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It is well understood that research efforts, for next-generation video decoding system, have to cover not
only multi-standard and multi-mode operation capability, but also less power dissipation and power awareness
with optimal picture quality, especially when mobile video services are taken into account. As a result, in this
3-year (2008/8~2011/7) research project proposal, we further investigate several key issues related to
so-called low-power, low-cost, and multi-mode video decoder solutions. Based on our previous work on a
dual-mode video (2005/8~2008/7), we leverage the available design platform and research results to further
explore new design approaches. For multi-mode task, we investigate the specifications defined in H.264/SVC
and add those key modules into our H.264/MPEG2 decoder platform. Not only new key modules are explored,
but also system decoding behaviors are analyzed to study a better system architectural model so that a
stand-alone and IP-based decoder solution can be obtained. For low-cost issue, the major problem lies in
memory management and limited bus bandwidth. It is necessary to take into account available stand-alone
memory modules; even SoC solutions become a must. Therefore developing a well-organized memory
hierarchy and access mechanism to meet decoding requirements under limited resources (storage space and
bus bandwidth) has been further explored. For low-power issue, an analysis of the decoding behavior and
related hardware architecture has been conducted. Thus system exploration, module design, and data flow
have been investigated to reduce power dissipation at different levels. In addition, leakage current due to
nano-meter CMOS process has been considered to provide a competitive video decoder solution. Finally an
FPGA prototype has already been set up to evaluate the performance of the proposed video decoder and

related key modules.

Keywords:

Video Decoder, Multi-Mode, Multi-Standard, Low-Power, Low-Cost, Mobile Video
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A. The Embedded Compressor/Decompressor

To improve the video coding efficiency, eliminating temporal redundancy between frames is a useful
technique. This technique is widely used in nowadays video coding standards such as MPEG-1/2/4, H.263 and
H.264. But to accomplish this method when encoding or decoding, at least one previous frame must be stored
in frame memory as reference. Also, when processing motion compensation function in H.264 decoder, the
rapid data accesses dominate the power consumption of whole system. For a mobile device, power is always
the critical issue that people do care about. Embedded compression (EC) is a common technique to reduce the
transferring of data and the size of off-chip frame memory. Moreover, if we embedded a compressor into a
system with determined bandwidth, the access times can be efficiently reduced as long as the compressed unit
is well-designed. Nowadays, the mobile devices become more and more powerful by their various functions,
to reduce the bandwidth and resource requirement of each hardware accelerator is definitely an important
topic.

Basically, compression can be divided into two types, lossy and lossless. Lossless methods are good at
quality but suffered from variable data amount after compressed. Variable data amount cannot guarantee the
reduction neither on the size of external frame memory nor the bandwidth. Lossy compression technique is
suitable here because lossy compression with fixed compression ratio can ensure the reduction. Therefore,
how to organize the lossy coding methods is important. To cover information as much as possible within
limited budget is the main challenge. Several research activities about embedded compression have been
proposed in [2]-[4]. Discrete cosine transform with high efficiency bit plane zonal coding have been proposed
in [1], this JPEG-like methods provides good compressed quality, and the hardware is relatively smaller than
JPEG. But the bit plane zonal coding is too complicate, thus its processing cycles may become too long and
not suitable for being embedded with H.264 video decoder. Also, the input data of motion compensation is
provided through the embedded decompressor. The packing unit of [1] is 8x8 pixel matrix, and this size will
cause access redundancy for 4x4 block based motion compensation. Another kind of algorithms is
DPCM-based [2]. By taking the intra prediction information of H.264 encoder to remove the spatial
redundancy and combining Golomb-Rice coding, DPCM-based method achieves good quality. However, this

method needs iteration several times to get the most appropriate quantization level. Thus compression cycle
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for each coding unit is not a constant, and leads to the complicate embedded compressor design. In [4], the
authors modified Hadamard transform and combined with Golomb-Rice coding. With the shortest encoded
cycles, MHT becomes the most flexible embedded compression scheme to be embedded into a video decoder.

In this report, a new transform-based lossy embedded compression scheme is proposed. Taking 4x4
pixels as a coding unit and each unit is compressed with compression ratio two, only 64 bits is needed to store
in external memory. And with the simple modified bit plane zonal coding, the decoding process of a 4x4 block
can be done within 4 cycles including the data fetching. This algorithm can be pipelined into two stages. A

MB only needs 34 cycles to decode and has 5.29dB quality improvement compared with MHT [4].

B. The High Profile Intra Predictior

H.264/AVC [6]-[7] is the latest international video coding standard from MPEG and ITU-T Video
Coding Experts Group. It consists of three profiles which are defined as a subset of technologies within a
standard usually created for specific applications. Baseline and main profiles are intended as the applications
for video conferencing/mobile and broadcast/storage, respectively. Considering the H.264-coded video in high
profile, it targets the compression of high-quality and high-resolution video and becomes the mainstream of
high-definition consumer products such as Blu-ray disc. However, high-profile video is more challenging in
terms of implementation cost and access bandwidth since it involves extra coding engine, such as
macroblock-adaptive frame field (MBAFF) coding and 8x8 intra coding, for achieving high performance
compression.

In the MBAFF-coded pictures, they can be partitioned into 16x32 macroblock pairs, and both
macroblocks in each macroblock-pair are coded in either frame or field mode. As compared to purely
frame-coded pictures, MBAFF coding requires two times of neighboring pixels size and therefore increases
implementation cost. To cope with aforementioned problem, we propose neighboring buffer memory (include
upper/left/corner) to reuse the overlapped neighboring pixels of an MB pair. Furthermore, we present memory
hierarchy and pixel re-ordering process to optimize the overall memory size and external access efficiency. On
the other hand, H.264 additionally adopts intra 8x8 coding tools for improving coding efficiency. It involves a
reference sample filtering process (RSFP) before decoding a Luma intra_8x8 block. These filtered pixels are

used to generate predicted pixels of 8x8 blocks. Hence, the additional processing latency and cost are required,
10



and they may impact the overall performance for the real-time playback of high-definition video. In this report,
we simplify the RSF process via a base-mode predictor and optimize the processing latency and buffer cost.
Compared to the existing design [10] without supporting intra 8x8 coding, this design only introduces area
overhead of 10% and 7.5% of gate counts and SRAM.

An architectural choice advocated for dealing with long past history of data is a memory hierarchy [12].
In the intra prediction, it utilizes the neighboring pixels to create a reliable predictor, leading to dependency
on a long past history of data. This dependency can be solved by storing upper rows of pixels for predicting
current pixels but is a challenging issue in implementation cost and access bandwidth. To optimize the
introduced buffer cost and access efficiency, we use two internal Line SRAM1 and Line SRAM2 to store the
Luma and Chroma upper line pixels, as illustrated in Figure 1. By the ping-pong mechanism, the upper
neighboring pixels of current MB (or MB pair) are stored to one of them, and the other Line SRAM is used to
store next MB of upper neighboring pixels. This memory hierarchy facilitates the internal Line SRAM size

and the decoding pipeline schedule.

SDRAM

Line SRAM1 Line SRAM2
20x32 (luma+chroma) 20x32 (luma+chroma)

A A
\ 4

Upper pixel buffer memory /
Intra prediction

Figure 1: Memory hierarchy of high-profile intra prediction.

C. The Reduced Patterns Comparison Embedded Compressor/Decompressor (RPCC)

To improve the video coding efficiency, diminishing the data correlation of the temporal redundancy in
each frame is widely used in the latest video coding standard, such as H.264/AVC [13]-[14]. However, it
causes a large amount of data transmission between on-chip processing modules and external memory. In
addition, the rapid and huge data access from Motion Compensation (MC) consumes the majority of system

power and become serious in many portable devices. Many low power technigques have already been proposed
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to reduce power consumption, but data transmission still dominates huge amount of system power. Hence,
reduce data access between on-chip processing modules and external memory is the critical consideration in a
mobile video device. Although the mobile video devices are suffered from limited battery capability, the
visual quality requirement is not as high as high resolution applications. Therefore, the embedded
compression is suitable to lessen the volume of data access and the size of off-chip memory under the premise
of maintaining acceptable visual quality. The mobile video devices are more and more important due to their
various functions at the present time. Reducing the usage of bandwidth and the required resource of hardware
in the mobile video devices is a critical topic.

In general, the compression methods are classified into two categories: lossless compression and lossy
compression. It is obvious that lossless compression methods [15] completely reserve the information while
truncating the size of data, so there has no quality loss. However, some problems of lossless compression are
so fatal that it’s not suitable for system integration application. The lossless compression suffers from variable
length of lossless compressed data that we cannot regularly control the compression ratio, frame memory size
and bandwidth requirement. These disadvantages are also attributed to the needs of memory to prepare for the
worst case of data access and the unknown size of data. Therefore, there exists an important characteristic of
lossy compression methods [16]-[19] which differs them from lossless compression methods. The
characteristic of fixed compression ratio allows us to improve the disadvantages of lossless compression
methods mentioned previously. Although lossy compression algorithm will sacrifice tolerable visual quality,
the reduced power consumption, memory size and bandwidth requirement are more attractive for mobile
video devices.

Several lossy compression schemes have been proposed in [16]-[19]. The transform-based compression
methods can convert the signal from time domain to frequency domain and move the energy to up-left corner.
In human visual system, the lower frequency component is more important than the higher frequency
component whose feature can be exploited to efficiently compress the amount of data, such as in [16]-[17]. In
[16], both Modified Hadamard Transform (MHT) and quantization of Golomb-Rice Coding (GRC) are
employed. To improve the quality loss of [16], [17] adopts Discrete Cosine Transform (DCT) and Modified
Bit Plane Zonal Coding (MBPZC) instead of MHT and GRC. Although transform-based schemes provide

good compressed quality, MHT and DCT are too complicated to suit for being embedded with H.264 mobile
12



video devices. Another kind of algorithms is pattern-based [18]-[19]. [18] adopts 64 patterns to improve Bit
Plane Truncation (BTC) algorithm and [19] increases extra acceptable quality loss to reduce the number of
compared patterns from[18]. Both [18] and [19] are limited by BTC algorithm; the coding latency is still too
long to be well- embedded into the target H.264 system. However, through [18] and [19], we find a way to
utilize the patterns to reduce the coding latency and the amount of data.

In this paper, we propose a pattern-based lossy embedded compression method which adopts 4x2 pixels

as coding unit and CR is fixed as two.

