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B IR

It is well understood that research efforts, for next-generation video decoding
system, have to cover not only multi-standard and multi-mode operation capability,
but also less power dissipation and power awareness with optimal picture quality,
especially when mobile video services are taken into account. As a result, in this
3-year (2008/8~2011/7) research project proposal, we’ll further investigate several
key issues related to so-called low-power, low-cost, and multi-mode video decoder
solutions. Based on our previous work on a dual-mode video (2005/8~2008/7), we’ll
leverage the available design platform and research results to further explore new
design approaches. For multi-mode task, we’ll investigate the specifications defined
in H.264/SVC and add those key modules into our H.264/MPEG2 decoder platform.
Not only new key modules will be explored, but also system decoding behavior will
be analyzed to study a better system architectural model so that a stand-alone and
IP-based decoder solution can be obtained. For low-cost issue, the major problem lies
in memory management and limited bus bandwidth. It is necessary to take into
account available stand-alone memory modules; even SoC solutions become a must.
Therefore developing a well-organized memory hierarchy and access mechanism to
meet decoding requirements under limited resources (storage space and bus
bandwidth) will be further explored. For low-power issue, an analysis of the decoding
behavior and related hardware architecture will be conducted. Thus system
exploration, module design, and data flow will be investigated to reduce power
dissipation at different levels. In addition, leakage current due to nano-meter CMOS
process will also be considered to provide a competitive video decoder solution.
Finally an FPGA prototype will be set up to evaluate the performance of the proposed

video decoder and related key modules.
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A. The Reduced Patterns Comparison Embedded Compressor/Decompressor
(RPCC)

To improve the video coding efficiency, diminishing the data correlation of the
temporal redundancy in each frame is widely used in the latest video coding standard,
such as H.264/AVC [1]-[2]. However, it causes a large amount of data transmission
between on-chip processing modules and external memory. In addition, the rapid and
huge data access from Motion Compensation (MC) consumes the majority of system
power and become serious in many portable devices. Many low power techniques
have already been proposed to reduce power consumption, but data transmission still
dominates huge amount of system power. Hence, reduce data access between on-chip
processing modules and external memory is the critical consideration in a mobile
video device. Although the mobile video devices are suffered from limited battery
capability, the visual quality requirement is not as high as high resolution applications.
Therefore, the embedded compression is suitable to lessen the volume of data access
and the size of off-chip memory under the premise of maintaining acceptable visual
quality. The mobile video devices are more and more important due to their various
functions at the present time. Reducing the usage of bandwidth and the required
resource of hardware in the mobile video devices is a critical topic.

In general, the compression methods are classified into two categories: lossless
compression and lossy compression. It is obvious that lossless compression methods
[3] completely reserve the information while truncating the size of data, so there has
no quality loss. However, some problems of lossless compression are so fatal that it’s
not suitable for system integration application. The lossless compression suffers from
variable length of lossless compressed data that we cannot regularly control the

compression ratio, frame memory size and bandwidth requirement. These



disadvantages are also attributed to the needs of memory to prepare for the worst case
of data access and the unknown size of data. Therefore, there exists an important
characteristic of lossy compression methods [4]-[7] which differs them from lossless
compression methods. The characteristic of fixed compression ratio allows us to
improve the disadvantages of lossless compression methods mentioned previously.
Although lossy compression algorithm will sacrifice tolerable visual quality, the
reduced power consumption, memory size and bandwidth requirement are more
attractive for mobile video devices.

Several lossy compression schemes have been proposed in [4]-[7]. The
transform-based compression methods can convert the signal from time domain to
frequency domain and move the energy to up-left corner. In human visual system, the
lower frequency component is more important than the higher frequency component
whose feature can be exploited to efficiently compress the amount of data, such as in
[4]-[5]. In [4], both Modified Hadamard Transform (MHT) and quantization of
Golomb-Rice Coding (GRC) are employed. To improve the quality loss of [4], [5]
adopts Discrete Cosine Transform (DCT) and Modified Bit Plane Zonal Coding
(MBPZC) instead of MHT and GRC. Although transform-based schemes provide
good compressed quality, MHT and DCT are too complicated to suit for being
embedded with H.264 mobile video devices. Another kind of algorithms is
pattern-based [6]-[7]. [6] adopts 64 patterns to improve Bit Plane Truncation (BTC)
algorithm and [7] increases extra acceptable quality loss to reduce the number of
compared patterns from[6]. Both [6] and [7] are limited by BTC algorithm; the coding
latency is still too long to be well- embedded into the target H.264 system. However,
through [6] and [7], we find a way to utilize the patterns to reduce the coding latency
and the amount of data.

