shorter form: Rule i: If Ai Then Ci, where, aij is the categorical value of jth 
attribute variable in rule i. gi is the value of classification variable in rule i, which ranges from 1 to 3 
representing three degrees of crash severity. Ai and Ci are the sets of parties satisfying the 
antecedent part and consequent part of rule i, respectively. 
 

 
Figure 1 Encoding method of the proposed GRM model 

 
By encoding a rule as a chromosome, each gene is used to represent a corresponding variable. Since 
the number of potential variables of antecedent and consequent is respectively 22 and one, the 
length of a chromosome equals to 23. Each gene will then take one of the categorical values of the 
corresponding variable. Since the ranges of all variables are different, the ranges of gene values also 
vary. Moreover, if a gene in a rule antecedent takes a value of 0, it represents the corresponding 
variable not considered by the rule. If all genes representing the rule antecedent simultaneously take 
a value of 0 or if the gene representing the rule consequent is 0, then the rule is not included. 
 
Based on this, a rule of “If surface condition=dry and occupation=in job and actions=left 
lane-change and Then degree of severity=injury” can be encoded as 10000000000010000200002. 
This rule also contains a family of 2.939 1013 offspring rules in total, which can be represented by 
“If x1=1 and x2={0, 1, 2} and x3={0, 1, 2} and x4={0, 1,…, 3} and x5={0, 1,…, 3} and x6={0, 1,…, 
4} and x7={0, 1,…, 4} and x8={0, 1,…, 4} and x9={0, 1,…, 4} and x10={0, 1,…, 4} and x11={0, 
1,…, 4} and x12=1 x9={0, 1,…, 4} and x13=1 and x14={0, 1,…, 5} and x15={0, 1,…, 5} and x16={0, 
1,…, 5} and x17={0, 1,…, 5} and x18=2 and x19={0, 1,…, 5} and x20={0, 1,…, 5} and x21={0, 1,…, 
7} x22={0, 1,…, 6} and Then y=2.” That is, any case satisfies any one of the offspring rules will 
certainly also satisfy their parent rule. Generally, the more variable present in the antecedent part 
(taking none zero values), the more specific of a rule is (less number of parties will satisfy the rule). 
 
The proposed algorithm aims to select a set of rules which can most accurately predict the liability 
degree based upon these twelve explanatory variables. The total number of potential rules equals to 
3 3 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 8 7 4 =1.058 1016. 
Obviously, it is barely possible to compare all rule combinations through a total enumeration 
approach. 
 
2.2.3.2 Fitness Function 
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An individual chromosome, a rule, with a higher fitness function value has a higher probability to 
be selected to reproduce offspring. Obviously, the role of the fitness function is to evaluate the 
quality of the rule numerically. In doing so, three common factors to be taken into account are 
coverage, completeness and confidence of the rule. The coverage ratio of rule i (i.e., the cases 
satisfied by the rule antecedent) is denoted by A : the cardinality of set A (the number of elements 
in set A). The completeness of the rule (i.e., the proportion of cases of the target class covered by 
the rule) is given by CCA /I . The confidence of rule i (i.e., the predictive accuracy) is given by 

ACA /I  (Freitas, 1999). After several trials on the combination of these three indices, this paper 
uses predictive accuracy (PAi) and coverage ratio (CRi) as the fitness function (fi) of rule i, which 
can be expressed as follows: 
 

fi = 1000·(PAi)·(CRi)2                                                 
                 (1) 

 
2.2.3.3 Genetic Operators 
 
Because the genes in our GRM model are not encoded binary, simple genetic algorithms proposed 
by Goldberg (1989) cannot be used. Instead, we employ the max-min-arithmetical crossover 
proposed by Herrera et al.(1998) and the non-uniform mutation proposed by Michalewicz (1992). A 
brief description is given below. 
 