D. The Bitplane Truncation with Pattern Comparison Coding Embedded Compressor/Decompressor

A video coding standard achieves high compression efficiency such as H.264 [19] and so forth. For
H.264, at least one previous frame is stored in frame memory to generate a predicted frame. Obviously,
Motion Compensation (MC) demands a huge amount of data accesses between off-chip memory devices and
the video decoder chip. However, data transfer consumes a lot of power. For mobile video devices, one major
issue is the limited power supply from battery. Therefore, reducing the bandwidth requirement and size of
frame memory is greatly demanded while maintaining acceptable visual quality.

In general, embedded compression methods can be categorized into two fundamental groups: lossless
and lossy. Lossless compression algorithms [21] have no error propagation problem. Lossy compression
algorithms, comparing with lossless compression algorithms, accomplish the fixed compression ratio (CR).
Several lossy compression algorithms have been proposed such as Modified Hadamard Transform (MHT)
plus quantization of Colomb-Rice Coding [16], DCT plus Modified Bit Plane Zonal Coding [17], and et al.
[18] exploits forty-six patterns to improve Block Truncation Coding and [19] increases extra acceptable
quality loss to reduce the number of compared patterns from [18].

Lossless compression can guarantee no quality loss, but variable length of the compressed data caused
irreducible frame memory size. Therefore, existing lossless algorithms are not suitable for frame compression
because their primary purpose is high coding efficiency rather than low latency, computation complexity, and
high random accessibility. On the contrary, lossy compression algorithm with the fixed CR can guarantee the
reduction of frame memory size. Consequently, it is important to design a lossy algorithm with the following

features: 1) Low distortion visual quality, 2) Low complexity, 3) Low bandwidth requirement, and 4) Low
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power consumption.

E. An Area-efficiently High-accuracy Prediction-based CABAC Decoder for H.264/AVC

H.264/AVC [13] is the state of the art video compression standard in current video applications. It
supports two entropy coding tools. One is Context-based Adaptive Variable Length Coding (CAVLC), and the
other is Context-based Adaptive Binary Arithmetic Coding (CABAC) [13]. CABAC can achieve 9% to 14%
bit-rate saving in average compared with CAVLC. However, it has notably strong data dependency to restrict
throughput. Even if a DSP processor can work at 3GHz, it would be difficult to achieve the real-time CABAC
decoding for HD video at 30 frames/s.

Many state-of-the-art works has been proposed for raising the throughput. In [26]-[28], multiple-bin
decoding mechanism provides a significant improvement for throughput. However, it also provides extra
overhead for hardware cost. Besides, previous works [25] clearly described the syntax element switch
overhead (SESO) problem and presented a prediction scheme to solve it.

In this report, we proposed high-accuracy prediction scheme and area-efficient decoding architecture.
Furthermore, we optimized the memory system to reduce extra overhead. Through our design, the overall
CABAC decoder can be implemented by less hardware cost and still have acceptable throughput.

In the traditional CABAC decoding flow, it separates 4 pipeline stages - Context index Calculate (CC),
Context model Load (CL), Arithmetic Decode (AD) and DeBinarization (DB). In Figure 2, the pipeline
would be stalled when ctxldx depend on bin from AD, or SE[i+1] depend on SE[i]. That was main critical

performance lost in traditional CABAC decoder.

Next

DeBinarization f—» module

?

Arithmetic [
Engine — Context
* Model

Y

Neighbor +1 calculate  |ctxid
MEM Value Context index

Figure 2 : Block Diagram of Traditional CABAC Decoder
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In order to avoid the impact of separation parser and decoder, prediction-based CABAC decoder (just
like [25]) includes a SE predictor to determine next ctxldx by itself. Therefore, SE predictor can efficiently
ease data dependency, but it wouldn’t be available when it predicts miss. Actually, we can make a formula for

throughput as follows:

Total Cycle = CycleR (Regular) + CycleB (Bypass) + CycleT (Terminal)
~ CycleR (Regular) + CycleB (Bypass)
=Total Bin (1 + Regular Rate x Miss Rate) + *Idle times

*1dle times: number of stalls waits for neighbour information

Throughput = Working Frequency x (Total Bin/ Total Cycle)

~ Working Frequency (1+ Regular Rate x Miss Rate+ Idle times/ Total Bin)-1

The working frequency depends on design’s critical path or system constraints. Regular Rate and Total
Bin depend on patterns, and idle times can be ignored when Total Bin >> Idle times. Therefore, we can

consider the performance would degrade when high miss rate or large idle times.

F. A Predefined Bit-Plane Comparison Coding (PBPCC) for Mobile Video Applications.

Video coding standards achieve high compression efficiency such as H.264 [13] and so forth. For H.264,
at least one previous frame is stored in the external memory device to generate a predicted frame. Obviously,
motion compensation (MC) demands a huge amount of data accesses between off-chip memory devices and
the video decoder chip. However, data transfer consumes a lot of power. For mobile video devices, one major
issue is the limited power supply from the battery. It is essential to reduce the bandwidth requirement and the
size of frame memory while maintaining acceptable visual quality. Therefore, embedded compression (EC) is

a suitable technique to achieve the requirement.

EC methods can be categorized majorly into two types: lossless and lossy. Lossless compression

algorithms [30], [31] have the advantages of no error propagation and quality loss. However, the variable
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lengths of the compressed data result in irreducible frame-memory size. Hence, existing lossless algorithms
are not suitable for frame compression because their primary purpose is to achieve high coding efficiency
rather than low latency, computation complexity, and high random accessibility.

Lossy compression algorithms, compared with lossless compression algorithms, accomplish the fixed
compression ratio (CR). Several lossy compression algorithms have been proposed, such as the modified
Hadamard transform (MHT) with the quantization of Colomb-Rice coding [32], discrete cosine transform
with modified bit-plane zonal coding [33], and so on. Yang and Chai [34] exploit 64 patterns to improve block
truncation coding, where Amarunnishad et al. try to enlarge acceptable quality loss by reducing the number of
compared patterns in [34]. Lossy compression algorithm with the fixed CR can guarantee the reduction of
frame-memory size. However, how to maintain an acceptable visual quality remains to be solved.
Consequently, it is important to design a lossy algorithm with the following features: 1) low-distortion visual
quality; 2) low complexity; 3) low bandwidth requirement; and 4) low power consumption.

In this report, a novel embedded lossy algorithm based on predefined bit-plane comparison coding
(PBCC) is proposed. The CR is fixed at 2. Each 4 x 2 block can be compressed into a 32-bit segment. The
proposed PBCC encodes a 4 x 2 block in 2 cycles and decodes a 4 x 2 block in 1 cycle to meet the

requirement of embedded frame data processing.
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A. The Embedded Compressor/Decompressor
(1) Proposed Embedded Compression Algorithm
(i) Algotrithm
The compression is conducted on a 4x4 pixel matrix (128 bits) obtained from the output of deblocking
filter, and the compression ratio is fixed at two. Each 4x4 unit will become a 64 bits package after
compression. Fixed compression ratio leads to constant amount of the coded data, so this EC scheme ensures
the ability of random access without extra memory to record the segment address of coded data. Moreover,
the 4x4 block unit is the basic coding unit in H.264 standard, and makes the data access in an efficient way.
Figure 3 shows flowchart of the proposed algorithm. The overall compression scheme is formed by two
parts: 1) two dimensions discrete cosine transform (DCT) and 2) modified bit plane zonal coding (MBPZ).
Two dimensions DCT is composed by two one dimension, 4 points DCT. The discrete cosine transforms is a
technique for converting a signal into elementary frequency components and it is widely used in image
compression. For human visual system, human eyes are more sensitive on low frequency component of a
picture and less sensitive on high frequency component. The DCT can gather the relative important low
frequency signal on up left corner, and the most high frequency in down right corner. Thus the DCT combines
with bit plane zonal coding with original point at up left corner can efficiently collect the information.

4 x 4 pixel block

|

1-D discrete cosine transform

transpose

1-D discrete cosine transform

'

Modified bit plane zonal coding

'

Data packing

64 bits segment
To external memory

Figure 3: Flowchart of the proposed embedded compression algorithm

The second part is to perform modified bit plane zonal coding on 16 coefficients output from DCT. First,

we reverse those negative coefficients into positive value and mark a “1” at the same position of sign bit plane.
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Sign bit plane can be considered as union of sign flags for each coefficient. Second, to improve the coding
efficiency, we record the start plane. Search each bit planes from MSB to LSB (not including sign bit plane),
and the first plane contains nonzero bits is the start plane. To avoid adding too many extra cycles and to
simplify the hardware complexity in system view, we use one simple type only for recording each bit plane,
though other complex types which can be more scrimping on bit using do exist. For each bit plane, we simply
record the maximum row (RMAX) and column (CMAX) which have a “1” in this row or column, and then
pack the bits in this zone which is enclosed by RMAX and CMAX. 4 bits are used to record RMAX/CMAX
of each plane. And then, we packed the sign bit plane. Since we have only 64 bits budget for each 4x4 unit,
the situation of unable to pack all the information may be happened frequently. Since not every coefficient can
be packed, packing whole sign bit plane may become a waste. So we take the maximum value of RMAX and
CMAX out of each packed bit plane and packing useful sign bits only by using those two boundaries. Under
this method we do not waste extra bits to pack those unused sign bits, and the RMAX/CMAX of sign bit
plane need not to be packed since they can be derived from the previous coded information. Finally, the end

plane needs to be estimated and packed to specify when to stop.

(if) Packing Mechanism

The overall packing scheme is introduced in this part. After doing discrete cosine transform, we get 16
coefficients from each 4x4 block. There are 15 AC coefficients and one DC coefficient. Sine DC coefficient is
the average value and is the most important in transform, we reserve 8 bits budget for the DC coefficient of
every 4 x 4 block. DC coefficient is always positive, so we don’t have to worry about the sign bit for DC
coefficient. For the rest 15 coefficients, we first packed the start plane and end plane (6 bits total). Then, we
separate RMAX/CMAX and plane content of those planes which are between start plane and end plane, and
connecting all the RMAX/CMAX together and all plane content together respectively. Sign bit information is

inserted between the CMAX/RMAX and the plane content. Figure 4 shows the compressed segment format.

- 14bi > MAX/RMA; >t Plane Conter >

Plane
content3

Plane
content4

Plane
content5

Plane
content6

Plane
content?