In this paper, we propose a pattern-based lossy embedded compression method



which adopts 4x2 pixels as coding unit and CR is fixed as two.

B. The Bitplane Truncation with Pattern Comparison Coding Embedded
Compressor/Decompressor

A video coding standard achieves high compression efficiency such as H.264 [7]
and so forth. For H.264, at least one previous frame is stored in frame memory to
generate a predicted frame. Obviously, Motion Compensation (MC) demands a huge
amount of data accesses between off-chip memory devices and the video decoder chip.
However, data transfer consumes a lot of power. For mobile video devices, one major
issue is the limited power supply from battery. Therefore, reducing the bandwidth
requirement and size of frame memory is greatly demanded while maintaining
acceptable visual quality.

In general, embedded compression methods can be categorized into two
fundamental groups: lossless and lossy. Lossless compression algorithms [9] have no
error propagation problem. Lossy compression algorithms, comparing with lossless
compression algorithms, accomplish the fixed compression ratio (CR). Several lossy
compression algorithms have been proposed such as Modified Hadamard Transform
(MHT) plus quantization of Colomb-Rice Coding [4], DCT plus Modified Bit Plane
Zonal Coding [5], and et al. [6] exploits forty-six patterns to improve Block
Truncation Coding and [7] increases extra acceptable quality loss to reduce the
number of compared patterns from [6].

Lossless compression can guarantee no quality loss, but variable length of the
compressed data caused irreducible frame memory size. Therefore, existing lossless
algorithms are not suitable for frame compression because their primary purpose is
high coding efficiency rather than low latency, computation complexity, and high

random accessibility. On the contrary, lossy compression algorithm with the fixed CR



can guarantee the reduction of frame memory size. Consequently, it is important to
design a lossy algorithm with the following features: 1) Low distortion visual quality,

2) Low complexity, 3) Low bandwidth requirement, and 4) Low power consumption.

-~ FEypoiEiak
A. The Reduced Patterns Comparison Embedded Compressor/Decompressor
(1) The Proposed RPCC Embedded Compression Algorithm
(i) Algotrithm

The proposed compression scheme adopts pattern-based and 4x2 block-grid. The
CR is fixed as two and each 4x2 unit (64 bits) will be compressed into 32-bit data
package. Because fixed CR results in regular amount of coded data, the EC assures
the ability of random access without extra memory to register the segment address of
coded data. In addition, the 4x4 block unit is the basic coding unit in H.264 standard,
we partition each 4x4 block into two 4x2 blocks. Thus, 4x2-based block-grid lessens
the coding latency and makes the data access more efficient.

The proposed algorithm is shown in Figure 1. There are three parts in the overall
EC method: 1) MBPTC, 2) RPCC and 3) average coding. In MBPTC algorithm, we
partition a 4x2 matrix into eight bit planes and search the Start Plane (SP) in four

continuous layers which are close to MSB with 2 bits as the first compression step
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Figure 1 Compression methods of our proposed algorithm

The second step is to deal with remaining bit planes after MBPTC by RPCC. As
shown in Figure 2, we partition a 4x1 section with 4 bits into four 4x1 layers.
According to the coding threshold adopted, the RPCC will select the left or right
strategy. While we set the coding threshold to level 2, RPCC compares layer 1 and
layer 2 with eight 4x1-based patterns at the same time. If there is no error in layer 1
and layer 2, RPCC adopts the left strategy to compress the 4x1 section. Otherwise,
RPCC adopts right strategy. According to the simulation result with different
thresholds, while the right strategy is adopted, the right strategy is often in worse case.

