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一、摘要 
 
1.1 中文摘要 

 
傳統以個體角度進行事故分析之方法，例如，判別分析（discrimination analysis）、羅吉

斯迴歸（logistic regression）、次序普羅比（ordered probit）、羅吉特（logit）及混合羅吉特（mixed 
probit）等模式，大多僅能探討單一危險因素之影響程度。事實上，事故嚴重與否大多係由多

項因素同時發生所導致。此一綜合多項因素之危險情況，在統計分析上，甚難加以窮舉分析。

基此，本計畫乃於第一年期提出基因規則探勘模式（Genetic rule mining, GRM），可由探勘所

得之規則的前半部，判斷何謂危險情況，進而加以避免。惟本研究所提出之 GRM 必須先固

定規則數量，再同時進行最佳規則組合之尋優。因此，具有染色體長度過長，尋優效果不佳，

以及探勘過多衝突或重覆規則的傾向，進而導致規則難以詮釋，無法提出具體之安全改善策

略。 
有鑑於此，本計畫第二年期乃提出改良式的基因規則探勘模式（Genetic rule mining, 

GRM），稱為逐步基因規則探勘模式（Stepwise GRM, SGRM）。SGRM 一次僅挑選使事故嚴

重度預測率精確率最高的一條規則，再以此規則為基礎，進行下一條規則之選取，直到精確

率無法再改善為止。如此，即可避免選擇規則過多，且相互重覆或矛盾的問題。此外，由於

不同類型事故之影響因素與危險情況不一定相同，因此，有必要加以區隔分析。本年度以先

以總計 5563 件單車事故（single vehicle accident）為分析基礎。結果顯示，本模式共選擇了

38 條規則，其訓練準確度達 75.1%，而驗證準確度則達 73.8%均遠高於決策樹之預測結果。

而影響事故嚴重度之危險情境也加以確認，並研提改善策略。 
本計畫第三年期進一步探討及比較本研究所提出之 SGRM、粗略集合（rough set, RS）及

次序普羅比（ordered probit model, OP）三種模式在分析不同事故嚴重度之選擇規則與重要解

釋變數。結果顯示，駕駛人職業別、事故地點及車輛型式是三個最主要的關鍵因素。最後，

本研究進一步將 SGRM 所挑選出的 38 條推理規則的前半部設定為危險情境（risk condition），
以虛擬變數表之，後半部則為事故嚴重度，結合次序普羅比進行危險情境之推估與檢定，以

了解各種危險情境對事故嚴重度之影響程度。結果顯示，本研究所提出之整合方法（SGMR
＋OP）其模式配適度，遠比將所有原始變數作為解釋變數所建構之 OP 模式為高，更可有效

辨識、檢定及推估各種危險情境，有效克服以往統計迴歸方法僅能探討單一變數對事故嚴重

度的缺點，更符合事故嚴重度係由多個肇因所導致之先驗知識。 
 

關鍵字：事故分析、逐步基因規則探勘、事故嚴重度、次序普羅比。 
 

1.2 Abstract 
 

Conventional individual approach to conduct accident analysis is to associate the crash severity 
with driver, vehicle and roadway factors by using discrimination analysis, logistic regression, 
ordered probit, logit and mixed logit models. Although statistic models are the commonly used 
methods in the context of crash data analysis, most of them have their own assumptions and 
complexity in the model estimation and interpretation. Once the assumptions were violated, the 
model could lead to erroneous estimation results, especially for the individual approach wherein 
most variables explaining the individual crashes are categorical. It is difficult to develop parametric 
statistical models based upon the categorical data. In addition, most of statistical methods only 
provide calibrated parameters with significance tests, which are then used to examine the effects of 
the corresponding variables on crash counts or crash severity. The interrelationship among 
explanatory factors cannot be examined in details. According to “error chain theory” a crash is often 
caused by a series of errors, not solely by a single factor. As such, mining the explanatory rules is 
deemed necessary for crash data analysis. To this end, the first research year of this project has 
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proposed genetic rule mining models to discover the key rules (i.e. risky conditions). However, 
since the proposed GRM models simultaneously select the rule combinations under a given upper 
limit of rule number and tend to mine too many conflict or redundant rules, making the rule 
interpretation difficult. 

Based on this, the second year of this project further propose a stepwise GRM (SGRM) model, 
which select the optimal one rule at a time and iteratively proceed to select the next best rule based 
on the selected rules until model performance (accuracy) can’t not improved. Since the risky 
conditions and contributory factors of various types of crashes will significantly vary, the analysis is 
conducted on each type of accidents separately. Taking single-vehicle accident for instance, a total 
of 5,563 crashes on Taiwan’s freeway network from 2003 to 2007 are collected, where numbers of 
A1 (fatal crash), A2 (injury crash), and A3 (property damage only crash) are 226, 1,593, and 3,744, 
respectively - an uneven distribution commonly seen in the context of crash analysis. A total of 38 
rules have been mined which can achieve overall correct rates of 75.1% in training and of 73.8% in 
validation, respectively, much higher than those yield by the decision tree model. Risky conditions 
along with their corresponding improvement strategies have been identified. 

In the third year, three models-genetic mining rule (GMR), rough set (RS) and ordered Probit 
(OP) are developed to identify the key factors, wherein a factor with high presence rate at all 
mined-rules is regarded as the key discriminative factor and that with high presence rate at 
mined-rules associated with A1 (fatality) is regarded as a key risk factor. The results show that the 
top three discriminative factors are driver occupation, location, and vehicle type; while the top three 
risk factors are major cause, driver occupation, and driver age. In addition, a two-stage integrated 
model combining SGMR and OP are developed, the first stage develops a genetic mining rule 
(GMR) model to identify possible risk conditions which can best explain the degree of severity. The 
second stage then develops an OP model with minded risk conditions as dummy explanatory 
variables. It is found that the proposed two-stage OP model is superior to one-stage OP model in 
terms of likelihood ratio. Based on the results, six most critical risk conditions have been identified, 
which can serve as useful guides to ameliorate the traffic safety.  
 
Key Words: Crash analysis, stepwise genetic rule mining, crash severity, ordered Probit model. 
 