CRmax | CRmax

4

CRmax | CRmax

CRmax
7 3

Sign bit plane content

‘ DC_coef, start plane, end plane

Figure 4: Flowchart of the proposed embedded compression algorithm
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(2) Hardware Design
(i) Discrete Cosine Transform

The hardware design of DCT is referred from Lee’s architecture [5]. This architecture can maintain the
same performance with original DCT while reduced the number of multiplications to about half of those
required by the existing efficient algorithms. This design allows us to take the advantage of DCT while not
suffering from its hardware complexity.
(i) Modified Bit Plane Zonal Coding and Data Packing

There is a combinational block dealing with coefficients to derive the RMAX/CMAX and plane content
of each plane. To serialize the plane information in one cycle, we propose the content adaptive ripple
architecture to solve the problem. The basic concept is shown in Figure 5. The 11 lines at left represent the 10
plane contents plus 1 sign bit plane content. Each circle represents a 16 to 1 MUX controlled by 4 bits
RMAX/CMAX and is shown in Figure 6. By the ripple behavior, the wire at the end of the flow is the
connected result. Notice that we embedded this compressor into our 108MHz decoder, thus one cycle time is
enough to finish our ripple processing.

Plane content_1
Plane content_. 2:@‘— CMAX/RMAX_2

Plane content_3 —» ~«——— CMAX/RMAX_3

Plane content_4 —jQ:f CMAX/RMAX_4

®
Plane content_9 CMAX/RMAX_9
Plane content_10 CMAX/RMAX_10
Sign bit plane content <—— CMAX/RMAX _sign

Connected result

Figure 5: Context adaptive ripple architecture

CMAX/RMAX
wal

{pre_stage_result[49:0]} ——

{PIn_content (1 bit), pre_stage_result[49:1]} ——

{PIn_content (2 bits), pre_stage_result[49:2]} ——

50
MUX
® 16tof 7"

{PIn_content (8 bits), pre_stage_result[49:8]} —

{PIn_content (11 bits), pre_stage_result[49:11]} —

{PIn_content (15 bits), pre_stage_result[49:15]} —
—

Figure 6: The MUX structure
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(iii) Encoder Design and Decoder Design

Figure 7 shows the pipeline architecture of compressor design. Since compressor has more time to
handle the encoding process, we use three stages here and each stage needs 4 cycles. This design with longer

cycles can shrink the gate count by reducing one dimension four points DCT units. Under this design, a MB

needs 72 cycles to encode.

Stage 1 : Stage 2 Stage 3
4 x4 1-D Data | . Data 64 bits
block > et transport’ | 1-DDCT DC coefficient— packing > data
l . I segment
I I- | Modified |
AC coefficient= bit plane
| | zonal coding

Figure 7: Encoder architecture

Figure 8 shows the architecture of decompressor. To provide data for motion compensation unit suitably,
the decompressor must support higher throughput inevitably. The decompressor is divided into two stages and

each stage needs 2 cycles, a 4x4 block needs 4 cycles to decode, including the data-fetching. Decoding a MB

just needs 34 cycles.

Stage 1 I Stage 2
64 bits data Data .
— —DC coefﬂment—'—b
segment rearrange 1-DDCT ™ Data t’ 1-DDCT = 4 x4 block
" |-AC coefficient-|-> ranspor
L Modified |
bit plane zonal
decoding I

Figure 8: Decoder architecture

(3) Integration with H.264 Decoder

Figure 9 shows the block diagram of the H.264 video decoder containing an embedded compressor.
Embedded compressor works as the interface between decoder IP and external memory. And the EC
mechanism is ready to be used by adding extra address control logic. Since the compression ratio of our

embedded compressor is two, each data is compressed into half of the original size. The address control logic
is very easy to implement.
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Figure 9: H.264 decoder architecture with proposed embedded compression
algorithm

The H.264 decoder works at 108 MHz, performing the HD1080i@30fps. The EC compresses the data
from deblocking filter, and 4x4 blocks become 64 bits segments and then stored into off-chip memory. Thus,
the data access times of off-chip memory are half of the original access times for the system without an
embedded compressor. The embedded decompressor decompresses data from external memory and sends
them to motion compensation unit. The system bus bandwidth is default as 32 bits and the external memory is
32 bits per entry, so the original system takes 4 pixels as accessing data unit. The access behavior of motion
compensation with/without embedded compressor can be analyzed as follows. If the requested 4x4 blocks are
perfectly aligned with the coded 4x4 blocks, only 2 cycles are needed to fetch the 4x4 block while the original
system needs 4 cycles to fetch. For the needed block not aligned with the coded blocks in only one direction,
the system with embedded compressor needs to decode two blocks to derive the needed data, so 4 cycles are
needed. The original system, taking 4 pixels as accessing unit, needs 4 cycles to fetch data. For the needed
4x4 block not aligned with the coded data in both vertical and horizontal directions, the system with EC needs
decoding four 4x4 blocks and 8 cycles are needed for data fetching. The original system needs 8 cycles too.
For the final situation, the sub pixel case, a 4x4 block needs a 9x9 pixels block to finish the motion
compensation. 18 cycles is needed for EC while original system needs 27 cycles. From the analysis above, we
can see that H.264 decoder with an embedded compressor does reduce the access times and can efficiently

reduce the access power consumption.
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(4) Evaluation Result

Software implementation of the proposed algorithm is integrated with JM12.4. The reference frame is
compressed by the proposed algorithm and compared with the result of previous work using MHT and GR
coding respectively. The test sequences are Foreman, Stefan, Mobile and Akiyo in CIF format and Station in
HDTYV format. All sequences are organized in one | frame follows nine P frames format. For each sequence,
100 frames are used to compute the average PSNR value reference to the original sequences.

Table 1 is the simulation result of five sequences and shows the performance of original H.264 decoder

without any recompression, embedded with MHT and embedded with our proposed algorithm.

Table 1: PSNR comparison

Test Algorithm PSNR (dB) PSNR lost
Sequence (@CR =2.0) (original ) (dB)
original 35.57 0
Forman
(CIF) MHT 29.48 6.08
proposed 34.21 1.36
original 36.02 0
Stefan
(CIF) MHT 28.64 7.38
proposed 33.86 2.16
original 33.75 0
Mobile
(CIF) MHT 23.10 10.65
proposed 29.27 4.48
original 39.64 0
Akiyo
(CIF) MHT 32.17 747
proposed 38.33 1.31
original 38.85 0
Station
(HDTV) MHT 32.97 5.88
proposed 37.13 1.72

The proposed method maintains better quality in slow motion sequences than high motion sequences.
However, performance of the proposed method in all sequences is better than previous MHT work. The
average PSNR degradation of proposed method is 2.21dB while the MHT is 7.5dB. Figure 10 shows the

embedded result with Station sequence in HDTV format. Although the quality drop is inevitable, the proposed
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method efficiently slows down the speed of decay than previous MHT work.
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Figure 10: Simulation result of Station sequence(HDTV)

B. The High Profile Intra Predictior

(1) Proposed High-Profile Intra Predictor

Figure 11 shows the block diagram of the proposed high-profile intra compensation architecture. A pixel
rearranging process, which is located on the bottom-left of Figure 11, is proposed to reduce the complexity of
neighbor fetching when MBAFF coding is enabled. The signal, Line SRAM1/2 data_out, is directly connected
to the intra prediction block for replacing the last set of upper buffer memory. As for 8x8 intra coding, a
dedicated pixel buffer memory is used to store the filtered neighboring pixels and reuse the overlapped pixel
data. According to the relations between Luma intra_8x8 modes and numbers of filtered pixels which are
needed in each mode, we minimize the number of stored pixels to 17 (i.e. 136 bits). The output of predicted

pixel is interfaced to the filtered pixel buffer memory because RSFP is embedded in the intra prediction

generator.
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Figure 11: Block diagram of the proposed high-profile intra predictor.



(2) MBAFF Decoding with Data Reuse Sets

MBAFF is proposed to improve coding efficiency for interlaced video. However, it introduces longer
dependency than conventional frame-coded picture. In this section, we analyze and realize it via upper, left,
and corner data reuse sets (DRS) to reuse the pixels and improve the cost and access efficiency.
(1) Upper DRS

For decoding an MBAFF-coded video, upper buffer memory is used to store the constructed upper pixels
of current MB pair. These upper buffers are updated with the completion of prediction process on every 4x4
block. For each updated sub-row(s), they can be reused by the underside 4x4 blocks. According to the
different prediction modes of MB pair, the upper buffer will store data from different directions. If current MB
pair is frame mode, it only needs to load one row of upper buffer (16 pixels) at first, and when a 4x4 block is
decoded, updating the two sub-rows in two rows (8 pixels) of upper buffer from top to down at one time, as
illustrated in Figure 12(a). In Figure 12 (b), a field-coded MB pair needs to load two rows of upper buffer (32
pixels), two times of frame-coded MB pairs. Then, only one sub-row of upper buffer memory will be updated
when a 4x4 block is decoded. However, considering the fifth 4x4 block, it still needs a sub-row of upper
buffer to predict, as shown in Figure 13. In order to reduce the upper buffer memory size, the Line SRAM
data_out is directly used. The only penalty to this scheme is that the Line SRAM data_out must hold the

value until fifth 4x4 block is decoded.
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Figure 12: The updated direction of upper/left buffer memory in (a) frame and
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(b) field mode MB pair.

Line SRAM1/2
data_out

Clk S—

L L O OGN
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address rc)WZXsub-row3Xsub-row4Xsub-row5X 5 SRAM dgta out
Line SRAM ;Lx"l Xsub—row 2Xsub—row 3Xsub—row 4Xsub—row 5 to replace it
data_out

Figure 13: Line SRAM data_out replaces the last sub-row of upper buffer.

(ii) Left DRS Upper DRS

The updated direction of the left buffer is similar to that of the upper one. The direction ranges from left
to right. When the left buffer is located on the right hand side of MB pair, the next MB pair can reuse these
new pixels for the following prediction procedures. However, when the modes of current and previous MB
pairs are different, the left neighbors of a 4x4 block will become complicated. To reduce computational
complexity of this intra predictor, pixel rearranging process is exploited. If current MB pair is frame mode,
each sub-column of left buffer will be updated when each 4x4 block is decoded. On the other hand, if current
MB pair is field mode, first and third buffers in each sub-column of left buffer will be updated when each 4x4
block is decoded in the top MB. Second and fourth buffers in each sub-column of left buffer will be updated
when each 4x4 block is decoded in bottom MB. Hence, we only need to consider what the mode current MB
pair is instead of handling four coding modes for the combination of current and previous MB pairs, and

therefore the complexity can be reduced.