We exploit this feature to improve the drawback in 4x1-based PCC algorithm.



4x1 Section
Level 1 |4x1-based PCC 1x Average
Level 2 |4x1-based PCC 1x Average
Level 3 |4x1l-based PCC 2x Average
Level 4 |4x1-based PCC 2x Average

Figure 2 Reduced patterns comparison coding concept

The third part is the average coding scheme which deals with the two residual
continuous bit planes after RPCC. We partition these bit planes into two 2x2-based
parts and calculate the average value in each 2x2-based part. The coded data format is

shown in Figure 3.

2 Bits 2 Bits 12 Bits 12 Bits 2 Bits 2 Bits
-t > > -t > P
Strate Coded 4x1 Coded 4x1 AVG. | AVG.
SP Bitsgy Section A for Section B for of of
RPCC RPCC Part A|Part B
-t -
Header
Information
(HI Bits)

Figure 3 The compressed 32-bit data format

(it) Design of Patterns
For a 4x2 block, the bit plane consists of 8 bits, leading to 28 (= 256) possible

number of bit planes. However, most of bit planes do not often appear in an image



and contribute the less visual quality of decoded image. In addition, some different bit
planes can provide the proximate visual quality. Thus, we focus on the design of a
small set of visually sensitive predefined bit planes as shown in Figure 4. By inverting
the polarization (0s and 1s) of predefined bit planes, eight patterns representing edges
and lines are generated. Each pattern is represented by a 3-bit index as the number of

patterns is eight.

00 0|0 1|11

1 0 0|0 1/1/0|0

Figure 4 Four predefined bit planes

(ili) Formula

We derive the formula (1) from the simulation result. It is about the PSNR loss of
4x1-based PCC algorithm. i is the number of 4x1 error bit plane. Py, is the error rate
and P, is the ratio of error rate per position in each 4x1 bit plane as described in Table
1. As described in the previous section, we can setup the different coding thresholds
(Level 0~4) in 4x1-based PCC algorithm to obtain corresponding weight (W;) as
described in Table 2. We can exploit the formula to estimate for the PSNR loss in

4x1-based PCC algorithm while the previous parameters are modified.

4
PSNR Loss (4x -based )= [ci“(Pm P,)-L-P, P, )‘H]-Wi @

i=0



Table 1 Ratio of error rate per position in each 4x1 bit plane

Wi Level 0 Level 1 Level 2 Level 3 Level 4
W, 0 0 0 0 0
W, 240 112 48 16

W, 720 224 48 0 0
W, 720 112 0 0 0
W, 240 0 0 0 0

Table 2 Weights under different coding thresholds

P, Error Rate Total Ratio
(%) (%)

Po 8.68 32.54

Py 4.65 17.43

P2 4.65 17.43

P, 8.70 32.60

Figure 5 shows the distribution of PSNR loss in all thresholds. It helps

improving the coding performance of the algorithm.

Distribution of PSNR Loss in 4x1-based PCC

E

(4]

dB

3 \%01
2
1 \0\1 141542

A4

Level O Level 1 Level 2 Level 3 Level 4
Thresholds

| —— PSNR Loss of All Thresholds |

Figure 5 Distribution of PSNR loss in 4x1-based PCC algorithm



(2) Proposed Architecture
(i) Modified Bit Plane Truncation Coding

The hardware design of MBPTC is improved from original BPTC. It is a
combinational block to deal with 4x2 pixels to obtain Start Plane (SP) and 4x2-plane
component for each 4x2 array. In Figure 6, we employ three 8-input OR gates as
thresholds to control the value of SP. The bits of layer 1, 2 and 3 are used to be input

of 8-input OR gate individually.