(1) Max-min-arithmetical crossover 

Let Gw
t ={ gw1

t ,…, gwk
t ,…, gwK

t } and Gv
t ={ gv1

t ,…, gvk
t ,…, gvK

t }be two 
chromosomes selected for crossover, the following four offsprings can be generated: 

G1
t+1  = aGw

t + (1-a)Gv
t                                             (2) 

G2
t+1  = aGv

t + (1-a)Gw
t                                             (3) 

G3
t+1 with g3k

t+1=min{gwk
t, gvk

t}                                       (4) 
G4

t+1 with g4k
t+1=max{gwk

t, gvk
t}                                       (5) 

where a is a parameter (0 < a < 1) and t is the number of generations.  
 
(2) Non-uniform mutation 
Let Gt = { g1

t ,…, gk
t ,…, gK

t } be a chromosome and the gene gk
t be selected for mutation (the 

domain of gk
t is [gk

l, gk
u]), the value of gk

t+1 after mutation can be computed as follows: 
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where b randomly takes a binary value of 0 or 1. The function ),( ztΔ  returns to a value in the range 
of [0, z] such that the probability of  approaches to 0 as t increases: ),( ztΔ

)1(),( )/1( hTtrzzt −−=Δ                                                       (7) 
where r is a random number in the interval [0,1], T is the maximum number of generations and h is 
a given constant. In Eq.(7), the value returned by ),( ztΔ  will gradually decrease as the evolution 
progresses. 
 
2.2.3.4 Rule Selection 
 
To avoid selecting redundant rules during the evaluation process, the rules are selected according to 
the following steps:  
 
Step 1: Rank rules in the final population (i.e. final potential rule set, FR) according to their fitness 
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values in a descending order. 
Step 2: Select the rule with the highest fitness value from the set of FR. 
Step 3: Check the redundancy of the rule selected by Step 2. If its redundancy ratio (ri) is less than 

0.5, then remove the rule from FR to the mined rule set (MR); otherwise, delete the rule 
from FR. The redundancy ratio (ri) can be expressed as: 

}{max
i

ij
ijMRji R

D
wr ==

∈∀
                                                        (8) 

where, wij is the degree of redundancy between rules i and j. Dij is the total number of 
variables in the antecedent part sharing the same value, except for zero, in both rules i and j. 
Ri is the total number of variables appearing in the antecedent part of rules i. MR is the set 
of mined rules. 

Step 4: Terminate if no rule left in FR. MR is the optimal combination of rules. Otherwise, go to 
Step 2. 

 
Even if the chromosomes have been filtered by redundancy index, it cannot be avoided that two or 
more rules with different predicted classes might still be simultaneously fired by a crash case. To 
synthesize the predicted degree of more than one rules fired, we take an average value of predicted 
degrees of all fired rules and round it to the nearest integer, which can be expressed as: 

∑
∈

=
Fj

jg
F

Intsg )1(                                                            (9) 

where, G is the predicted severity degree by the proposed algorithm. )(⋅Int  is a rounding operator, 
which rounds value in parenthesis to the nearest integer. F is a set of sequence numbers of fired 
rules. As such, the correctness rate of the model can be computed as the number of correctly 
predicted cases divided by the total number of cases. 
 
 
2.2.4 Results and discussions 
 
2.2.4.1 Results 
 
The parameters of the proposed GMR model are set as follows: population size=50, crossover 
rate=0.85, mutation rate=0.08, and maximum number of generations=1000. 
 
Table 2 shows the final selected rules along with its corresponding performance indices. Note that a 
total of 19 rules are selected with a descending order according to fi. In terms of fitness value (fi), 
the top seven rules have remarkably higher values than the rest of twelve rules, suggesting that it is 
promising to use only the top seven rules to conduct the prediction. In terms of coverage ratio (CRi), 
R7 can explain 828 cases, followed by R2 (633 cases) and R6 (597 cases). In contrast, some rules 
cover only very few cases, such as R14 (3 cases) and R18 (4 cases). In terms of predictive accuracy 
(PAi), R1 has the highest predictive accuracy of 0.930, followed by R14 (0.667), and R19 the least 
(0.094). 
 