(iii) Corner DRS Upper DRS

Using corner buffer memory can efficiently reuse the upper left neighboring pixels. We change the
positions of corner buffer from left [5] to top. Therefore, the total corner buffer size can be reduced by 38%
(i.e. 64bits - 40bits, because the MB number in horizontal is less than that of vertical MB pair). In particular,
Figure 14 shows the updating directions of corner buffer. However, because the upper neighboring pixels will

be either the last row or the row prior to the last row in upper MB pair, so the first corner of current MB pair
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has two processing states: reuse and reload. The first corner is reused when 1) the mode of current MB pair is
identical to that of previous (left) MB pair or 2) before decoding the bottom MB of frame-coded MB pair. On
the other hand, the first corner is reloaded when 1) the current MB pair has the different modes as previous
(left) MB pair or 2) before decoding the bottom MB of field-coded MB pair. In summary, using neighboring
buffer memory and their different directions of updates according to different modes of MB pair can reuse the
neighboring pixels and improve the access efficiency. The associated pipeline structure of MBAFF decoding
is shown in Figure 15. We can see that during a MB pair decoding process, the interaction between buffers
and Line SRAM can be completed easily and efficiently, and the communication between another Line

SRAM and external SDRAM can be done at the same time.
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Figure 14: The updated direction of corner pixel buffers.
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Figure 15: The pipeline scheme of MBAFF decoding
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(3) Intra 8x8 Decoding with Base-Modes

Luma intra_8x8 is an additional intra block type supported in H.264 high profile. Before decoding an
intra_8x8 block, there is an extra process that is different from intra_4x4 and intra_16x16, which called
reference sample filtering process (RSFP). Original pixels will be filtered first, and then using these filtered
pixels to predict subsequent 8x8 blocks. For an intra_4x4 and intra_8x8 block, 13 neighbors and 25 filtered
neighbors are needed, respectively. According to the Luma intra_8x8 modes, the maximum number of filtered
neighbors is 17, as illustrated in Table 2. Hence, only 17 (i.e. 136 bits) filtered pixels need to be stored. In the
intra_4x4 process, the prediction formula of each mode except DC mode has the same form:

prediction_out = (A+2B+C+2) >> 2.

Compared with the share-based intra prediction generator [8]-[10], the proposed base-mode predictor not
only reduces area cost (due to elimination of four adders) but also guarantees that four predicted pixels will be
generated in one cycle of each intra_4x4 modes, including DC mode. In particular, we use this base mode
predictor to generate the four predicted pixels in one cycle. In the RSFP, the form of formula is identical to
that in intra_4x4, and also can be rewritten to the same form:

filtered_out = (A+2B+C+2) >> 2.

Hence, we can share the hardware resource to generate filtered pixels, as shown in Figure 16(a). Notice

that an additional process, neighbor distribution, is needed to add in intra_8x8 process because we only store

17 filtered pixels instead of 25.

Table 2: Numbers of filtered pixels in intra 8x8 modes

# of filtered
Prediction Modes of Intra_8x8
neighbors
0 (Vertical) 8
1 (Horizontal) 8
2 (DC) 0,8,16
3 (Diagonal down left) 16
4 (Diagonal down right) 17
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5 (Vertical right) 17

6 (Horizontal down) 17
7 (Vertical left) 16
8 (Horizontal up) 8

P P P = 0or6 1)
-4

Extra latency = [%}PA 'N}{M]J{_M 'Nw , Where {L/I = 0,8,16,0r 17
P

In a four-parallel intra prediction module, the latency of an 8x8 block will be increased to 0~5 cycles
according to the different modes of 8x8 blocks. In order to reduce the latency penalty, we reserve filtered
pixels when the mode of the first/third is equal to 3 or 7 and second/fourth 8x8 block is equal to 0, 2 (if upper
is available), or 3~7 (i.e. the value N = 6. Otherwise, N = 0). Then these filtered pixels are directly used to
predict second/fourth 8x8 block. To clarify the extra latency, Eq. (1) lists the decoding extra latency in an
intra_8x8 MB, and Table 2 summarizes the # of filtered pixels in each 8x8 intra coding mode (i.e. the value of
M). In particular, we list some examples to clarify the processing behavior of an intra 8x8 block in Figure
16(b). If the modes of first and second 8x8 blocks are 3 (diagonal bottom left) and 7 (vertical left) or 3
(diagonal bottom left) and 4 (diagonal bottom right), only 10 and 11 pixels are needed to be filtered while

decoding the second 8x8 block, as described in Figure 16(b).
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Figure 16: (a) Architecture of an intra 8x8 decoding module, and (b) behavior
of shared filter.

(4) Simulation Results

To enhance system performance, our proposal is designed to optimize area, buffer size, and latency. We
use two 0.64kb Line SRAMs which are connected to a 32-bit system bus to make decoding pipeline simple,
and 0.688kb SRAM to store reused neighboring pixels. Table 3 shows the average cycles for decoding an
I-MB in different video sequences of our proposed design for 30fps HD1080 video format at working
frequency of 100MHz with MBAFF and Luma intra_8x8. The overhead of latency is less than 5% compared
to preliminary architecture [11]. The overall area and buffer memory size for supporting H.264 BP/MP/HP are

14063 gates in UMC 0.18um technology and 688 bits, as shown in
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Table 4. The overheads for supporting Luma intra_8x8 are 10% and 7.5% compared to [10].

Table 3: The average cycles for different video sequences.

Test Video | Intra Prediction | Proposed Intra | Cycle
Sequence @ BL [11] Prediction @ HP | Overhead
Foreman 342.68 355.81 3.8%
Grandma 275.63 285.28 3.5%
Suzie 294.90 307.28 4.2%
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Table 4. Comparison results

Chen et al. [10] | Proposal | Overhead
Profile MP HP
Process 0.18um 0.18um
Working

87TM 100M
Frequency
Gate Count | 12785 14063 10%
Memory (bit) | 640 688 7.5%

C. The Reduced Patterns Comparison Embedded Compressor/Decompressor
(1) The Proposed RPCC Embedded Compression Algorithm
(i) Algotrithm

The proposed compression scheme adopts pattern-based and 4x2 block-grid. The CR is fixed as two and
each 4x2 unit (64 bits) will be compressed into 32-bit data package. Because fixed CR results in regular
amount of coded data, the EC assures the ability of random access without extra memory to register the
segment address of coded data. In addition, the 4x4 block unit is the basic coding unit in H.264 standard, we
partition each 4x4 block into two 4x2 blocks. Thus, 4x2-based block-grid lessens the coding latency and
makes the data access more efficient.

The proposed algorithm is shown in Figure 17. There are three parts in the overall EC method: 1)
MBPTC, 2) RPCC and 3) average coding. In MBPTC algorithm, we partition a 4x2 matrix into eight bit
planes and search the Start Plane (SP) in four continuous layers which are close to MSB with 2 bits as the first

compression step
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Figure 17 Compression methods of our proposed algorithm

The second step is to deal with remaining bit planes after MBPTC by RPCC. As shown in Figure 18, we
partition a 4x1 section with 4 bits into four 4x1 layers. According to the coding threshold adopted, the RPCC
will select the left or right strategy. While we set the coding threshold to level 2, RPCC compares layer 1 and
layer 2 with eight 4x1-based patterns at the same time. If there is no error in layer 1 and layer 2, RPCC adopts
the left strategy to compress the 4x1 section. Otherwise, RPCC adopts right strategy. According to the
simulation result with different thresholds, while the right strategy is adopted, the right strategy is often in

worse case. We exploit this feature to improve the drawback in 4x1-based PCC algorithm.

4x1 Section
Level 1 |4x1-based PCC 1x Average
Level 2 |4x1-based PCC 1x Average
Level 3 |4x1-based PCC 2x Average
Level 4 |4x1-based PCC 2x Average

Figure 18 Reduced patterns comparison coding concept
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The third part is the average coding scheme which deals with the two residual continuous bit planes after
RPCC. We partition these bit planes into two 2x2-based parts and calculate the average value in each

2x2-based part. The coded data format is shown in Figure 19.

2 Bits 2 Bits 12 Bits 12 Bits 2 Bits 2 Bits
- >t >t >l >t
Strate Coded 4x1 Coded 4x1 AVG. | AVG.
SP Bitsgy Section A for Section B for of of
RPCC RPCC Part A|Part B
- >
Header
Information
(HI Bits)

Figure 19 The compressed 32-bit data format

(it) Design of Patterns

For a 4x2 block, the bit plane consists of 8 bits, leading to 28 (= 256) possible number of bit planes.
However, most of bit planes do not often appear in an image and contribute the less visual quality of decoded
image. In addition, some different bit planes can provide the proximate visual quality. Thus, we focus on the
design of a small set of visually sensitive predefined bit planes as shown in Figure 20. By inverting the
polarization (0s and 1s) of predefined bit planes, eight patterns representing edges and lines are generated.

Each pattern is represented by a 3-bit index as the number of patterns is eight.

00 0 O 1|11

110/0/0 1/11/0|0

Figure 20 Four predefined bit planes

(iii) Formula
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We derive the formula (1) from the simulation result. It is about the PSNR loss of 4x1-based PCC
algorithm. i is the number of 4x1 error bit plane. P, is the error rate and P, is the ratio of error rate per
position in each 4x1 bit plane as described in Table 5. As described in the previous section, we can setup the
different coding thresholds (Level 0~4) in 4x1-based PCC algorithm to obtain corresponding weight (W;) as
described in Table 6. We can exploit the formula to estimate for the PSNR loss in 4x1-based PCC algorithm

while the previous parameters are modified.