Bit of
Layer 1

Bit of
Layer 2

Bit of
Layer 3

SP

Figure 6 Hardware design for the MBPTC

(if) Reduced Patterns Comparison Coding

RCPP is a combinational block to deal with coded data by MBPTC. As shown in
Figure 7, SP selects four layers to be compressed and threshold is exploited to choose
the strategy to be adopted. The SP is produced by MBPTC and the threshold is

defined by users with different levels as described in Table 1. (Here we adopt Level 2)



Coding

Layer 1 4x1-based PCC ‘ ‘ 1x Average ‘ Threshold

Segment

Layer 2 4x1-based PCC 1x Average B Coded Data

Layer 3 4x1-based PCC 2x Average

SP
Layer4 | |4x1-based PCC 2x Average

L

Figure 7 The hardware architecture of RPCC

(ili) Data Rearrange

Data unpacking is a simple reverse process of encoding. The decoder focuses on
putting the data on proper positions. According to the coded data format, the SP
selects the initial bit plane of decoding. The continuous four layers are then placed on
corresponding positions depending on strategy bits. Afterward the average of part A

and B is placed on the continuous two bit planes after the four layers.

(iv) Overall Design of Encoder and Decoder
The overall compressor design is shown in Figure 8. It takes one cycle to deal

with 4x2 block. Here each MB takes 16 cycles to be encoded.

\ 4

4x2
Block > MBPTC
I

Segment

Y

Average

I
RPCC :
32-bit Data

I

I

I

=|

|

1 Cycle

Figure 8 Data flow of the encoder

For providing data to MC, the decompressor needs to support higher throughput.



The actual architecture of decompressor design is shown in Figure 9. A 4x2 block
takes one cycle to be decoded. Under the design, each MB takes 16 cycles to be

decoded.

I
I
32-bit Data |

|
|
|
Segment Data Rearrange |— > |

|< 1 Cycle >|

Figure 9 Data flow of the decoder

(3) System Integration And Verification

Figure 10 shows the overall block diagram of this system. The adopted H.264
decoder works at 5, 100 and 150 MHz respectively to perform CIF, HD 1080 AVC,
HD 1080/720 SVC at 30 frames/per second (FPS). The embedded compressor
compresses the data from deblocking filter into 64-bit data segment which is stored in
external memory. The embedded decompressor decompresses the coded data segment
from off-chip memory into 4x2-sized block which is sent to Motion Compensation.

The bandwidth of system bus is 32 bits and the external memory is 32 bits per entry.
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Figure 10 The architecture of our proposed H.264 decoder with EC capability

The related accesses of EC are partitioned into write accesses and read accesses.
Write accesses from deblocking filter write the data to external memory and read
accesses read the data from external memory to MC. Many methods have been
proposed to improve embedded compression and all of them aim to improve the
performance of embedded compression. However most of performance measured by
these methods is fragmental, lacking verification from system level. In addition, we
expect to precisely estimate the amount of read/write accesses on system view point.
Thus, we employ “CoWare” to deal with the complicated problems. As shown in
Figure 11, “CoWare” provides many functions to simulate a complete system and the
user-defined means user’s design. It makes more efficient that we can change the
user-defined field relied on our demands. We add the proposed design and H.264
system into user-defined field. The AMBA interface between “CoWare” and

user-defined is coded in System C and it provides a protocol to commutate each other.



Furthermore, user-defined means all designs in this filed need to be coded in Verilog.
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Figure 11 Block Diagram in CoWare simulation platform

Because the proposed algorithm provides fixed CR as two, the write access times
after adding the EC are always half of original system. The reduction ratio of write
access is 50%. The embedded decompressor decompresses the data from external
memory to MC. Because the bandwidth of system bus is 32 bits and the external
memory is 32 bits per entry, the original system takes 4x1 pixels as access unit. The
read access behavior of MC with/without EC is analyzed as Table 2. The worst
condition is the sub-pixel case. The 4x4 block needs a 9x9 block to complete the
motion compensation. Thus, while original system needs 27 cycles to deal with this
case, embedded compressor takes 15 cycles to do that. If the required 4x4 blocks of
MC are aligned with the coded 4x4 blocks, original system with/without embedded
compressor needs 2/4 cycles to deal with the best case. The special cases are included
to (Align, Not Align), (Not Align, Not Align) and (Sub, Not Align). If required data of

MC is not fit for 4x2 block-grids, it may increase extra access.