二、主要研究成果 
 
2.1 Introduction 
 
Crash data analysis can be carried out by two main approaches: collective approach and individual 
approach (Abdel-Aty and Pande, 2007). The collective approach is characterized by crash 
frequency modeling. Frequency of crashes is aggregated over specific time periods (months or years) 
and locations (segments or intersections). Most of these studies attempt to explore the relationship 
between crash counts and explanatory variables, such as roadway geometry, traffic control facilities, 
traffic conditions, and so on by using Poisson or Negative Binomial regression models (e.g. Poch 
and Mannering, 1996; Milton and Mannering, 1998; Ivan et al., 1999; Abdel-Aty and Radwan, 
2000; Greibe, 2003; Abdel-Aty and Pande, 2007; Wong et al., 2007). For the collective approach, 
however, individual contributing factors to the crash (e.g., driver demographics, driver behaviors, 
vehicle types) are not considered and factors affecting the crash severity cannot be identified either. 
Therefore, some studies employed individual approach to crash data analysis. The individual 
approach is characterized by each individual crash case. The main focus of these studies was to 
associate the crash severity with driver, vehicle and roadway factors by using ordered probit/logit  
model or logistic regression (e.g., Shanker and Mannering, 1996; Dissanayake et al., 2002; 
Al-Ghamdi, 2002; Delen, et al., 2002; Tay and Rifaat, 2007; Sze and Wong, 2007). More advanced 
logit-based approaches, such as nested logit model or mixed logit model, were also employed to 
analyze the same issue (e.g. Shanker, et al., 1996; Chang and Mannering, 1999; Milton, et al., 
2008). 
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Although statistic models are the commonly used methods in the context of crash data analysis 
either collectively or individually, most of them have their own assumptions and complexity in the 
model estimation and interpretation. Once the assumptions were violated, the model could lead to 
erroneous estimation results, especially for the individual approach wherein most variables 
explaining the individual crashes are categorical (e.g., driver gender, road type, lighting condition, 
violation, weather condition, and severity degree, among others). It is difficult to develop 
parametric statistical models based upon the categorical data. Therefore, a number of 
distribution-free methods, such as decision tree (Chang and Chen, 2005; Chang and Wang, 2006) 
and artificial neural network (Chiou, 2006; Delen et al., 2006), were adopted to deal with the 
classification and prediction problems. However, two gaps still remain. First, the interpretations of 
classification results with such methods are weak. The knowledge lying in the crash data cannot be 
fully discovered, because artificial neural network is in essence a black box and the prediction error 
of decision tree is usually high. Second, most of statistical methods only provide calibrated 
parameters with significance tests, which are then used to examine the effects of the corresponding 
variables on crash counts or crash severity. The interrelationship among explanatory factors cannot 
be examined in details. According to “error chain theory,” a crash is often caused by a series of 
errors, not solely by a single factor. As such, mining the explanatory rules is deemed necessary for 
crash data analysis. It is shown in Figure 1 that limited information could be mined from the 
influence of single variable on crash severity. In contrast, combination of multiple variables would 
reveal explicit tendency in crash severity as shown in Figure 2 (The four rules in it is selected from 
the final rule set in this study). 
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Figure 1 analysis of single variable          Figure 2 applying rules to analyze 

 
Rule mining, also known as rule generation, rule recovery, or classification/association rule mining, 
is one of data mining techniques intended to mine for knowledge from available databases and 
toward decision support. Rule mining is naturally modeled as multi-objective problems with three 
criteria: (1) predictive accuracy, (2) comprehensibility, and (3) interestingness (Freitas, 1999; Ghosh 
and Nath, 2004). To automatically search for the optimal combination of rules from a considerable 
number of potential rules, genetic algorithms (GAs) are perhaps the most commonly used method. 
By employing GAs to learn of rules is named as genetic mining rule (GMR) (e.g. Freitas, 1999; 
Shin and Lee, 2002; Ghosh and Nath, 2004; Dehuri and Mall, 2006; Chen and Hsu, 2006). The 
performances of rule mining algorithms have been proven and applied in many fields. Thus, this 
paper aims to develop GMR model that can determine the optimal combination of decision rules to 
achieve the following goals: (1) to discover the key rules that determine the combination of 
contributing factors’ level to crash severity; (2) to provide the possibility of post-adjustment 
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(fine-tune) of the rules mined; (3) to accurately predict the crash severity. Previous relevant studies 
have seldom considered the problem of conflict and redundancy among the rules mined, our 
proposed GMR model will account for the conflict and redundancy in addition to conventional 
objectives: coverage ratio and predictive accuracy. 
 
2.2 Data 
 
The crash data were collected from 2003-2007 National Traffic Accident Investigation Reports 
compiled by National Police Agency, Taiwan. Each accident investigation report has been digitized 
and maintained in the database from which detailed individual crash data of freeway accidents are 
obtained. The individual crash data include detailed information regarding injury severity of each 
involved individual, time of accident, driver demographics (age, gender, driver sobriety), involved 
vehicle types, roadway geometry, traffic control condition, weather condition (clear, rain, fog), 
pavement conditions (wet, dry), lighting condition, and vehicle actions (moving straight, right-turn, 
left-turn, lane-change).  
 
Considering the characteristics of crash occurrence may differ in collision type, the single-vehicle 
accident data are chosen to diminish the heterogeneity of crash data. Single-vehicle accidents are 
those in which only a single vehicle is involved. There are 5,563 single-vehicle crash cases 
occurring on Taiwan’s freeways from 2003 to 2007. The injury severity of crashes is determined 
according to the injury degree of the worst-injured victims in the accident. Table 1 presents the 
definition and description of potential explanatory variables to crash severity. 
 

Table 1 Crash data summarized from police accident investigation reports 
Information Variable Type Description 
Surface condition x1 Categorical 1, dry; 2, wet or slippery 
Signal control x2 Categorical 1, none; 2, yes 
Driver gender x3 Categorical 1, male; 2, female 
Weather x4 Categorical 1, sunny; 2, cloudy; 3, rain, storm, fog, etc. 
Obstacle x5 Categorical 1, none; 2, work zone; 3, others 
Lighting condition x6 Categorical 1, daytime; 2, dawn or dusk; 3, nighttime with illumination; 4, nighttime without 

illumination 
Speed limit x7 Categorical 

(discretized) 
1, 110 KPH; 2, 100KPH; 3, 90-70KPH; 4, 60-40KPH 

Road status x8 Categorical 1, straight road; 2, grade and curved road; 3, tunnel, bridge, culvert,  overpass; 4, 
others 

Marking x9 Categorical 1, lane line with marker; 2, lane line without marker; 3, no lane-changing line; 4, 
no lane line 

Use of safety belt x10 Categorical 1, safety belt fastened; 2, safety belt not fastened; 3, others or unknown 
Use of cell phone x11 Categorical 1, use; 2, not in use; 3, others or unknown 
License x12 Categorical 1, with license; 2, without license; 3, unknown 
Driver occupation x13 Categorical 1, in job; 2, student; 3, jobless; 4, unknown 
Driver age x14 Categorical 

(discretized) 
1, under 30 years old; 2, 30-40 years old; 3, 40-50 years old; 4, 50-65 years old; 5, 
above 65 years old  

Travel period x15 Categorical 
(discretized) 

1, 07:01-09:00 morning peak; 2, 09:01-16:00 day off-peak; 3, 16:01-19:00 
afternoon peak; 4, 19:01-23:00 night-peak; 5, 23:01-07:00 midnight to morning 