4
PSNR Loss (4x1- based ) =Z[C;‘(Pm P,)-1-P,-P,)*" ]-Wi (1)
i=0

Table 5 Ratio of error rate per position in each 4x1 bit plane

Wi Level 0 Level 1 Level 2 Level 3 Level 4
W 0 0 0 0 0
W, 240 112 48 16 0
W, 720 224 48 0 0
W, 720 112 0 0 0
W, 240 0 0 0 0

Table 6 Weights under different coding thresholds

P, Error Rate Total Ratio
(%) (%)

Po 8.68 3254

Py 4.65 17.43

P, 4.65 17.43

Ps 8.70 32.60

Figure 21 shows the distribution of PSNR loss in all thresholds. It helps improving the coding

performance of the algorithm.
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Distribution of PSNR Loss in 4x1-based PCC
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Figure 21 Distribution of PSNR loss in 4x1-based PCC algorithm

(2) Proposed Architecture
(i) Modified Bit Plane Truncation Coding

The hardware design of MBPTC is improved from original BPTC. It is a combinational block to deal
with 4x2 pixels to obtain Start Plane (SP) and 4x2-plane component for each 4x2 array. In Figure 22, we
employ three 8-input OR gates as thresholds to control the value of SP. The bits of layer 1, 2 and 3 are used to

be input of 8-input OR gate individually.

Bit of
Layer 1

Bit of
Layer 2

Bit of
Layer 3

SP

Figure 22 Hardware design for the MBPTC

(i) Reduced Patterns Comparison Coding
RCPP is a combinational block to deal with coded data by MBPTC. As shown in Figure 23, SP selects

four layers to be compressed and threshold is exploited to choose the strategy to be adopted. The SP is
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produced by MBPTC and the threshold is defined by users with different levels as described in Table 5. (Here

we adopt Level 2)

Coding
Layer 1 4x1-based PCC ‘ ‘ 1x Average ‘ Threshold
Layer 2 4x1-based PCC 1x Average Coded Data
Segment
Layer 3 4x1-based PCC 2x Average

SP
Layer4 | |4x1-based PCC 2x Average

L

Figure 23 The hardware architecture of RPCC

(iii) Data Rearrange

Data unpacking is a simple reverse process of encoding. The decoder focuses on putting the data on
proper positions. According to the coded data format, the SP selects the initial bit plane of decoding. The
continuous four layers are then placed on corresponding positions depending on strategy bits. Afterward the

average of part A and B is placed on the continuous two bit planes after the four layers.

(iv) Overall Design of Encoder and Decoder
The overall compressor design is shown in Figure 24. It takes one cycle to deal with 4x2 block. Here

each MB takes 16 cycles to be encoded.

! !
| » RPCC |
| — 32-bit Data

Segment

4x2
Block E— MBPTC
|

Y

I
Average —,_>:
I

|‘ ;l
| |

1 Cycle

Figure 24 Data flow of the encoder
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For providing data to MC, the decompressor needs to support higher throughput. The actual architecture
of decompressor design is shown in Figure 25. A 4x2 block takes one cycle to be decoded. Under the design,

each MB takes 16 cycles to be decoded.

32-bit Data |
Segment —>| Data Rearrange
I

|< 1 Cycle

Figure 25 Data flow of the decoder

Block

I

(3) System Integration And Verification

Figure 26 shows the overall block diagram of this system. The adopted H.264 decoder works at 5, 100
and 150 MHz respectively to perform CIF, HD 1080 AVC, HD 1080/720 SVC at 30 frames/per second (FPS).
The embedded compressor compresses the data from deblocking filter into 64-bit data segment which is
stored in external memory. The embedded decompressor decompresses the coded data segment from off-chip
memory into 4x2-sized block which is sent to Motion Compensation. The bandwidth of system bus is 32 bits

and the external memory is 32 bits per entry.

{ )

AHB Master / Slave Interface & SVC Arbiter

_svc Y Temporary|
Bitstream Embedded DATA Embedded
Decompressor Compressor
MC ¥ Filtered
Info.| Data <SRAM Data Fetch Pixels
" | Fetch & Operation
Motion < >
Y Compensation Sl
Entropy | Coef. 10 IT Residue | Deblocking
Decoder g ~|  Filter
Intra
Intra Prediction
Info, | Data Data Fetch
" | Fetch <SRAM & Operation
H.264

Figure 26 The architecture of our proposed H.264 decoder with EC capability
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The related accesses of EC are partitioned into write accesses and read accesses. Write accesses from
deblocking filter write the data to external memory and read accesses read the data from external memory to
MC. Many methods have been proposed to improve embedded compression and all of them aim to improve
the performance of embedded compression. However most of performance measured by these methods is
fragmental, lacking verification from system level. In addition, we expect to precisely estimate the amount of
read/write accesses on system view point. Thus, we employ “CoWare” to deal with the complicated problems.
As shown in Figure 27, “CoWare” provides many functions to simulate a complete system and the
user-defined means user’s design. It makes more efficient that we can change the user-defined field relied on
our demands. We add the proposed design and H.264 system into user-defined field. The AMBA interface
between “CoWare” and user-defined is coded in System C and it provides a protocol to commutate each other.

Furthermore, user-defined means all designs in this filed need to be coded in Verilog.
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Figure 27 Block Diagram in CoWare simulation platform

Because the proposed algorithm provides fixed CR as two, the write access times after adding the EC are
always half of original system. The reduction ratio of write access is 50%. The embedded decompressor
decompresses the data from external memory to MC. Because the bandwidth of system bus is 32 bits and the

external memory is 32 bits per entry, the original system takes 4x1 pixels as access unit. The read access
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behavior of MC with/without EC is analyzed as Table 6. The worst condition is the sub-pixel case. The 4x4
block needs a 9x9 block to complete the motion compensation. Thus, while original system needs 27 cycles to
deal with this case, embedded compressor takes 15 cycles to do that. If the required 4x4 blocks of MC are
aligned with the coded 4x4 blocks, original system with/without embedded compressor needs 2/4 cycles to
deal with the best case. The special cases are included to (Align, Not Align), (Not Align, Not Align) and (Sub,
Not Align). If required data of MC is not fit for 4x2 block-grids, it may increase extra access.

Table 7 All cases of read access required by MC with/without EC

Access Access Reduction of
Casty .y | LT | Ol | A ks
Without EC | proposed EC (%)
(Align, Align) 4 2 50
(Align, Not Align) 4 213 50/25
(Align, Sub) 9 5 44.4
('Not Align , Align) 8 4 50
(Not Align, Not Align) 8 4/6 50/25
('Not Align, Sub) 18 10 444
(Sub, Align) 12 6 50
(Sub, Not Align) 12 6/9 50/25
(Sub, Sub) 27 15 44.4
AVG. 13.2 6.8~6.9 49.1~483

(4) Simulation Result

Software implementation of the proposed algorithm is integrated with JM 16.1. The reference frames are
compressed by the proposed algorithm and then compared with those results from [15] and [16] respectively.
The test sequences are akiyo, flower, football, foreman, mobile calendar, carphone, canoa, coastguard,
waterfall and tempete in CIF format. For each sequence, computing the average PSNR value refers to the
original sequence with 100 frames. Table 8 shows the comparison results. It can be found that our proposed
solution based on non-transform compression scheme provides lower complexity and less gate count with

acceptable PSNR loss and visual quality.

Table 8 Comparison of Simulation
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D. The Bitplane Truncation with Pattern Comparison Coding Embedded Compressor/Decompressor

1)

(1) Algotrithm

The proposed algorithm compresses a 4x2 block (64-bit) from the output of the deblocking filter. The CR
is fixed at 2. After compressing, a 4x2 block will become a 32-bit segment. With fixed CR, the amount of the

coded data is constant. Therefore, this compression can guarantee access times. Besides, in H.264 standard, a

MHT + GRC [4] |DCT + MBPZC [5] Proposed
Technology UMC 90 nm UMC 90 nm UMC 90 nm
System MPEG-2 Decoder H.264 Decoder H.264/SVC
Processing Data 8x1 Array 4x4 Array 4x2 Array
Unit (8 Pixels) (16 Pixels) (8 Pixels)
Working 100 MHz 100 MHz 100 MHz
Frequency
Total Gate Count 20 K 30K 31K

Cycle | Encoder

Count

2 for first 1x8,
1 for Pipeline Stage

12 for first 4x4,
4 for Pipeline Stage

2 for each 4x4

(Cycle) | Decoder

2 for first 1x8,
1 for Pipeline Stage

4 for first 4x4,
2 for Pipeline Stage

2 for each 4x4

For a MB
(Encoder/Decoder)

33 Cycles/33 Cycles

72 Cycles/34 Cycles

33 Cycles/32 Cycles

PSNR Loss

11.81 dB~14.57 dB

3.22 dB~8.39 dB

4.42 dB~7.10 dB
( Average: 5.98)

Power
Consumption

N/A

2.78 mW/1.66 mW

228 uW /130 uW

Proposed BTPCC Embedded Compression Algorithm

4x4 block which is a basic coding unit can be partitioned into two 4x2 blocks.

Figure 28 shows the flowchart of the proposed compression algorithm. We divide the algorithm into four
parts: 1) Pixel Truncation, 2) Selective Bitplane, 3) Rounding, and 4) Pattern Comparison. These parts will be
described in the following paragraphs. The compressed 32-bit segment format is shown in Figure 29. The

representation format consists of 2-bit Mode, 2-bit Start Plane (SP), 2-bit Decision L, 2-bit Decision R, 12-bit

Coded Data L, and 12-bit Coded Data R.

4x2 Block
! | Left2x2Block | | Right 2x2 Block
| Pixel Truncation |
| Pattern Comparison | | Pattern Comparison |

Selective Bitplane |

v \ Bitstream Packer \
\ Rouding \
32-bit Segment

Figure 28 Compression flow of the proposed algorithm
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Figure 29 Compressed 32-bit segment format

A. Pixel Truncation

Figure 30 shows the flowchart of the pixel truncation. First, we calculate the average value (Avg.) of the
4x2 block and the difference value (Diff.) between maximum pixel and minimum pixel of the 4x2 block.
Second, according to the average and the difference, we classify those 4x2 sub-blocks into five types as the
following: 1) Avg. from 0 to 63 and Diff. less than 32, 2) Avg. from 64 to 127 and Diff. less than 64, 3) Avg.
from 128 to 191 and Diff. less than 64, 4) Avg. from 192 to 255 and Diff. less than 32, and 5) no change. In
type 1, if each pixel is larger than or equal to 64, we force the pixel to be 63. In type 2, if each pixel is less
than 64, we force the pixel to be 64; if each pixel is larger than or equal to 128, we force the pixel to be 127.
Types 3 and 4 are processed like types 2 and 1 respectively. In type 5, the original pixel value remains

unchanged.