Table 3 All cases of read access required by MC with/without EC

Access Access Reduction of
Casaty (y) | LT | O | A ks
Without EC | proposed EC (%)
(‘Align, Align) 4 2 50
(Align , Not Align) 4 2/3 50/25
(Align, Sub) 9 5 44.4
(Not Align , Align) 8 4 50
('Not Align, Not Align ) 8 416 50/25
(Not Align , Sub) 18 10 44.4
(Sub, Align) 12 6 50
(Sub , Not Align ) 12 6/9 50/ 25
(Sub, Sub) 27 15 44.4
AVG. 13.2 6.8~6.9 49.1~48.3

(4) Simulation Result
Software implementation of the proposed algorithm is integrated with JM 16.1. The
reference frames are compressed by the proposed algorithm and then compared with
those results from [3] and [4] respectively. The test sequences are akiyo, flower,
football, foreman, mobile calendar, carphone, canoa, coastguard, waterfall and
tempete in CIF format. For each sequence, computing the average PSNR value refers

to the original sequence with 100 frames.

Table 4 shows the comparison results. It can be found that our proposed solution
based on non-transform compression scheme provides lower complexity and less gate

count with acceptable PSNR loss and visual quality.



Table 4 Comparison of Simulation

MHT + GRC [4] |DCT + MBPZC [5] Proposed
Technology UMC 90 hm UMC 90 nm UMC 90 nm
System MPEG-2 Decoder H.264 Decoder H.264 / SVC
Processing Data 8x1 Array 4x4 Array 4x2 Array
Unit (8 Pixels) (16 Pixels) (8 Pixels)
Working 100 MHz 100 MHz 100 MHz
Frequency
Total Gate Count 20K 30K 31K
2 for first 1x8, 12 for first 4x4,
ggs:ﬁ Encoder 1 for Pipeline Stage | 4 for Pipeline Stage 2 for each 4x4
2 for first 1x8 4 for first 4x4
Cycle ' '
(Cycle) | Decoder 1 for Pipeline Stage | 2 for Pipeline Stage 2 for each 4x4
For a MB
(Encoder/Decoder) 33 Cycles/33 Cycles | 72 Cycles/34 Cycles | 33 Cycles/32 Cycles
PSNR Loss 11.81dB~14.57dB | 3.22 dB~8.39 dB 4.42 dB~7,'10 B
(Average: 5.98)
Power N/A 2.78 MW/ 1.66 mW| 228 uW /130 uW
Consumption

B. The Bitplane Truncation with Pattern Comparison Coding Embedded
Compressor/Decompressor
(1) Proposed BTPCC Embedded Compression Algorithm
(i) Algotrithm

The proposed algorithm compresses a 4x2 block (64-bit) from the output of the
deblocking filter. The CR is fixed at 2. After compressing, a 4x2 block will become a
32-bit segment. With fixed CR, the amount of the coded data is constant. Therefore,
this compression can guarantee access times. Besides, in H.264 standard, a 4x4 block
which is a basic coding unit can be partitioned into two 4x2 blocks.

Figure 12shows the flowchart of the proposed compression algorithm. We divide
the algorithm into four parts: 1) Pixel Truncation, 2) Selective Bitplane, 3) Rounding,
and 4) Pattern Comparison. These parts will be described in the following paragraphs.

The compressed 32-bit segment format is shown in Figure 13. The representation

format consists of 2-bit Mode, 2-bit Start Plane (SP), 2-bit Decision L, 2-bit Decision



R, 12-bit Coded Data L, and 12-bit Coded Data R.

4x2 Block

| Left2x2Block | | Right2x2 Block |

| Pixel Truncation |

| Pattern Comparison | | Pattern Comparison |

| Selective Bitplane |

\ Bitstream Packer \

\ Rouding \

v
32-bit Segment

Figure 12 Compression flow of the proposed algorithm

«——————————————Header————————>

Mode | Start Plane | Decision L | Decision R | Coded Data L | Coded Data R

l«—2-hit—»le—2-bit—»te—2-bit—»le—2-bit—»f«—12-bit—>j«——12-bit—»