Location x16 Categorical 1, fast lane, general lane; 2, shoulder, edge; 3, median; 4, accelerating or 
decelerating lane, ramp; 5, toll plaza and others 

Vehicle type x17 Categorical 1, passenger car; 2, truck; 3, bus; 4, heavy truck, trailer truck, tractor; 5, others 
Action x18 Categorical 1, forward; 2, left lane-change; 3, right lane-change; 4, urgent deceleration or stop; 

5, others 
Alcoholic use x19 Categorical 1, no; 2, under 0.25 mg/l (or 0.05%); 3, over 0.25 mg/l (or 0.05%); 4, cannot be 

tested; 5, unknown 
Journey purpose x20 Categorical 1, work trip or school trip; 2, business trip; 3, transportation activity; 4, visiting, 

shopping; 5, others or unknown 
Major cause x21 Categorical 1, improper lane-change; 2, speeding; 3, fail to keep a safe distance; 4, alcoholic 

use; 5, fail to pay attention to the front; 6, other driver’s liability; 7, factors not 
attributed to drivers 

Severity y Categorical 1, fatality; 2, injury; 3, no-injury 
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In Taiwan, crash severity in police investigation report is classified into three degrees: A1 (fatal 
crash), A2 (injury crash), and A3 (non-injury crash). The cases for these three degrees of crash 
severity are 226, 1,593, and 3,744, respectively—an uneven distribution commonly seen in the 
context of crash analysis. Furthermore, 70% of these 5,563 crash cases are randomly chosen for 
training (i.e., 3,895 cases) and the remaining 1,668 cases are used for model validation. χ2-test is 
performed and the result shows that severity distributions between training and validation datasets 
do not significantly differ. 
 
2.3 Genetic rule mining model 
 
Genetic mining rule (GMR), which can automatically learn of comprehensive rules from available 
dataset and toward decision support, is useful in accident analysis (Clarke et al., 1998). The 
encoding method, fitness function, genetic operators, and rule selection of the proposed GMR 
model are narrated below. 
 
2.3.1 Encoding method 
 
To represent the relationship between explanatory variables and crash severity, each chromosome is 
used to represent a potential if-then rule. The conditions associated in the “if part” are termed as 
antecedence part and those in the “then part” are named as consequent part. Besides, the antecedent 
part consists of at least one variable, but at most 21 variables, selected from Table 1. And the 
consequent part is composed by, of course, only one variable: severity degree. In general, a rule is a 
knowledge representation of the form “If A Then C,” where A is a set of cases satisfying the 
conjunction of predicting attribute values and C is a set of cases with the same predicted degree. 
Thus, a typical rule i can be of the form: Rule i: If x1=ai1 and x2=ai2 …and xj=aij … and x21=ai21 
Then y=gi. Or, in a shorter form: Rule i: If Ai Then Ci, where aij is the categorical value of jth 
attribute variable in rule i. gi is the value of classification variable in rule i, which ranges from 1 to 3 
representing three degrees of crash severity. Ai and Ci are the sets of parties satisfying the 
antecedent part and consequent part of rule i, respectively. 
 

 
Figure 3 Encoding method of the proposed GMR model 

 
By encoding a rule as a chromosome, each gene is used to represent a corresponding variable. Since 
the number of potential variables of antecedent and consequent is respectively 21 and one, the 
length of a chromosome is 22. Each gene will then take one of the categorical values of the 
corresponding variable. Because the ranges of all variables are different, the ranges of gene values 
also vary. Moreover, if a gene in a rule antecedent takes a value of 0, it represents the corresponding 
variable not considered by the rule. If all genes representing the rule antecedent simultaneously take 
0 or if the gene representing the rule consequent is 0, then the rule is not included. 
 
Based on this, a rule of “If surface condition=dry and occupation=in job and actions=left 
lane-change and Then degree of severity=injury” can be encoded as 1000000000001000020002. 
This rule also contains a family of 4.838 1010 offspring rules in total, which can be represented by 
“If x1=1 and x2={0, 1, 2} and x3={0, 1, 2} and x4={0, 1,…, 3} and x5={0, 1,…, 3} and x6={0, 1,…, 



 7

4} and x7={0, 1,…, 4} and x8={0, 1,…, 4} and x9={0, 1,…, 4} and x10={0, 1,…, 4} and x11={0, 
1,…, 4} and x12={0, 1,…, 3} and x13=1 and x14={0, 1,…, 5} and x15={0, 1,…, 5} and x16={0, 1,…, 
5} and x17={0, 1,…, 5} and x18=2 and x19={0, 1,…, 5} and x20={0, 1,…, 5} and x21={0, 1,…, 7} and 
Then y=2.” That is, any case satisfying any one of the offspring rules will certainly also satisfy their 
parent rule. Generally, the more variable present in the antecedent part (taking non-zero values), the 
more specific of a rule is (less number of parties will satisfy the rule). 
 
The proposed algorithm aims to select a set of rules which can best predict the severity degree 
based upon these twenty one explanatory variables. The total number of potential rules equals 
3 3 3 4 4 5 5 5 5 4 4 4 5 6 6 6 6 6 6 6 8=1.935 1014. Obviously, it 
is barely possible to compare all rule combinations through a total enumeration approach. 
 
2.3.2 Fitness function 
 
An individual chromosome, a rule, with a higher fitness function value has a higher probability to 
be selected for reproducing offspring. The role of fitness function is to evaluate the quality of the 
rule numerically. To determine the fitness function, there are three common factors frequently taken 
into consideration: coverage, completeness and confidence of the rule. The coverage ratio of rule i 
(i.e., the cases satisfied by the rule antecedent) is denoted by A : the cardinality of set A (the 
number of elements in set A). The completeness of the rule (i.e., the proportion of cases of the target 
class covered by the rule) is given by CCA /I . The confidence of rule i (i.e., the predictive 
accuracy) is given by ACA /I  (Freitas, 1999). Shin and Lee(2002) adopted hit ratio(confidence) 
as the fitness function which is also defined as predictive accuracy plus coverage in another 
study(Kim and Han, 2003). However, it is the performance of the entire rule set that should be 
emphasized instead of those ones of individual rules themselves. In other words, the good 
performances of individual rules do not guarantee that the combination of these rules also performs 
well. It results from the redundancy and conflict between rules. In order to overcome this problem, 
the fitness function is set in this paper as the increase of correctly classified cases by the rule set 
combining the previous mined rules and the new rule, which can be expressed as follows:  

fi =·Nnrs – Nprs                                                        (1) 

where, Nnrs is the number of cases that are correctly classified by the rule set combining the 
previous mined rules with the rule i, and Nprs is the number of cases that are correctly classified by 
the previous mined rules.  
The previous mined rules are also called the temporary rule set in this study. By means of the fitness 
function above, the effect caused by redundancy or conflict between rules would be effectively 
reduced in rule mining process. When a new rule is extracted from the final population, it would 
certainly increase the performance of entire rule set as the new rule set combines the new rule with 
the temporary rule set. 
 