4x2 Block

Average & Difference

[ Type Selection ]
Type 5 ¢Type 4 ¢Type 3 ¢Type 2 ¢Type 1
192 < Avg. < 256 128 <Avg. <192 64 <Avg.< 128 0<Avg.<64
0<Diff. <32 0 <Diff. <64 0<Diff. <64 0<Diff. <32

NO

Pixel =191

I Output

Pixel = 127

Truncated 4x2 Block

Figure 30 Flowchart of the pixel truncation

B. Selective Bitplane

Figure 31 shows the flowchart of the selective bitplane. Bitplane coding is a well-known method. We
exploit bitplane as a basic unit to a group numbers, instead of pixel-wised basic unit. First, we consider a 4x2
block in which each pixel value is represented by 8-bit. A bitplane can be formed by selecting a single bit from

the same position in the binary representation of each pixel.
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Truncated 4x2 Block

Bitplane Transform

A A
Select Maximum Start Plane and Record Mode

Start Plane Mode
Figure 31 Flowchart of the selective bitplane

We define that B7 represents the MSB plane while BO represents the LSB plane. Second, the start plane
(SP) is searched for four successive bitplanes from the MSB bitplane with four modes as follows: 1) from B7
to B5 are all-0, 2) B6 is all-1; B7 and B5 are all-0, 3) B7 are all-1; B6 and B5 are all-0, and 4) B7 and B6 are
all-1; B5 is all-0. In the first mode, if both B7 and B6 are all-0 and B5 is not all-0, then SP is equal to 1.
Similarly, the other modes like as the first mode. Finally, the maximum start plane of four modes is selected to

record the mode and start plane.

C. Rounding

Since lower bitplanes are truncated due to the limited budget, a simple rounding is applied here. The
rounding is applied when the significant bit of the truncated bits is nonzero and the coded bits are not all 1’s.
In Figure 32(a), the simple idea is shown. This idea leads to a satisfied quality improvement. Two rounding
modes are proposed because the pattern comparison has two data compressed formats. As shown in Figure
32(b), the first one is the compressed code rounding and the other is the uncompressed rounding. For pattern
comparison, the first rounding method is applied to the first three types and the second rounding method is

only for the final type.

ﬂ_CO_dEd Truncated 1. Compressed Code Rounding
MSB bits ‘ bits Lse l—4-bit—y’
|
i ‘ v bt [OTT[O[L[1]1[0[0]
Input Pixel [0[1]0]1]1]1]0]0]| Start 1 L significant
LT 770 7! Lsignificart Plane ! ! bit
Start Plane | } | | |gn|_|ca | 2. Uncompressed Code Rounding
End Plane—“—:— i bit i l3-bit—»!
== - Input
AT ! pivel | O L0 1[1]1]0]0]
output Pixel [0]1]1J0[1]1]0To0] Start [ Significant
‘ Plane ' ! bit
(a) (b)

Figure 32 Flowchart of the rounding

42



D. Pattern Comparison

The final step encodes the preserving bitplanes. First, the truncated 4x2 block is partitioned into two 2x2
blocks that are called the left 2x2 block and the right 2x2 block as shown in Figure 33(a). In Figure 33(b),
both the left 2x2 block and the right 2x2 block exploited the equal SP and compressed individually. Second,
four types for a 2x2 block is classified as follows: 1) Group A, 2) Group B, 3) Group C, and 4)
Uncompression. The first three types exploit a group of the eight patterns to compare with four successive
bitplanes from SP and select one type which can hit three successive bitplanes. The three groups of the eight
patterns are shown in Table 1. If the first three types cannot hit larger than or equal to three bitplanes, the type

4 is chosen and three successive bitplanes from SP are stored.

4x2 Block Pixels 0 1 2 3 Pixels 4 5 6 7
0/14|5 MsB|0|0]0]|0 MsB(0[0]0]|0
213167 0]0|0[0 0]0|0[0
Ef % StartPlane{ 0 |1 (0|1 | StartPlane{1|1|1(0
0|1|0(0 0/0|0|0
01 4|5 0|0|0f1 0|1]0(1
213 6|7 1(0]1]|0 1(0]0]|0
Left Right 0|1|0(1 0|1|0f1
2x2 Block 2x2 Block LsB|[0[0|1]0 LsB (0[1(0|0
(a) (b)

Figure 33 An example of partitioning 4x2 block

Table 9 Three Groups of Eight Patterns

Pattern No. | 1 2 3 4 5 6 7 8

Group A 0000 | 1111 | 1110 | 0111 | 0011 | 1100 | 0001 | 1000
Group B 0000 | 1111 | 1110 | 0111 | 1010 | 1001 | 0110 | 0101
Group C 0000 | 1111 | 1110 | 0111 | 1101 | 1011 | 0010 | 0100

(2) Proposed BTPCC Embedded Compression Architecture
(i) Compressor Design

Figure 34 shows the pipeline architecture of compressor design. We use two pipeline stages and each
stage requires one cycle. The first stage is the pixel truncation. The second stage is composed of selective start

plane, rounding, selective pattern comparison, and packer. This compressor encodes a 4x2 block in 2 cycles.
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Figure 34 Compressor architecture

(i) Decompressor Design
Figure 35 shows the pipeline architecture of decompressor. The decompressor only needs one stage with
one cycle, including parser, start plane decoding, and pattern decoding. This decompressor reaches a higher

throughput; therefore we can provide a higher random accessibility.

. | |
32 bits | Start Plane Pattern }_» Reconstructed
segment I Parser = Decoding ] Decoding I 4x2 Block
:< Stage 1 >:

Figure 35 Decompressor architecture

(3) System Integration

The overall H.264 decoder [31] with the embedded compression codec is shown in Figure 36. The
embedded compressor works between the deblocking filter and the external memory. The embedded
decompressor works between the external memory and the motion compensation. To design address controller
of EC is very simple since our compression ratio is fixed at two. Our system bus is 32 bits and the external

memory is 32 bits per entry.
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Figure 36 H.264 decoder with proposed embedded
compression

The compatible H.264 decoder specification is HD1080+HD720@30fps and works at 150MHz. The
compressor converts a 4x2 block from the deblocking filter into a 32 bits segment which is stored into the
external memory. Comparing the data access times of the external memory for the system without EC, the
data access times of our system is half. The decompressor converts a 32 bits segment into a 4x2 block which
is sent to the motion compensation. Since our system bus is 32 bits and the external memory is 32 bits per
entry, the system accesses once a data as four pixels. In Table I, we analyze the read times of the motion
compensation with/without EC. The worst case is the (Sub, Sub) case. To finish the motion compensation, a
4x4 block needs a 9x9 block. Therefore, the system with/without proposed embedded compressor takes 15/27
cycles. The best case is the (Align, Align) case. Original system with/without embedded compressor needs 2/4
cycles to finish the best case. For the other cases when the required data of motion compensation are not fit for
4x2 block-grids, the access times become increased.

Table 10 All Cases of Read Access Requirement

Access Cycles | Access Cycles | Reduction  of

Case of MV (%, y) for System | for System with | Access Cycles
without EC Proposed EC without EC

(Align, Align) 4 2 50

(Align, Not Align) 4 2/3 50/25

(Align, Sub) 9 5 44.4

(Not Align, Align) 8 4 50

(Not Align, Not Align) 8 4/6 50/25

(Not Align, Sub) 18 10 44.4

(Sub, Align) 12 6 50

(Sub, Not Align) 12 6/9 50/25

(Sub, Sub) 27 15 44.4

Average 13.2 6.8~6.9 49.1~48.3
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(4) Experimental Results

Table 11 PSNR Comparison shows the software result of the proposed algorithm which is integrated with
JM16.2. The test sequences are Akiyo, Forman, Mobile, Stefan, and Station. Each test sequence executes 100
frames. And then the average PSNR value is calculated. Results show that the PSNR loss of the proposed
algorithm is from 1.27 to 3.94dB.

Table 11 PSNR Comparison

Sequence | Format | H.264 (dB) Proposed (dB) PSNR loss
AKkiyo CIF 43.72 41.16 2.56
Forman CIF 41.23 39.20 2.03
Mobile CIF 37.61 34.14 3.47
Stefan CIF 38.82 34.88 3.94
Station HDTV 39.12 37.84 1.27

Table 12 shows the comparison among previous work. It can be found that our proposed hardware
provides less hardware complexity and better visual quality. Especially, the proposed decoder just requires one
cycle with higher random accessibility for embedded compression without degrading overall system
performance. The power consumption of the proposed hardware is better than Lee’s [16] and Wu’s [31].
Figure 37 shows the Station sequence result of the original system with EC in HDTV format. The propagation
of quality loss is unavoidable but video quality remains acceptable.
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i
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Figure 37 Simulation result of station sequence (HDTV)
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Table 12 Comparison Among Previous Work

Lee’s [3] Wu’s [4] This Work
Technology CMOS 0.25um UMC 90nm UMC 90nm
System MPEG-2 Decoder H.264 Decoder H.264/SVC Decoder
Working Frequency 100MHz 100M z 150MHz
Processing Data Unit 8x1 Block 4x4 Block 4x2 Block
T tal Gat C unt 20k 30k 4.9k
Cycle  Count | Encoder 2 cycles N/A 2 cycles
for 4x2 Block | Decoder 2 cycles N/A 1 cycle
Cycle  Count | Encoder 33 cycles 72 cycles 33 cycles
for a MB Decoder 33 cycles 34 cycles 32 cycles
PSNR Loss 6.08dB~10.65dB 1.31dB ~ 4.48dB 1.27dB ~ 3.94dB
Power Encoder N/A 2.78mwW 158uW
Consumption | Decoder N/A 1.66mwW 86uW

*The N/A is because of the processing data unit is 4x4 block in MBPZC

E. An Area-efficiently High-accuracy Prediction-based CABAC Decoder for H.264/AVC

(1) Proposed prediction scheme:

To replace SE Predictor [25], we used combinational logic and several buffer stored status of each stage
(just like Figure 38). Because the bottleneck of throughput depended on the hit rate in the prediction-based
CABAC decoder, we let the decoding flow more regular except the case we ready should know what the
decoded bin is. In the previous work [25], they used MPS-based two-bit predictor to predict current bin, and it

obtained about 70% hit rate. The 30% miss rate is the critical part decreased the performance. So, we enhance

the average hit rate by our proposed prediction process.