Figure 13 Compressed 32-bit segment format

A. Pixel Truncation

Figure 14 shows the flowchart of the pixel truncation. First, we calculate the
average value (Avg.) of the 4x2 block and the difference value (Diff.) between
maximum pixel and minimum pixel of the 4x2 block. Second, according to the
average and the difference, we classify those 4x2 sub-blocks into five types as the
following: 1) Avg. from O to 63 and Diff. less than 32, 2) Avg. from 64 to 127 and
Diff. less than 64, 3) Avg. from 128 to 191 and Diff. less than 64, 4) Avg. from 192 to
255 and Diff. less than 32, and 5) no change. In type 1, if each pixel is larger than or
equal to 64, we force the pixel to be 63. In type 2, if each pixel is less than 64, we
force the pixel to be 64; if each pixel is larger than or equal to 128, we force the pixel
to be 127. Types 3 and 4 are processed like types 2 and 1 respectively. In type 5, the

original pixel value remains unchanged.
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Figure 14 Flowchart of the pixel truncation

B. Selective Bitplane

Figure 15 shows the flowchart of the selective bitplane. Bitplane coding is a
well-known method. We exploit bitplane as a basic unit to a group numbers, instead
of pixel-wised basic unit. First, we consider a 4x2 block in which each pixel value is
represented by 8-bit. A bitplane can be formed by selecting a single bit from the same

position in the binary representation of each pixel.

Truncated 4x2 Block

Bitplane Transform

A A
Select Maximum Start Plane and Record Mode

Start Plane Mode
Figure 15 Flowchart of the selective bitplane

We define that B7 represents the MSB plane while BO represents the LSB plane.
Second, the start plane (SP) is searched for four successive bitplanes from the MSB
bitplane with four modes as follows: 1) from B7 to B5 are all-0, 2) B6 is all-1; B7 and

B5 are all-0, 3) B7 are all-1; B6 and B5 are all-0, and 4) B7 and B6 are all-1; B5 is



all-0. In the first mode, if both B7 and B6 are all-0 and B5 is not all-0, then SP is
equal to 1. Similarly, the other modes like as the first mode. Finally, the maximum

start plane of four modes is selected to record the mode and start plane.

C. Rounding

Since lower bitplanes are truncated due to the limited budget, a simple rounding
is applied here. The rounding is applied when the significant bit of the truncated bits
IS nonzero and the coded bits are not all 1’s. In Figure 16(a), the simple idea is shown.
This idea leads to a satisfied quality improvement. Two rounding modes are proposed
because the pattern comparison has two data compressed formats. As shown in Figure
16(b), the first one is the compressed code rounding and the other is the
uncompressed rounding. For pattern comparison, the first rounding method is applied

to the first three types and the second rounding method is only for the final type.

Coded TTUHCBIEU_H 1. Compressed Code Rounding
MSEB bits ‘ bits LsB le—4-bit—>
|
e ‘ v bt [OTL[O[1[1]1]0]0]
Input Pixel [0|1]0[1({1|1]0|0 i o
‘ —— “ — gltart ‘ ‘ Slgnlncant
Start Plane } } | Slgnlflca t 2. Unagoempressed Code Rounding
End Plane ———— bit i le—3-bit—!
o= Input
s T ! pivel (O] L10[1[1T1]0]0]
output Pixel [0] 1] 1]0]1]1]0]0] Start ! Significant
‘ ‘ ‘ Plane ' ! bit
(a) (b)

Figure 16 Flowchart of the rounding

D. Pattern Comparison

The final step encodes the preserving bitplanes. First, the truncated 4x2 block is
partitioned into two 2x2 blocks that are called the left 2x2 block and the right 2x2
block as shown in Figure 17(a). In Figure 17(b), both the left 2x2 block and the
right 2x2 block exploited the equal SP and compressed individually. Second, four
types for a 2x2 block is classified as follows: 1) Group A, 2) Group B, 3) Group C,

and 4) Uncompression. The first three types exploit a group of the eight patterns to



compare with four successive bitplanes from SP and select one type which can hit
three successive bitplanes. The three groups of the eight patterns are shown in Table 1.
If the first three types cannot hit larger than or equal to three bitplanes, the type 4 is

chosen and three successive bitplanes from SP are stored.