2.3.3 Genetic operators 
 
Because the genes in our GMR model are not encoded binary, simple genetic algorithms proposed 
by Goldberg (1989) cannot be used. Instead, we employ the max-min-arithmetical crossover 
proposed by Herrera et al. (1998) and the non-uniform mutation proposed by Michalewicz (1992). 
A brief description is given below. 
 
(1) Max-min-arithmetical crossover 

Let Gw
t ={ gw1

t ,…, gwk
t ,…, gwK

t } and Gv
t ={ gv1

t ,…, gvk
t ,…, gvK

t } be two 
chromosomes selected for crossover, the following four offsprings can be generated: 



 8

 G1
t+1  = aGw

t + (1-a)Gv
t                                                

                                                        (2) 
G2

t+1  = aGv
t + (1-a)Gw

t                                                
                                                        (3) 

G3
t+1 with g3k

t+1=min{gwk
t, gvk

t}                                           
                                                 (4) 

G4
t+1 with g4k

t+1=max{gwk
t, gvk

t}                                          
                                                 (5) 

where a is a parameter (0 < a < 1) and t is the number of generations.  
 
(2) Non-uniform mutation 
Let Gt = { g1

t ,…, gk
t ,…, gK

t } be a chromosome and the gene gk
t be selected for mutation (the 

domain of gk
t is [gk

l, gk
u]), the value of gk

t+1 after mutation can be computed as follows: 

⎩
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bifggtg
bifggtgg

l
k

t
k

t
k

t
k

u
k

t
kt

k
　　　

　　　

                                                

                          
   (6)

 
where b randomly takes the binary value of 0 or 1. The function ),( ztΔ  returns to a value in the 
range of [0, z] such that the probability of ),( ztΔ  approaches to 0 as t increases: 

)1(),( )/1( hTtrzzt −−=Δ                                                               
                                           (7) 

where r is a random number in the interval [0,1], T is the maximum number of generations and h is 
a given constant. In eq. (7), the value returned by ),( ztΔ  will gradually decrease as the evolution 
progresses. 
 
2.3.4 Rule selection  
 
The method of extracting rules has profound effects on their accompanied performance. 
Conventionally, a group of different rules is obtained simultaneously from the final results as the 
stopping criterion is met. Generally speaking, it is an important issue to avoid selecting redundant 
or conflicting rules during the rule selection process. The redundancy or conflict between the 
selected rules would lead to reduce the performance of the prediction model, as well as increasing 
the difficulty in interpreting the causal relationship between explanatory variables and crash severity. 
However, it is probably difficult to avoid this condition and little information could be found in the 
literature on dealing with this issue (Shin and Lee, 2002; Kim and Han, 2003; Chen and Hsu, 2006). 
On the other hand, the mined rules are often too complicated to be understood instead of being 
interpretable, shorter, and simpler. In order to improve these problems, a learn-one-rule function 
combining with a neighborhood search was introduced over the rule mining process in this study. 
Instead of searching a good rule set at a time, a stepwise rue set building procedure with a greedy 
strategy is proposed. Applying the learn-one-rule function combining with a neighborhood search, 
the rule set is constructed according to the following steps (as shown in Figure 4):  
 
Step 1: Rank rules in the final population according to their fitness values in a descending order. 
Step 2: Select the rule with the highest fitness value and perform a neighborhood search with 

improvement and parsimony principle for rule modification. 
Step 3: Update the temporary rule set by the modified rule. 
Step 4: Terminate until the number of rules in the temporary rule set hit the preset number. 

Otherwise, implement the GAs for another run and go to Step 1. 
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Figure 4 The GA based mining approach 

 
After a rule is selected, a rule modification scheme is introduced. There are two mechanisms in the 
rule modification process, including improvement replacement and parsimony principle. Due to the 
characteristic of stochastic operation in evolutional process, it is understandable that there might be 
some better points existing near the current solution point in the search space. Based on this, 
Comparative rules are created by enumerating all other attribute values of one variable controlling 
all other variables. In the mechanism of improvement replacement, when the predictive accuracy of 
a comparative rule combining with the previous rule set is better than the raw rule in the same 
condition, the value of the checked variable would be substituted by the value of the same variable 
in that comparative rule, as shown in the left part in Figure 5. If there is no better point found, the 
mechanism of parsimony principle will hold. When the original value of the checked variable is not 
zero, but the value of the checked variable is zero in comparative rule with the same predictive 
accuracy in the same condition, the value of the checked variable would be substituted by zero, as 
shown in the right part in Figure 5. In this study, the order of checking all explanatory variables is 
from x1 to x21. After all explanatory variables are checked, the last adjusted rule will be put into the 
temporary rule set for next rule mining if needed.  
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Figure 5 Rule modification process 

 
It is almost inevitable that two or more rules with different predicted classes may be simultaneously 
fired by a crash case. In this situation, the case is would be predicted as the class of the rule with the 
highest accuracy if two or more rules are applied to the case at the same time. 
 
2.4 Results 
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The parameters of the proposed GMR model are set as follows: population size=50, crossover 
rate=0.85, mutation rate=0.08, and maximum number of generations=1,000 (the stopping criterion). 
The number of rules to mine is set as 55. The learning process of the GMR model is shown in 
Figure 6. 
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Figure 6 Learning process of the GMR model  

 
Theoretically, the misclassification rate can be lowered to zero monotonically by increasing the 
number of rules in the GMR model. However, a good classification model should not only fit the 
training data well, it must also accurately classify records it has never seen before. To avoid model 
overfitting, 38 rules are selected in the GMR model as the misclassification rate of validation data 
hit the lowest value. Table 2 shows the final selected rules along with its corresponding 
performance indices. Note that a total of 38 rules are selected with a descending order according to 
PAi. In terms of predictive accuracy (PAi), the top twenty five rules have remarkably higher values 
than the rest of thirteen rules. In terms of coverage ratio (CRi), R23 can explain 3,800 cases, 
followed by R30 (1,460 cases) and R31 (529 cases). In contrast, some rules cover only very few 
cases, such as R1 (6 cases), R6 (6 cases) or R7 (6 cases). 
 
The importance of variable can be identified by the number of its presence in all rules. The number 
of variables with values other than 0 (i.e. the variable is not considered by the rule) in all rules is 
then calculated. In this regard, x13 (driver occupation) is the most important variable which appears 
in 16 rules, followed by x16 (location), x15 (travel period), and x17 (vehicle type). Two variables are 
shown in less than three rules, which are x2 (signal control) and x8 (road status), indicating their 
least significance to crash severity. There are six rules associated with A1 crash, twenty-eight rules 
with A2 crash, and four rules with A3 crash.  
 