DeBinarization — Next
sm module
)
Arithmetic
Syntax |« Engine
Element
Parser Prediction Context
Model
' .
Neighbor S &t Peli+ll calculate  fetxid
MEM Value Context index

Figure 38: Block Diagram of Proposed CABAC Decoder
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On the other hand, we often produce extra overhead for getting neighbour information and requesting
data from external memory. So, we optimize our memory system to solve this problem. We prefetched and

compressed the neighbour information to reduce the storage and the latency.

A. Prediction Process
This section we proposed three methods to raise throughput at limited resource by single-bin engine.

Raised Hit Rate — In the Figure 39(a) and Figure 39(b), they are traditional arithmetic engine decoding
flow. In the beginning, we have current value of Range and Offset before we decoded the bin. After we read
the value of LPS range, we can know offset is in the field of MPS or LPS. In fact, we can recognize the trend
that the bin may be MPS before we decoded the bin. Before we get the LPS range, we already have current
value of Range and Offset. So, if we observe the difference between Range and Offset, we can find out when
difference is the larger and MPS rate is the higher. And then, following this principle we use two bits
according as Table 13 to recognize which status is mostly happened. We can make sure next bin at status “00”
and ‘117, because the value are over the limit of standard. This result can significantly raise hit rate, but the
other status still cause prediction miss. Actually, we also can use this method to pState and so on. The extra
two bits can raise hit rate when we are at status “01” or “10” and can produce at the same time when
processing difference. So, it couldn’t increase critical path in our prediction process. Finally, we can make
sure at status “00” and “11” and have four-bit tips to predict what next bin is at status “01” and “10”.

Fortunately, we overall got more than 90% hit rate in our simulation results by our prediction process.
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Figure 39: (a) Before decoding bin (regular process) (b) After decoding bin (regular

process) (c) Before decoding bin (prediction process)

Table 13: Status of Difference

Status Value( pState) Possible
00 *Diff. < value(0) LPS
01 value(0) =*Diff. <value(31) | LPS
10 value(3l) = *Diff. = MPS

value(62)
11 *Diff. > value(62) MPS

*Diff. = Range — Offse

(2) Reduced Stall Time — Furthermore, we still try how to reduce unnecessary stall times. Because of
regular decoding flow, our prediction process depends on predicted bin to calculate ctxldx, we may get miss

penalty when predicting miss. Actually, not all of syntax element (SE) branch point need previous bin. So, we

collect all of SE’s finished bin and branch selection to know when we really should stall or not.

(3) Solved Data Hazard — On the other hand, pipeline architecture may cause unavoidable data hazard.
When we calculate next ctxldx, we may need neighbor block SE. Different with traditional decoding flow we
avoid the worst case which we must stall to wait decoded bin. So, the other reasons we get data hazard are
data still handled by other stage and data haven’t updated to memory. The prefix one can be solved by forward

path and suffix one can be solved by data reused (used buffer to hold on data). So, most of data hazard can be

solved by our improvement.
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B. Memory System

This section we proposed three methods to reduce cost, latency and memory bandwidth requirement.

(1) Solved Syntax Element Switching Overhead (SESO) —In the previous work [3], we can clearly
understand the effect of SESO that seriously decreased performance. In the other issue, getting neighbor
information may enhance the latency when we access data from external memory. When we request data from
system bus, the latency may exceed over our estimate significantly. The reasons could be system clock are
asynchronous with external memory, other module compete memory bandwidth requirement especially for
Motion Compensation and so on. So, this may be a potential problem even if original storage aren’t huge than
other module. The immediate solutions are included an internal memory to store all information we need, but
this method will get large overhead when we upgrade to HD sequences. We should include almost 20 Kbits
SRAM even double in MBAFF for CABAC. So, this is inefficient to implement. To overcome these
unexpected problems, the best solutions are reduced the stored neighbor information. In our works, we
prefetch the data to simplified buffer (described in following paragraph) when decoding first SE of
MacroBlock (MB) and precalculate SE for neighbor MB. Therefore, we adjust the latency for getting neighbor
data to average 1.333 cycles/MB.

(2) Reduced MEM. BW. Occupation — In our analysis, motion vector different (mvd) is the biggest part
of all neighbor information. However, we shouldn’t use the total bits to calculate next ctxldx. We show the
control conditions at the Figure 40(a) from standard, and we find out most of cases can be determined by two
bits. So, we store each mvd from 10 bits to 2 bits and use 5 bits to store extra mvd when it’s bigger than 3 just
like Figure 40(b). When we need to refer the mvd, we should access 2 bits mvd and extra mvd which is bigger
than 3from external memory. And, in our analysis, most of mvd are smaller than 2. Finally, we can efficiently

reduce about 70% storage in our simulation by this method.
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Figure 40: (a) ctxldxInc control condition for mvd ; (b) proposed mvd
reduction scheme

(3) Raised Buffer Efficiency — When we decode first bin of SE, we should access the same SE at the
neighbor block which located in current MB or neighbor MB. Immediately, we need two kinds of buffer to
handle data from neighbor MB or current MB and both of them occupy the largest percentage of buffer.
Actually, we can combine two kinds of buffer to raise area efficiency. After we read the data from the buffer,

some buffer can be written. Because of this way and accurately scheduling we can reduce cost certainly.

(2) Proposed prediction-based Architecture

This section implements our proposed prediction-based CABAC decoder architecture by our proposed

scheme, as Figure 41.
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Figure 41: Architecture of Proposed Prediction Process
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First, we parallel the bin-decoded process and ctxldx- calculated process by two independent paths, and
we record each status of pipeline stages in shift register from SE parser. So, we can break the data dependency
by prediction process and controlled SE parser. By the way, we use multiplexer and buffers to choose context
(valMPS and pState) or up which can be data reused or not.

Second, we may find a problem when we calculate the ctxldx. That is we need neighbour information to
calculate current ctxldx. So, we increase one stage to deal with this problem and are shown in Figure 42.
Actually, syntax elements are produced after second stage, and the third stage can’t affect the pipeline. In the
other problems, the mvd which is bigger than 3 is too dispersed to achieve high storage reduction. So, we
implement a transfer unit to compress data. This unit compresses at most 6 5-bit mvd to adaptive 32-bit BUS,
and the transmission times can be reduced significantly. Oppositely, we should increase an inverse transfer

unit to decompress data when we need to reference data.
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o m s

Input — AD el DB |, > CC
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Current Ctxldx | Buffer -
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."Decompress Compress| .
l \__Data Data |/
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Figure 42: Architecture of Proposed Memory System
Third, we integrate the prediction process (Part A) and memory system (Part B) to our proposed CABAC
decoder which is shown in Figure 43. In our design, this may cause data hazard problem in some special cases
or SEs, for example, coded_block_pattern. Therefore, we should increase a forward process to deal with this
problem and use multiplexer to select regular path or forward path. On the other hand, we should have a unit
to deal with miss penalty. When we predict miss, the status registers can’t be shifted. We should stall one cycle
to calculate correct ctxldx, and we use previous bin instead of predicted bin. Finally, we make a FSM to

control initialization process and decoding process.
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Figure 43: Architecture of Proposed CABAC Decoder

To prove our prediction algorithm can adapt in different sequences, we make a simulation that we

calculate hit rate at each bin of sequences in average. Table 14 shows average hit rate of the same resolution

sequences, and we get hit rate from 90.75% to 94.27%. It means even in the worst case we still can keep more

than 90% hit rate. Therefore, we raise higher performance according to formula of throughput than previous

work [25] at the same conditions and mechanism. (All the sequences are encoded by JM 16.1[28] with 4:2:0

color format, QP: 28, GOP: IBP, Max. bit-rate and frame rate of 30 fps.)

Table 14: Hit Rate of Prediction Process

*N O'r\l/lgF:gal Proposed | Increased
Hit Rate | Hitrate
Rate
QCIF | 21 | 71.98% | 91.70% | 19.88%
CIF 22 | 73.36% | 91.99% | 18.63%
HD 6 | 78.42% | 93.10% | 14.68%
AVG. | 49 | 73.27% | 91.95% | 18.68%

*N: number of test sequence
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In other works, we reduce the storage and test in full-HD sequences. We count the range distribution of
mvd and show our results which compared with our optimal and traditional solutions in Figure 44. And, we
get reduction rate from 58.01% to 75.13%. It means we can reduce bandwidth requirement or system buffer

utilities efficiently.
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Figure 44: Reduce Rate of Memory System

The RTL simulation result shows that the proposed design can decode 0.95 bins per cycle in average. The
synthesis results of proposed architecture and a performance comparison with previous works are shown in
Table 15. By applying the mechanisms, the proposed architecture can efficiently reduce at least 45% hardware
cost than previous works. However, we still can achieve Level 5.0 MP. The maximum throughput of the

proposed design is 239.4 Mbins/s and the maximum working frequency is 249 MHz.
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Table 15: Comparison of the Proposed Design and Previous Works

ISCAS ISCAS
CSVT 09°[27] ISCAS 08°[25] Proposed
10°[28] 09°[26]
H.264/HP 1920x1088 1920x1088 1920x1088 H.264/AVC
Spec. 1920x1088@25fps
@30fps @30fps @30fps 1920x1088@30fps
Technology TSMC 0.18 um UMC 90nm UMC 90nm N/A UMC 90nm
105 MHz MAX:264 150 MHz
Frequency MAX:222MHz N/A
(MAX:140 MHz) MHz (MAX: 249MHz)
Mechanism Multi-Bin Multi-Bin Multi-Bin Prediction-based Prediction-based
w/o
Context 34,955 NIA NIA NIA 16,291
(17,838@249MHz)
Gate Model
Count with
23,303
Context 76,333 42,372 82,400 N/A
(25,828@249MHz)
Model
Get
1.333 idle/MB
neighbor N/A N/A N/A N/A
*i .
MEM. Dela (*idle : 1 cycle)
System Y
Context SRAM Hybrid SRAM
Register File N/A
Model (3,528 bits) SRAM (3,360 bits)
0.9467
0.71 (740x480@4Mbl/s) 0.8333
Average 1.83 1.95~1.98 (Hit Rate:
Bins/Cycle 0.86(1920x1088@60Mb/s) (Hit Rate: 71.4%)
91.95%)
Maximum 1204 483.1 410.0 N/A 239.4
Throughput (@ 140Mhz) (@ 264MHz) | (@ 222MHz) (@249MHz)

F. A Predefined Bit-Plane Comparison Coding for Mobile Video Applications

(1) Proposed Embedded Compression Algorithm

The proposed algorithm compresses a 4x2 block (64-bit) from the output of the deblocking filter. The CR
is fixed at 2. After compressing, a 4x2 block will become a 32-bit segment. With fixed CR, the amount of the

coded data is constant. Therefore, this compression can guarantee access times. Besides, in H.264 standard, a

4x4 block which is a basic coding unit can be partitioned into two 4x2 blocks.