4x2 Block Pixels 0 1 2 3 Pixels 4 5 6 7
0(1/4|5 MsB{0[0[0f0 MsB|0[0[0|0
213|6|7 ofofofo 0[{0|0]|0
tf & StartPlane{ 0| 1|0 [ 1| StartPlane{1|{1|1(0
0[1(0f0 0(0[0|0
01 415 0(0]|0|1 0[1]0]1
2|3 6|7 1]10]|1]0 1(0]0]|0
Left Right 0(1(0f1 0|1|0(f1
2x2 Block 2x2 Block LsB|0]|0]|1]0 LsB|(0[1[0|0
(a) (b)

Figure 17 An example of partitioning 4x2 block

Table 5 Three Groups of Eight Patterns

Pattern No. | 1 2 3 4 5 6 7 8

Group A | 0000 | 1111 [ 1110 | 0111 | 0011 | 1100 | 0001 | 1000
GroupB | 0000 | 1111 | 1110 | 0111 | 1010 | 1001 | 0110 | 0101
GroupC | 0000 | 1111 | 1110 | 0111 | 1101 | 1011 | 0010 | 0100

(2) Proposed BTPCC Embedded Compression Architecture
(i) Compressor Design

Figure 18 shows the pipeline architecture of compressor design. We use two
pipeline stages and each stage requires one cycle. The first stage is the pixel
truncation. The second stage is composed of selective start plane, rounding, selective

pattern comparison, and packer. This compressor encodes a 4x2 block in 2 cycles.

| ; | : Selective | .
4x2 | Plxel_ N Selective | | Rounding | »  Pattern | » Packer |4 32 bits
Block Truncation Start Plane . segment

| | Comparison |

:€Stage 1%:475tage 24>:

Figure 18 Compressor architecture



(i) Decompressor Design

Figure 19 shows the pipeline architecture of decompressor. The decompressor
only needs one stage with one cycle, including parser, start plane decoding, and
pattern decoding. This decompressor reaches a higher throughput; therefore we can

provide a higher random accessibility.

. | |
32 bits | Start Plane Pattern }_» Reconstructed
segment I Parser = Decoding I Decoding I 4x2 Block
:< Stage 1 >:

Figure 19 Decompressor architecture

(3) System Integration

The overall H.264 decoder [10] with the embedded compression codec is shown
in Figure 20. The embedded compressor works between the deblocking filter and the
external memory. The embedded decompressor works between the external memory
and the motion compensation. To design address controller of EC is very simple since
our compression ratio is fixed at two. Our system bus is 32 bits and the external

memory is 32 bits per entry.
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Figure 20 H.264 decoder with proposed embedded
compression

The compatible H.264 decoder specification is HD1080+HD720@30fps and
works at 150MHz. The compressor converts a 4x2 block from the deblocking filter
into a 32 bits segment which is stored into the external memory. Comparing the data
access times of the external memory for the system without EC, the data access times
of our system is half. The decompressor converts a 32 bits segment into a 4x2 block
which is sent to the motion compensation. Since our system bus is 32 bits and the
external memory is 32 bits per entry, the system accesses once a data as four pixels. In
Table I, we analyze the read times of the motion compensation with/without EC. The
worst case is the (Sub, Sub) case. To finish the motion compensation, a 4x4 block
needs a 9x9 block. Therefore, the system with/without proposed embedded
compressor takes 15/27 cycles. The best case is the (Align, Align) case. Original
system with/without embedded compressor needs 2/4 cycles to finish the best case.
For the other cases when the required data of motion compensation are not fit for 4x2

block-grids, the access times become increased.



Table 6 All Cases of Read Access Requirement

Access Cycles | Access Cycles | Reduction  of

Case of MV (X, y) for System | for System with | Access Cycles
without EC Proposed EC without EC

(Align, Align) 4 2 50

(Align, Not Align) 4 2/3 50/25

(Align, Sub) 9 5 44.4

(Not Align, Align) 8 4 50

(Not Align, Not Align) 8 4/6 50/25

(Not Align, Sub) 18 10 44.4

(Sub, Align) 12 6 50

(Sub, Not Align) 12 6/9 50/25

(Sub, Sub) 27 15 44.4

Average 13.2 6.8~6.9 49.1~48.3

(4) Experimental Results

Table 7 PSNR Comparison shows the software result of the proposed algorithm
which is integrated with JM16.2. The test sequences are Akiyo, Forman, Mobile,
Stefan, and Station. Each test sequence executes 100 frames. And then the average
PSNR value is calculated. Results show that the PSNR loss of the proposed algorithm
is from 1.27 to 3.94dB.