The importance of variable can be identified by the number of variables presenting in rules. In this 
regard, x5 (obstacle) is the most important variable which appears at 13 rules (appearance rate 
68.42%), followed by x1 (surface condition) with appearance rate 47.37%. Four variables are not 
shown in any rule, which are x6 (lighting condition), x9 (marking), x16 (location), and x17 (vehicle 
type), indicating their insignificance to crash severity. There are four rules associated with A1 crash, 
six rules with A2 crash, and nine rules with A3 crash. 
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Table 2 Combination of rules mined by GRM model 
Rules x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 y fi CRi PAi

R1  1   1    3 1  1 54.997 71 0.930 
R2 1    1    1 1  3 37.604 633 0.395 
R3 1 1   1    1  3 31.436 533 0.394 
R4     1 2   1 1 1  3 28.689 238 0.500 
R5      2    3 23.711 447 0.380 
R6 1        1 1  2 23.652 597 0.345 
R7   1  1    1  1 21.196 828 0.298 
R8    3      3 9.077 195 0.364 
R9 1   1     1 1  3 8.952 180 0.372 
R10   2  1 2   1  3 4.134 40 0.475 
R11 1 1 1  1    4  3 3.901 90 0.356 
R12         1 3 4 2 3.720 49 0.429 
R13  1   1    1  2 3.675 80 0.363 
R14 1        3 1  2 0.857 3 0.667 
R15 1   2 1    1 1  1 0.439 40 0.225 
R16 1  1  1 4   1 3  3 0.393 29 0.241 
R17 1    2     2 0.125 31 0.161 
R18     1 4 4  1 5  1 0.060 4 0.250 
R19   1  1    3 1  2 0.025 32 0.094 
n 9 4 5 3 13 0 5 1 0 1 5 8 2 3 1 0 0 2 3 1 1 1 - - - -

Note: n is the number of appearance of the variable in the selected 19 rules. 
 
Table 3 gives the distribution of cases with degree of severity predicted by GRM model and with 
real degree of severity. As shown in Table 3, in the training dataset, the proposed GRM model can 
actually predict A3 crash with a correct rate of 96.82%, followed by A1 crash (correct rate 73.99%) 
and A2 (correct rate 64.64%). The overall correct rate of the proposed GRM model achieves 
78.50%. In the validation dataset, the overall correct rate slightly has decreased to 74.16%. 
 
Table 3 Number of cases with degree of severity predicted by GRM 

Predicted severity 
Datasets Real severity 

A1 A2 A3 
Total 

 A1 256 (73.99%)  84 (24.28%) 6 (1.73%)  346 (100.00) 
Training A2 51 (14.78%) 223 (64.64%)  71 (20.58%)  345 (100.00) 
 A3 4 (1.16%) 7 (2.02%) 335 (96.82%)  346 (100.00) 
 Total 311 314 412 1037 
 A1 105 (70.95%)  37 (25.00%) 6 (4.05%)  148 (100.00) 
Validation A2 15 (10.07%) 96 (64.43%)  38 (25.50%)  149 (100.00) 
 A3 5 (3.38%) 14 (9.46%) 129 (87.16%)  148 (100.00) 
 Total 125 147 173 445

Note: The percentages are given in the parentheses. 
 
 
2.2.5 Comparisons 
 
To prove the performance of our proposed GRM model, a decision tree (DT) model is also used to 
mine the rules explaining the same crash dataset. The learning process of the DT model is depicted 
in Figure 2. Note that the misclassification rate decreases as the number of leaves gets larger. 
 
Table 4 presents the number of cases with various degrees of severity predicted by the DT model. 
Note that the DT model performs slightly better for predicting A2 crash (correct rates in training 
and validation are 78.84% and 77.18%, respectively) than the proposed GRM model. However, the 
DT model performs much worse than the proposed GRM model while predicting both A1 and A2 
crashes. Averagely, the overall correct rates of the DT model in training and validation are 63.84% 
and 61.25%, respectively, which are much lower than those of the proposed GRM model. Thus, the 
performance of the proposed GRM model has been proven. 
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Figure 2 Learning process of the DT model 

 
Table 4 Number of cases with degree of severity predicted by DT 

Predicted severity 
Datasets Real severity 

A1 A2 A3 
Total 

 A1 188 (54.34%)  150 (43.35%) 8 (2.31%)  346 (100.00) 
Training A2 33 (9.57%) 272 (78.84%)  71 (11.59%)  345 (100.00) 
 A3 6 (1.73%) 138 (39.88%) 202 (58.38%)  346 (100.00) 
 Total 227 560 250 1037 
 A1 68 (45.95%)  72 (48.65%) 8 (5.41%)  148 (100.00) 
Validation A2 11 (7.38%) 115 (77.18%)  23 (15.44%)  149 (100.00) 
 A3 3 (2.03%) 55 (37.16%) 90 (60.81%)  148 (100.00) 
 Total 82 242 121 445

Note: The percentages are given in the parentheses. 
 