Most of the rules could be readily inspected and explained by the if-then relationship of the rules 
themselves. Taking R1 for instance, the rule indicates that when speed limit is 40~60 KPH and 
driver’s age is over 65 years old, it tends to lead A2 crash. R2 shows when drivers are male, in job 
and under 30 years old, speed limit is 100 KPH, travel period is midnight to morning, and major 
cause is alcoholic, it tends to lead A2 crash. As to R19, when safety belt is not fastened with driver’s 
speeding, it tends to cause A1 crash. In contrast to R19, R23 reveals when safety belt is fastened, it 
tends to be less severe (A3 crash). The rest may be deduced by analogy. More exploration of the 
potential implications of the rules is depicted as the following. In regard to driver characteristics, it 
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is interesting that jobless driver combining with specific conditions would tend to cause A2 crash. 
The conditions include cloud (R3), nighttime with illumination, under 30 years old, and midnight to 
morning (R20), and no obstacle (R26). Regarding Behavior and environment factors, when safety 
belt is not fastened with driver’s speeding, it tends to cause A1 crash (R19). Use of cell phone 
combining with the antecedents of R14 and R35 tends to lead A2 crash. The alcoholic use has 
positive correlation in crash severity. On the other hand, wet or slippery surface condition and 
obstacle do not have significant effects on crash severity. About vehicle type, truck combining with 
the antecedents of R6, R13, R18, and R27 is likely to lead A2 crash. As to trip characteristic, 
midnight to morning combining with the antecedents of R2, R5, R20, R21, and R29 also tends to 
lead A2 crash. The above-rule interpretations might be useful references for law enforcement or 
management by the related authorities. 
 

Table 2 Combination of rules mined by GMR model 
Rules x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 y CRi PAi 

R1 1     1 4  1 5 1   2 6 1.000 
R2   1 1   2   1 1 1 5 1  4 2 12 0.917 
R3    2      3   2 12 0.917 
R4   2    1   1 1 2   2 10 0.900 
R5 1  1       3 1 3   2 12 0.833 
R6    1      1 5 2 2   2 6 0.833 
R7 1    1   1  3 3 2   2 6 0.833 
R8          5 3   2 12 0.833 
R9   1   3   3 1 1 1   2 11 0.818 
R10    1   2  1 4 1 5 7 2 16 0.813 
R11    1   1   2 1   2 16 0.813 
R12      1 3   1 5  3 64 0.813 
R13 1         2 2 2   2 10 0.800 
R14     1  3   1 2   2 15 0.800 
R15   1 1      1 4 1   3 239 0.799 
R16 1    1 4    1 3 2   2 22 0.773 
R17          1 2 2 5  2 12 0.750 
R18   2       1 2 2 5  2 12 0.750 
R19          2  2 1 11 0.727 
R20      3    3 1 5   2 11 0.727 
R21          4 5 1 2   2 25 0.720 
R22 1      3  1 2 2   2 14 0.714 
R23          1   3 3800 0.687 
R24      4    1 1 1   3 201 0.687 
R25          3   1 106 0.613 
R26     1     3   2 154 0.435 
R27    1      2 1  2 77 0.429 
R28          4   1 47 0.426 
R29 1         1 3 5 1   2 91 0.374 
R30 1    1   1 1 1 1   2 1460 0.325 
R31      4   1 1   2 529 0.319 
R32       3   1 1 1   2 305 0.302 
R33          2 2   2 64 0.297 
R34 2         4 1   2 149 0.262 
R35      1 1   1 1 1 1 2 1 1   2 121 0.215 
R36 1         1  2 1 97 0.196 
R37   1 1  3    2 1   1 75 0.080 
R38          1 2 1 1   1 267 0.064 
m 10 0 7 8 5 9 10 2 6 5 4 7 16 9 11 13 11 8 10 5 4 - - - 
Note: m is the number of variable presence in the selected 38 rules. 
 
Table 3 gives the distribution of cases with degree of severity predicted by GMR model and with 
real degree of severity. As shown in Table 3, in the training dataset, the proposed GMR model can 
actually predict the A3 crash (correct rate 80.77%), followed by A2 crash (64.90%) and A1 
(53.13%). The overall correct rate of the proposed GMR model in training has achieved 75.10%. In 
the validation dataset, the overall correct rate has achieved 73.80%. 
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Table 3 Number of cases with degree of severity predicted by GMR 
Predicted severity 

Datasets Real severity 
A1 A2 A3 

Total 

 A1 85 (53.13%) 46 (28.75%) 29 (18.13%)  160 (100.00) 
Training A2 32 (2.87%) 723 (64.90%) 359 (32.23%)  1114 (100.00) 
 A3 22 (0.84%) 482 (18.39%) 2117 (80.77%)  2621 (100.00) 
 Total 139 1251 2505 3895 
 A1 37 (56.06%) 15 (22.73%) 14 (21.21%)  66 (100.00) 
Validation A2 3 (0.63%) 307 (64.09%) 169 (35.28%)  479 (100.00) 
 A3 11 (0.98%) 225 (20.04%) 887 (78.98%)  1123 (100.00) 
 Total 51 547 1070 1668

Note: The percentages are given in the parentheses. 
 
2.5 Comparisons 
 
2.5.1 Decision tree (DT) 
 
For comparison purpose, a decision tree (DT) model is also used to mine the rules explaining the 
same crash dataset. The DT model is performed by SAS Enterprise Miner Release 4.3. Several 
settings of the DT model are tried and the best performed settings are as follows. Splitting criterion 
is Gini reduction. Minimum number of observations in a leaf is 1. Observations required for a split 
search is 8. Maximum number of branches from a node is 2. Maximum depth of tree is 6. Splitting 
rules saved in each node is 5. The learning process of the DT model is depicted in Figure 7. Note 
that the misclassification rate decreases as the number of leaves gets larger.  
 
Table 4 presents the number of cases with various degrees of severity predicted by the DT model. 
Note that the DT model performs better in predicting the A3 crash (correct rates in training and 
validation are 97.71% and 97.15%, respectively) than the proposed GMR model. However, the DT 
model performs much worse than the proposed GMR model while predicting both A1 and A2 
crashes. Averagely, the overall correct rates of the DT model in training and validation are 70.24% 
and 69.54%, respectively, which are inferior to the proposed GMR model. 
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Figure 7 Learning process of the DT model 
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Table 4 Number of cases with degree of severity predicted by DT based on balanced dataset 
Predicted severity 

Datasets Real severity 
A1 A2 A3 

Total 

 A1 71 (44.38%) 10 (6.25%) 79 (49.38%)  160 (100.00) 
Training A2 34 (3.05%) 104 (9.34%) 976 (87.61%)  1114 (100.00) 
 A3 10 (0.38%) 50 (1.91%) 2561 (97.71%)  2621 (100.00) 
 Total 115 164 3616 3895 
 A1 36 (54.55%) 1 (1.52%) 29 (43.94%)  66 (100.00) 
Validation A2 7 (1.46%) 33 (6.89%) 439 (91.65%)  479 (100.00) 
 A3 7 (0.62%) 25 (2.23%) 1091 (97.15%)  1123 (100.00) 
 Total 50 59 1559 1668

Note: The percentages are given in the parentheses. 
 