Table 7 PSNR Comparison

Sequence | Format | H.264 (dB) Proposed (dB) PSNR loss
Akiyo CIF 43.72 41.16 2.56
Forman CIF 41.23 39.20 2.03
Mobile CIF 37.61 34.14 3.47
Stefan CIF 38.82 34.88 3.94
Station HDTV 39.12 37.84 1.27

Table IV shows the comparison among previous work. It can be found that our
proposed hardware provides less hardware complexity and better visual quality.
Especially, the proposed decoder just requires one cycle with higher random
accessibility for embedded compression without degrading overall system
performance. The power consumption of the proposed hardware is better than Lee’s

[4] and Wu’s [10]. Figure 21 shows the Station sequence result of the original system




with EC in HDTV format. The propagation of quality loss is unavoidable but video

quality remains acceptable.

Table 8 Comparison Among Previous Work

Lee’s [3] Wu’s [4] This Work

CMOS
Technology UMC 90nm | UMC 90nm

0.25um

MPEG-2 H.264 H.264/SVC
System

Decoder Decoder Decoder
Working Frequency 100MHz 100MHz 150MHz
Processing Data Unit 8x1 Block 4x4 Block 4x2 Block
Total Gate Count 20k 30k 4.9k
Cycle  Count | Encoder 2 cycles N/A 2 cycles
for 4x2 Block Decoder 2 cycles N/A 1 cycle
Cycle  Count | Encoder 33 cycles 72 cycles 33 cycles
fora MB Decoder 33 cycles 34 cycles 32 cycles

6.08dB~ 1.31dB ~ 1.27dB ~
PSNR Loss

10.65dB 4.48dB 3.94dB
Power Encoder N/A 2.78mW 158uW
Consumption Decoder N/A 1.66mwW 86uW

*The N/A is because of the processing data unit is 4x4 block in MBPZC
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Figure 21 Simulation result of station sequence (HDTV)




The objective of this project contains two topics: (1) the Reduced Patterns
Comparison Embedded Compressor/Decompressor, and (2) the Bitplane Truncation
with Pattern Comparison Coding Embedded Compressor/Decompressor. We
described as below:

First, we have proposed a new embedded compression algorithm for mobile
video applications. With these advantages of the proposed EC engine, we can lessen
the size of external memory and bandwidth utilization to achieve the goal of power
saving. Due to the fixed Compression Ratio, the proposed function is easy to be
integrated with an H.264 system. The proposed architecture is synthesized with
90-nm CMOS standard-cell library and the gate counts of the proposed algorithm for
embedded compressor/decompressor are 1.8K/3.1K respectively. The average PSNR
loss of proposed algorithm is 5.98 dB. The working frequencies are 5 (CIF), 100 (HD
720) and 150 (HD 1080 + HD720) MHz depending on different operation modes.

Second, we have proposed a new embedded compression algorithm for mobile
video applications. With these advantages of the proposed EC algorithm, we can
lessen the size of external memory and bandwidth utilization to achieve power saving.
The pipelined architecture of the proposed decompressor requires 1 cycle, thus the
random accessibility becomes better. Due to the fixed CR, the proposed EC algorithm
is easier to be integrated with H.264 decoder. From the experimental results, the
PSNR loss of the proposed EC algorithm is from 1.27 to 3.94dB. The proposed
architecture is synthesized with 90-nm CMOS standard-cell library and the gate
counts of the proposed algorithm for compressor/decompressor are 4.0k/0.9k
respectively. The working frequency is up to 150MHz@HD1080/720. For power

consumption, the compressor is 158uW and the decompressor is 86uW.
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