A total of 11 rules are generated by the DT model as follows. There are a total of four rules 
associated with A1 crash, five rules with A2 crash, and two rules with A3 crash. 
R1: If x11= {3, 4} Then y= 1 
R2: If x22= {1, 2, 3} and x21= {1, 2, 4, 5, 6, 7} and x11= {1, 2} Then y = 2 
R3: If x19= 1 and x17= {1, 2} and x21= 3 and x11= {1, 2} Then y = 3 
R4: If x19= {2, 3, 5} and x17= {1, 2} and x21= 3 and x11 ={1, 2} Then y = 2 
R5: If x20= {1, 5} and x17= {3, 4} and x21= 3 and x11= {1, 2} Then y = 3 
R6: If x20= {2, 3, 4} and x17= {3, 4} and x21= 3 and x11= {1, 2} Then y = 2 
R7: If x22=6 and x21= {1, 4, 5, 67} and x11= {1, 2} Then y = 1 
R8: If x15= {1, 2, 4, 5} and x21=2 and x22= {4, 5, 6} and x11= {1, 2} Then y = 1 
R9: If x15= 3 and x21= 2 and x22= {4, 5, 6} and x11= {1, 2} Then y = 2 
R10: If x16= {1, 4} and x22= {4, 5} and x21= {1, 4, 5, 6, 7} and x11= {1, 2} Then y = 2 
R11: If x16= {2, 3, 5} and x22= {4, 5} and x21= {1, 4, 5, 6, 7} and x11= {1, 2} Then y = 1 
 
 
2.2.6 Conclusion 
 
This paper employs individual approach to identify contributing factors to crash severity by 
developing a novel genetic rule mining (GRM) model. To avoid over-mining problem caused by 
unevenly distributed cases across degrees of severity, identical numbers of A1-type, A2-type and 
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A3-type of crash cases are selected from 2003-2007 Taiwan freeway accidents dataset. A total of 19 
rules have been mined which can achieve an overall correct rate of 78.50% in training and 74.16% 
in validation, respectively, which have demonstrated much higher correctness than the conventional 
decision tree model. The performance of the proposed GRM model has been proven. According to 
the mined rules, x5 (obstacle) and x1 (surface condition) are two key factors contributing to crash 
severity. 
 
Some directions for future studies can be identified. First, the neighboring traffic condition of the 
crash is also an important factor to crash severity; however, the police accident investigation report 
did not have such information. The crash data may be further matched with the traffic database so 
as to gain more information regarding the contributing factors to crash severity. Second, in order to 
simplify the model complexity, various performance indices may be integrated into an overall 
fitness function; as such, a multi-objective GRM model deserves further elaboration. Last but not 
least, more comparisons can be made to other commonly used methods (e.g., logistic regression 
model, artificial neural network) to demonstrate the superiority of our proposed GRM model. 

 
 