A total of 18 rules are generated by the DT model as follows: two rules associated with A1 crash, 
six rules with A2 crash, and ten rules with A3 crash. 
R1: If x11=3 Then y=1 
R2: If x11=2 Then y=3 
R3: If x21=2 and x10= {2, 3} and x17= {1, 4} and x11=1 Then y=1 
R4: If x3=2 and x4= {2, 3} and x17= {2, 3, 5} and x11=1 Then y=2 
R5: If x3=1 and x4= {2, 3} and x17= {2, 3, 5} and x11=1 Then y=3 
R6: If x12=1 and x19=1 and x10=1 and x17= {1, 4} and x11=1 Then y=3 
R7: If x21= {2, 3, 4, 5, 7} and x19= {2, 3, 4, 5} and x10=1 and x17= {1, 4} and x11=1 Then y=3 
R8: If x15= {2, 4, 5} and x21= {1, 3, 4, 5, 6, 7} and x10= {2, 3} and x17= {1, 4} and x11=1 Then y=2 
R9: If x15= {1, 3} and x21= {1, 3, 4, 5, 6, 7} and x10= {2, 3} and x17= {1, 4} and x11= 1 Then y=3 
R10: If x13= {1, 2, 4} and x21= {2, 3, 6} and x4= 1 and x17= {2, 3, 5} and x11=1 Then y=3 
R11: If x13=3 and x21= {2, 3, 6} and x4=1 and x17= {2, 3, 5} and x11=1 Then y=2 
R12: If x20=3 and x21= {1, 4, 5, 7} and x4=1 and x17= {2, 3, 5} and x11=1 Then y=3 
R13: If x21= {1, 2, 3, 6, 7} and x12= {2, 3} and x19=1 and x10=1 and x17= {1, 4} and x11=1 Then y=3 
R14: If x21=5 and x12= {2, 3} and x19=1 and x10=1 and x17= {1, 4} and x11=1 Then y=2 
R15: If x14= {1, 2} and x21= {1, 6} and x19= {2, 3, 4, 5} and x10=1 and x17= {1, 4} and x11=1 Then y=2 
R16: If x14= {2, 3, 5} and x21= {1, 6} and x19= {2, 3, 4, 5} and x10=1 and x17= {1, 4} and x11=1 Then 

y=3 
R17: If x15= {1, 2, 3, 4} and x20= {1, 2, 4, 5} and x21= {1, 4, 5, 7} and x4=1 and x17= {2, 3, 5} and 

x11=1 Then y=3 
R18: If x15=5 and x20= {1, 2, 4, 5} and x21= {1, 4, 5, 7} and x4=1 and x17= {2, 3, 5} and x11=1 Then y=2 
 
2.5.2 Rough set model 
 
Rough set (RS) theory, proposed by Pawlak (1982), is an extension of set theory that can effectively 
handle discrete variables with multilevel categories. The RS theory can classify accidents into 
groups with similar properties by considering multiple dimensions. It is believed that rough set 
theory has the potential to be a complementary method for analyzing relationships among factors 
and crash severity. The RS theory is briefly narrated below. 
 
Let U represent the universe, a finite set of objects, and A denote a set of condition attributes, i.e. 
affecting factors for crash severity. For x, y ∈U, we say that x and y are indiscernible by the set of 
condition attributes A if ρ(x,a) = ρ(y,a) for every a ∈ A where ρ(x,a) denotes the information 
function. A set with objects within it which are indiscernible by the set of condition attributes A is 
called a A-elementary set. The family of all elementary sets is denoted by A*. It represents the 
smallest partitions of objects by the specified condition attributes so that objects belonging to 
different elementary sets are discernible and those belonging to the same elementary sets are 
indiscernible. The A-lower approximation of a set of objects Y (Y⊆U), denoted by AY , and the 
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A-upper approximation of Y, denoted by AY , are respectively defined as 
 

{ }YXAXXAY ⊆∈= ∗ andU                                             (8) 
{ }φ≠∈= ∗ YXAXXAY IU and                                          (9) 

 
The objects belonging to the set of lower approximation are those definitely definable by the 
elementary sets, since objects in AY  can be fully identified by the elementary sets in A*. On the 
other hand, those belonging to the set of upper approximation but not to the set of lower 
approximation cannot be fully identified by the elementary sets in A*. 
 
As illustrated in Table 5, five cases are characterized with three condition attributes: driver’s age, 
vehicle type and weather, and one decision attribute: crash severity. The three condition attributes 
form four elementary sets: {1, 3}, {2}, {4}, {5}. This means that cases 1 and 3 are indiscernible 
while the other cases are characterized uniquely with all available information. Therefore, the fatal 
accident type is described with the lower approximation set {2} and the upper approximation set {1, 
2, 3}. Similarly, the concept of the injury accident type is characterized by its lower approximation 
set {4, 5} and upper approximation set {1, 3, 4, 5}. The performance of the specified condition 
attributes can be measured with two indicators: accuracy of approximation and quality of 
approximation. Accuracy of approximation represents the percentages of the associated objects 
definable with the specified condition attributes. This can be defined as follows: 

 
Table 5 Example of crashes with three factors 

Case Driver occupation Vehicle type Weather Severity 
1 In job Passenger car Rainy A1 
2 Jobless Truck Rainy A1 
3 In job Passenger car Rainy A2 
4 Student Passenger car Rainy A3 
5 Student Truck Sunny A2 

 
( ) ( )

( )AY
AYYA card

card=μ                                                   (10) 

 
where card refers to cardinality. The accuracy value ranges from 0 to 1. The closer to 1 is the 
accuracy, the more discernible is the accident type. Namely, more cases of this accident type are 
discernible by the elementary sets generated by the specified condition attributes. It implies that the 
associated crash severity do exist unambiguously. Following Table 4, the accuracy of 
approximation for the fatal class is 0.33(=1/3) and for the injury class is 0.50(=2/4). This implies the 
injury class can be defined more unambiguously than the fatal class with the provided three 
condition attributes. On the other hand, quality of approximation represents the definable 
percentage of the whole universe. Let X = {Y1,Y2, ... ,Yn} be a classification of U, i.e. Yi ∩Yj = φ, ∀i, 
j≤n i ≠ j and UYi

n
i ==1U . Yi are called classes of X. The A-lower approximation and A-upper 

approximation of X are represented by sets AY  = { 1AY , 2AY , ... , nAY } and AY  = 

{ 1AY , 2AY , . . . , nAY }, respectively. Quality of approximation of classification X by a set of 
attributes can be defined as follows: 

 

( ) ( )
( )U

AY
Y i

A card
cardU

=η                                                  (11) 

 
The value of quality ranges from 0 to 1. The closer to 1 is the quality, the more objects of the 
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universe clearly belong to a single class of X, suggesting that the crash severity for all accidents can 
be clearly identified. Accidents thus can be more accurately recognized and corresponding 
countermeasures devised. The quality of approximation for the example is 0.60(=3/5), suggesting 
that with the provided three condition attributes 60% of the cases can be unambiguously defined. To 
recognize further the details of crash severity, rules need to be extracted. A rule, representing the 
critical characteristics of the associated accidents, is a combination of values of condition and 
decision attributes. Theoretically, the maximum number of rules is the product of the categories of 
all condition attributes. However, some combinations may not appear since such accidents have 
never happened before. A rule exists if and only if at least one such accident exists. This paper 
applies the most frequently used minimum covering algorithm to generate rules, with aims to 
generate the minimum number as well as the shortest length of rules to cover all accidents. 
 