三、計畫成果自評 
 

本計畫為三年期計畫。其中，本期中報告已完成第一年期之研究內容，另外也完成部分

第二研究年期之內容。此兩年期所列之主要工作項目，預期之研究成果如下： 
 
（一）第一個研究年期： 
1.彙整事故鑑定案例及挑選候選變數 

本研究將蒐集整理臺灣省覆議鑑定委員會鑑定案件，並從中挑選地區鑑定委員會與臺灣

省覆議鑑定委員會鑑定結果一致（各地區鑑定會判定肇事當事人有責任者，臺灣省覆議鑑定

會亦判定其相同肇事責任）之案件資料，以作為模式學習與應用之案例。為進一步了解影響

鑑定之變數與肇事責任判定的關係，本研究將以交叉分析進行篩選影響變數，以挑選對肇事

責任判定較具顯著影響的關鍵變數作為模式之輸入變數。 
 
2.建立基因規則探勘模式 

本研究將分別以密西根方式或匹茲堡方式進行染色體之編碼設計，再比較此兩種方式之

優劣差異。以密西根方式而言，可將一染色體編碼如下： 
 

3.建立事故責任鑑定專家系統 
分別利用所建構之基因規則探勘模式應用於事故責任鑑定案例。在規則學習與驗證上，

本研究採用三次交叉驗證方式（threefold cross-validation），將所有案例分為三部份。分別以

第一及第二部份案例作為訓練資料，以第三部份案例作為驗證資料。再改以第一及第三部份

作為訓練資料，以第二部份作為驗證資料。最後，改以第二及第三部份作為訓練資料，以第

一部份作為驗證資料，三次平均可得訓練及驗證績效平均值。 
 
4.模式績效之比較分析 

本研究將除進行密西根及匹茲堡方式之比較外，並將同時與邱裕鈞、方守潔（民 93）所

建立之判別分析及類神經網路模式之訓練與驗證結果，進行比較。 
 
5.推理規則之產生與詮釋 

經由比較分析後，可依據表現較佳之基因規則探勘模式之挑選規則，進行分析及詮釋，

並加以整理列表。透過與資深覆議會鑑定委員之訪談，以了解模式所挑選之規則是否符合鑑
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定委員進行鑑定之推理邏輯，以作為本模式尋優方向與績效評估之調校或可應用性之驗證。 
 

6.參數敏感度分析 
由於遺傳演算法之尋優績效可能會受其參數設定值之影響。因此，為了解本模式是否具

有穩定性（robustness），將針對不同參數設定組合（包括交配率、突變率、族群數等）之尋

優結果進行比較分析，以驗證本模式之穩定性，並提出參數設定之建議數值。 
 

（二）第二個研究年期 
 
1.蒐集高速公路事故資料並篩選重要解釋變數 

高速公路事故資料分為 A1（死亡事故）、A2（受傷事故）、A3（財損事故）三大類，以

民國 94 年為例，全年共計 13,661 件。其中，A1 事故 118 件，A2 事故 965 件，A3 事故 12,570
件。相關變數包括：事故發生時間地點、當時天候狀況資料、當地道路幾何條件資料、事故

類型、主要肇事原因、傷亡狀況、交通管制狀況、駕駛人行為與違規狀況等。將利用交叉分

析表方式，先作顯著變數之初步篩選。 
 
2.建立高速公路事故分析與預測模式 

分別利用所建構之基因規則探勘模式（第一個研究年期）及螞蟻規則探勘模式應用於高

速公路事故分析與預測案例。在規則學習與驗證上，本研究採用三次交叉驗證方式（threefold 
cross-validation），將所有案例分為三部份。分別以第一及第二部份案例作為訓練資料，以第

三部份案例作為驗證資料。再改以第一及第三部份作為訓練資料，以第二部份作為驗證資料。

最後，改以第二及第三部份作為訓練資料，以第一部份作為驗證資料，三次平均可得訓練及

驗證績效平均值。 
 
3.模式績效之比較分析 

本研究將除與基因規則探勘模式進行比較外，並將同時與羅吉斯迴歸、判別分析及類神

經網路模式之訓練與驗證結果，進行比較。 
 
4.推理規則之產生與詮釋 

經由比較分析後，可依據表現較佳之規則探勘模式所挑選規則，進行分析及詮釋，並加

以整理列表。以深入了解各環境變數群、交通管制變數群、駕駛人行為變數群間對事故嚴重

性之聯合效果關係，並據以研提改善策略。 
 
上述第一年期之預期研究成果已順利達成，而本年期也進一步提出第二年期之部分研究

成果。為下一年度之研究奠定良好基礎。此外，本計畫之主要成果已分別發表國際研討會 1
篇文章[19]，並已改寫投稿學術期刊中[18, 19]。此外，本計畫亦用以指導一名博士生進行論

文寫作[20]。 
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