A rough set software, ROSE2 (rough set data explorer), is used in this paper wherein LEM2 
(Grzymala-Busse, 1992; Grzymala-Busse and Werbrouck, 1998) is embedded to generate a 
minimum rule set covering all cases. The results of RS model are summarized in Table 6. The 
accuracy of approximation for each class of crash severity is commonly high and the quality of 
classification is rather low, except for property-damage only crashes. The 5-fold cross-validation 
technique is used to conduct validation test of classification results. 
 

Table 6 Results of the RS model 
Crash severity Generated rules Accuracy of 

approximation (%) 
Quality of 
classification (%) 

Hit rate 
(%) 

Overall hit 
rate (%) 

A1 84.40 30.08 
A2 72.96 27.31 
A3 

1644 
86.74 

90.38 
74.25 

59.01 

 
2.5.3 Ordered Probit model 
 
To further compare the key factors identified by conventional statistical methods, an ordered Probit 
(OP) model is estimated. The OP model is usually in a latent (i.e., unobserved) variables framework 
with the following general specification: 

 
yi* = β'Xi + εi                                                             (12) 

 
where yi* is a latent and continuous measure of injury severity faced by an accident victim i; β' is 
the vector of estimated parameters; Xi is the (K×1) vector of observed non-stochastic explanatory 
variables. What can be observed are: 

 
Y* = 0   if   -∞< y* ≦ μ0  (property-damage only) 
Y* = 1   if  μ0 < y* ≦ μ1   (injury)                                         ( 1 3 ) 
Y* = 2   if  μ1 < y*  <  ∞   (fatality) 

 
The μ's are unknown threshold parameters to be estimated with β. The method of maximum 
likelihood is used for estimating the parameters of OP model and the results are presented in Table 
7 (only significant factors are listed). Table 8 reveals the number of cases with each severity level 
predicted by the OP model and the hit rates of training and validation data sets. 
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Table 7 Estimation results of the OP model 
Variable β t-value 
Constant 0.656 3.89 

μ1 0.00 - Thresholds μ2 1.430 35.10 
Driver characteristics 

License (without license) 0.171 1.75 
Use of safety belt (safety belt fastened) -1.733 -13.92 
Driver occupation (student) 0.206 2.66 
Alcoholic use (> 0 mg/l) 0.182 2.94 
Journey purpose (visiting/shopping trip) 0.151 2.35 
Driver age (over 50 years old) 0.506 2.54 

Vehicle characteristics 
Vehicle type (truck; bus) 0.232 4.55 
Action (others) 0.166 1.74 

Crash characteristics 
Location (shoulder edge; median) 0.168 3.04 
Major cause (fail to keep a safe distance) -0.506 -3.54 
Travel period (midnight to morning) 0.109 2.25 

Environmental characteristics 
Speed limit  0.277 2.15 
Road status (grade and curved road) 0.247 1.93 
Marking (no lane-changing line) 0.381 2.48 
Surface condition (dry) 0.187 4.25 
Obstacle (work zone; others) -0.214 -2.40 
Light (nighttime without illumination) 0.117 2.21 

Goodness of fit measures 
Mean Loglikelihood (null model) -0.756 
Mean Loglikelihood (convergence) -0.707 
Adjusted rho-square  0.065 
BIC 5654.052 
AIC 5543.238 

Note: The significance (t-value) of independent variables is above 1.645. 
 

Table 8 Number of cases with degree of severity predicted by the OP model 
Predicted severity 

Datasets Real severity 
A1 A2 A3 

Total counts

A1 28 (17.50%) 22 (13.75%) 110 (68.75%) 160
A2 23 (2.06%) 40 (3.59%) 1051 (94.34%) 1114
A3 4 (0.15%) 23 (0.88%) 2594 (98.97%) 2621

Training 
(hit rate =  
68. 74%) Total 55 (1.41%) 85 (2.18%) 3755 (96.41%) 3895

A1 15 (22.73%) 14 (21.21%) 37 (56.06%) 66
A2 8 (1.67%) 17 (3.55%) 454 (94.78%) 479
A3 1 (0.09%) 12 (1.07%) 1110 (98.84%) 1123

Validation 
(hit rate =  
68.37%) Total 24 (1.44%) 43 (2.58%) 1601 (95.98%) 1668

Note: The percentages are given in the parentheses. 
 
2.6 The proposed two-stage model 
 
This paper proposes a two-stage analytical framework to identify the critical risk conditions 
contributing to crash severity. The first stage develops a genetic mining rule (GMR) model to 
identify possible risk conditions best elucidating the degree of severity. The second stage then uses 
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the mined risk conditions as dummy explanatory variables to formulate an OP model. The proposed 
two-stage analytical framework is applied to analyze the Taiwan’s empirical one-vehicle crash data. 
A total of 38 rules are mined, which can achieve overall prediction rates of 75.10% in training and 
73.80% in validation. 
 
The results of two-stage OP model are shown in Table 9. For comparison, a one-stage OP model 
using the same 21 original explanatory variables is also examined. The estimated results show that 
the proposed two-stage OP model is superior to one-stage OP model in terms of likelihood ratio (P 
< 0.05). 
 
Table 9 Estimation results of the OP model 

Variables Coefficient P-value Variables Coefficient P-value Variables Coefficient P-value
Constant 0.3383  0.0055  R14 1.2627  0.0000 R24 0.7274  0.0002 
R2 1.7463  0.0000  R15 0.9255  0.0008 R25 1.0629  0.0000 
R3 0.9208  0.0000  R16 0.8696  0.0004 R26 0.3404  0.0001 
R4 0.4685  0.0000  R17 0.9047  0.0001 R27 0.3241  0.0068 
R6 0.3264  0.0004  R18 1.1862  0.0003 R29 0.1852  0.0000 
R7 1.2926  0.0022  R19 0.8726  0.0003 R34 -0.3123  0.0182 
R8 1.0258  0.0001  R20 0.7978  0.0003 R36 -0.3710  0.0000 
R10 0.9913  0.0006  R21 1.0150  0.0008 R37 -1.0080  0.0000 
R11 0.8589  0.0007  R22 0.9401  0.0039 Mu(1) 1.5857 0.0000 

R12 0.8678  0.0317  R23 0.5951  0.0343    

Log likelihood function          -3721.896 
Restricted log likelihood         -4198.595 
Likelihood Ratio Index                  0.114 
Note: The coefficients of R1, R5, R9, R13, R28, R30~R33, R35, R38 are not significant (at α = 
0.1). 
 
According to the results of OP model with rule-based dummy variables, the risk conditions can be 
identified. The magnitude of the coefficients in the model implies how severe the corresponding 
risk conditions will cause the crash severity. Based on the results, special attention should be given 
to the six most critical risk conditions: R7, R14, R18, R25, R8, and R21 (with coefficients greater 
than 1). R7 reveals that the elder drivers are in high risk when they pass through the road section 
with low speed limit (e.g., work zone); thus, more visible signs of variable speed limits or other 
safer devices might be helpful. For R14, the geometry and signs for freeway on-ramp should be 
designed to prevent the drunken drivers, motorcyclists or bicyclists from wrongly entering. For R18, 
the truck drivers without licenses tend to be in high risk during the daytime off-peak periods; thus, 
more intensive enforcement might need to correct this illegal driving behavior. For R25, due to the 
characteristics of truck manipulation, it is difficult to cope with the decrease in speed limits; thus, 
the authority may introduce more appropriate measures or strategies in the speeds control. R8 is a 
commonly seen problem, which requires more intensive enforcement or education. The light 
alcoholic use is likely to influence the driving safety. As for R21, this kind of driving behavior must 
be forbidden. In sum, the above rule interpretations can provide the police with valuable guidance 
for law enforcement; they can also provide other authorities with helpful information for traffic 
management. 
 
2.7 Conclusion 
 
This study identifies risky conditions (joint effects of risk factors) to crash severity by developing a 
novel genetic mining rule (GMR) model. Three different types of A1, A2 and A3 single-vehicle 
crash cases are drawn from 2003-2007 Taiwan’s freeway accidents dataset. A total of 38 rules have 
been mined which can achieve an overall correct rate of 75.10% in training and 73.80% in 



 18

validation, respectively. Our proposed GMR model has demonstrated superior to the conventional 
decision tree (DT), rough set (RS) and ordered Probit (OP) models, which can only achieve an 
overall correct rate of 70.24% in training and 69.54% in validation, respectively, with the same 
database. According to the mined rules, x13 (driver occupation), x16 (location), x15 (travel period), 
and x17 (vehicle type) are the four key factors contributing to crash severity. In addition, this study 
also identified the joint effects of risk conditions on crash severity by developing a novel two-stage 
model (GMR+OP) model by introducing these 38 mined rules (i.e. risk conditions) into an OP 
model as dummy explanatory variables, it is found that the proposed two-stage OP model is 
superior to one-stage OP model in terms of likelihood ratio. Based on the results, six most critical 
risk conditions have been identified, which can serve as useful guides to ameliorate the traffic 
safety. 
 
Some directions for future studies can be identified. First, the neighboring traffic condition of the 
crash is also an important factor to crash severity; however, the police accident investigation report 
did not record such information. The crash data may be further matched with the traffic database so 
as to gain more information regarding the contributing factors to crash severity. Second, in order to 
lessen the model complexity, various performance indices may be integrated into an overall fitness 
function; namely, a multi-objective GMR model deserves further elaboration. Other information 
such as the neighboring traffic condition of the crash can also be an important factor to crash 
severity. Future study can combine such information so as to gain deeper insights into the risk 
conditions to crash severity. Last but not least, analysis of two-vehicle or multi-vehicle crash data is 
worthy of further study. Finally, risk conditions containing fewer (only two or three) original 
explanatory variables would be much easier to elucidate the relationship between explanatory 
variables and crash severity, thus deserves further attempt. 
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三、計畫成果自評 
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3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價值（簡要敘述

成果所代表之意義、價值、影響或進一步發展之可能性）（以 500 字為限） 

 
本計畫為三年期計畫，具體完成之研究成果如下：  

 
1.建立基因規劃探勘模式 

 
本計畫乃於第一年期提出基因規則探勘模式（Genetic rule mining, GRM），可由探勘所得

之規則的前半部，判斷何謂危險情況，進而加以避免。惟本研究所提出之 GRM 必須先固定

規則數量，再同時進行最佳規則組合之尋優。因此，具有染色體長度過長，尋優效果不佳，

以及探勘過多衝突或重覆規則的傾向，進而導致規則難以詮釋，無法提出具體之安全改善策

略。 
 
2.提出改良式逐步基因規劃探勘模式 

 
本計畫第二年期乃提出改良式的基因規則探勘模式（Genetic rule mining, GRM），稱為逐

步基因規則探勘模式（Stepwise GRM, SGRM）。SGRM 一次僅挑選使事故嚴重度預測率精確

率最高的一條規則，再以此規則為基礎，進行下一條規則之選取，直到精確率無法再改善為

止。如此，即可避免選擇規則過多，且相互重覆或矛盾的問題。此外，由於不同類型事故之

影響因素與危險情況不一定相同，因此，有必要加以區隔分析。本年度以先以總計 5563 件單

車事故（single vehicle accident）為分析基礎。結果顯示，本模式共選擇了 38 條規則，其訓練

準確度達 75.1%，而驗證準確度則達 73.8%均遠高於決策樹之預測結果。而影響事故嚴重度之

危險情境也加以確認，並研提改善策略。 
 
3.進行模式比較與分析 

 
本計畫第三年期進一步探討及比較本研究所提出之 SGRM、決策樹（decision tree, DT）、

粗略集合（rough set, RS）及次序普羅比（ordered probit model, OP）等四種模式在分析不同事

故嚴重度之選擇規則與重要解釋變數。結果顯示，本研究所提出之 SGMR 模式不僅可達到最

佳之預測準確度外，也可篩選出少數關鍵推理規則及危險情境，俾利安全改善策略之研提。

 
4.提出兩階段整合模式 

 
本研究進一步將 SGRM 所挑選出的 38 條推理規則的前半部設定為危險情境（risk 

condition），以虛擬變數表之，後半部則為事故嚴重度，結合次序普羅比進行危險情境之推估

與檢定，以了解各種危險情境對事故嚴重度之影響程度。結果顯示，本研究所提出之整合方

法（SGMR＋OP）其模式配適度，遠比將所有原始變數作為解釋變數所建構之 OP 模式為高，

更可有效辨識、檢定及推估各種危險情境，有效克服以往統計迴歸方法僅能探討單一變數對

事故嚴重度的缺點，更符合事故嚴重度係由多個肇因所導致之先驗知識。 
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