Figure 45 shows the flowchart of the proposed compression algorithm. We divide the algorithm into four

parts: 1) Pixel Truncation, 2) Selective Bitplane, 3) Rounding, and 4) Pattern Comparison. These parts are
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described in the following paragraphs. The compressed 32-bit segment format is shown in Figure 46. The
representation format consists of 2-bit Mode, 2-bit Start Plane (SP), 2-bit Decision L, 2-bit Decision R, 12-bit

Coded Data L, and 12-bit Coded Data R.

4x2 Block
| Left2x2Block | | Right2x2 Block |
| Pixel Truncation |
| Pattern Comparison | | Pattern Comparison |
| Selective Bitplane |
v | Bitstream Packer |
| Rouding | v
| 32-bit Segment

Figure 45: Compression flow of the proposed algorithm

«——————————Header————————————»

Mode Start Plane | Decision L | Decision R | Coded Data L | Coded Data R

< 2-pit-—»{e—2-bit—»je—2-bit —»le—2-bit—>{e—12-bit—»}«—12-bit—»

Figure 46: Compressed 32-bit segment format

A. Pixel Truncation

Figure 47 shows the flowchart of the pixel truncation. First, we calculate the average value (Avg.) of the
4x2 block and the difference value (Diff.) between maximum pixel and minimum pixel of the 4x2 block.
Second, according to the average and the difference, we classify those 4x2 sub-blocks into five types as the
following: 1) Avg. from 0 to 63 and Diff. less than 32, 2) Avg. from 64 to 127 and Diff. less than 64, 3) Avg.
from 128 to 191 and Diff. less than 64, 4) Avg. from 192 to 255 and Diff. less than 32, and 5) no change. In
type 1, if each pixel is larger than or equal to 64, we force the pixel to be 63. In type 2, if each pixel is less
than 64, we force the pixel to be 64; if each pixel is larger than or equal to 128, we force the pixel to be 127.
Types 3 and 4 are processed like types 2 and 1 respectively. In type 5, the original pixel value remains

unchanged.

56



4x2 Block

| Average & Difference]

Type Selection

Type 5 #Type 4 #Type 3 #Type 2 #Type 1
192 < Avg. < 256 128 < Avg. < 192 64 <Avg. <128 0<Avg.<64
0<Diff. <32 0 < Diff. <64 0 < Diff. <64 0<Diff. <32

NO NO

Pixel <128

Pixel = 64 Pixel = 63

Pixel =192 Pixel =128

Output

Truncated 4x2 Block

Figure 47: Flowchart of the pixel truncation

B. Selective Bitplane

Figure 48 shows the flowchart of the selective bitplane. Bitplane coding is a well-known method. We
exploit bitplane as a basic unit to a group numbers, instead of pixel-wised basic unit. First, we consider a 4x2
block in which each pixel value is represented by 8-bit. A bitplane can be formed by selecting a single bit from

the same position in the binary representation of each pixel.

Truncated 4x2 Block

Bitplane Transform

Y y A N
Select Maximum Start Plane and Record Mode

Start Plane Mode

Figure 48: Flowchart of the selective bitplane
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We define that B7 represents the MSB plane while BO represents the LSB plane. Second, the start plane
(SP) is searched for four successive bitplanes from the MSB bitplane with four modes as follows: 1) from B7
to B5 are all-0, 2) B6 is all-1; B7 and B5 are all-0, 3) B7 are all-1; B6 and B5 are all-0, and 4) B7 and B6 are
all-1; B5 is all-0. In the first mode, if both B7 and B6 are all-0 and B5 is not all-0, then SP is equal to 1.
Similarly, the other modes like as the first mode. Finally, the maximum start plane of four modes is selected to

record the mode and start plane.

C. Rounding

Since lower bitplanes are truncated due to the limited budget, a simple rounding is applied here. The
rounding is applied when the significant bit of the truncated bits is nonzero and the coded bits are not all 1’s.
In Figure 49(a), the simple idea is shown. This idea leads to a satisfied quality improvement. Two rounding
modes are proposed because the pattern comparison has two data compressed formats. As shown in Figure
48(b), the first one is the compressed code rounding and the other is the uncompressed rounding. For pattern
comparison, the first rounding method is applied to the first three types and the second rounding method is

only for the final type.

Coded Truncated 1. Compressed Code Rounding
\sE " bits  TC bits ! L8 le—4-bit—>!
o : ; b [oT1o]1[1]1]0]0]
'np“tp'xel!()'rl_'g | 1‘! 1]1]o]o0] Start- | L significan
. Pl bit
Start Plane | : : I Slgnt;:lcar{t 2. Ur?cnc?mpressed Code Roundinlg
End Plane —— — | | t!4—3-bit—>!
e—a oo : nput | '
| N ! F>i§e||o|1|o|1|1|1|o|o|
Output Pixel [0[1[1[0[1]1[0]0] Start L ! Significant
i | | Plane ' ' bit
(a) (b)

Figure 49: Flowchart of the rounding

D. Pattern Comparison

The final step encodes the preserving bitplanes. First, the truncated 4x2 block is partitioned into two 2x2
blocks that are called the left 2x2 block and the right 2x2 block as shown in Figure 50(a). In Figure 50(b),
both the left 2x2 block and the right 2x2 block exploited the equal SP and compressed individually. Second,

four types for a 2x2 block is classified as follows: 1) Group A, 2) Group B, 3) Group C, and 4)
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Uncompression. The first three types exploit a group of the eight patterns to compare with four successive
bitplanes from SP and select one type which can hit three successive bitplanes. The three groups of the eight
patterns are shown in Table 16. If the first three types cannot hit larger than or equal to three bitplanes, the

type 4 is chosen and three successive bitplanes from SP are stored.

4x2 Block Pixels 0 1 2 3 Pixels 4 5 6 7
ol11415 MSB|0|0(0|0 MSB|{0(0|0|0
21367 0(0|0]0 0(0(0]|0
% & StartPlane{Q (1|0 |1| StartPlanef1|1|1(0
011|0]0 0(0(0|0

01 45 0(0(0(1 01|01
2|3 6 7 110110 1{0{0(0
Left Right 0(1]|0]1 01|01
2x2 Block 2x2 Block LsB|0/0[11]0 tsel{0ol1]/0/0

(a) (b)

Figure 50: An example of partitioning 4x2 block

Table 16: Three Groups of Eight Patterns

Pattern No. 1 2 3 4 5 6 7 8

GroupA | 0000 | 1111 | 1110 | 0111 | 0011 | 1100 | 0001 | 1000

Group B 0000 | 1111 | 1110 | 0111 | 1010 | 1001 | 0110 | 0101

Group C 0000 | 1111 | 1110 | 0111 | 1101 | 1011 | 0010 | 0100

(2) Proposed Architecture

A. Compressor Design

Figure 51 shows the pipeline architecture of compressor design. We use two pipeline stages and each
stage requires one cycle. The first stage is the pixel truncation. The second stage is composed of selective start

plane, rounding, selective pattern comparison, and packer. This compressor encodes a 4x2 block in 2 cycles.

| . | . Selective .
4x2 Pixel N Selective | | Rounding | »  Pattern | »| Packer |4 32 bits
Block Truncation Start Plane . segment
| | Comparison |

:«Stage 1»:478tage 24>:

Figure 51: Compressor architecture
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B. Decompressor Design

Figure 52 shows the pipeline architecture of decompressor. The decompressor only needs one stage with
one cycle, including parser, start plane decoding, and pattern decoding. This decompressor reaches a higher

throughput; therefore we can provide a higher random accessibility.

. | |
32 bits | Start Plane Pattern | Reconstructed
segment | Parser = Decoding I Decoding | 4x2 Block
:< Stage 1 >:

Figure 52: Decompressor architecture

(3) System Integration

The overall H.264 decoder with the embedded compression codec is shown in Figure 53. The embedded
compressor works between the deblocking filter and the external memory. The embedded decompressor works
between the external memory and the motion compensation. To design address controller of EC is very simple
since our compression ratio is fixed at two. Our system bus is 32 bits and the external memory is 32 bits per

entry.
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Figure 53: H.264 decoder with proposed embedded compression

The compatible H.264 decoder specification is HD1080+HD720@30fps and works at 150MHz. The
compressor converts a 4x2 block from the deblocking filter into a 32 bits segment which is stored into the
external memory. Comparing the data access times of the external memory for the system without EC, the
data access times of our system is half. The decompressor converts a 32 bits segment into a 4x2 block which
IS sent to the motion compensation. Since our system bus is 32 bits and the external memory is 32 bits per
entry, the system accesses once a data as four pixels. In Table 17, we analyze the read times of the motion
compensation with/without EC. The worst case is the (Sub, Sub) case. To finish the motion compensation, a
4x4 block needs a 9x9 block. Therefore, the system with/without proposed embedded compressor takes 15/27
cycles. The best case is the (Align, Align) case. Original system with/without embedded compressor needs 2/4

cycles to finish the best case. For the other cases when the required data of motion compensation are not fit for

4x2 block-grids, the access times become increased.
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Table 17: All Cases of Read Access Requirement

Access Cycles for Access Cycles for Reduction of Access
Case of MV (X, y) System without EC | System with Proposed Cycles without EC
EC
(Align, Align) 4 2 50
(Align, Not Align) 4 2/3 50/25
(Align, Sub) 9 5 44.4
(Not Align, Align) 8 4 50
(Not Align, Not Align) 8 4/6 50/25
(Not Align, Sub) 18 10 44.4
(Sub, Align) 12 6 50
(Sub, Not Align) 12 6/9 50/25
(Sub, Sub) 27 15 44.4
Average 13.2 6.8~6.9 49.1~48.3

(4) Experimental Results
Table 18 shows the software result of the proposed algorithm which is integrated with JM16.2. The test
sequences are Akiyo, Forman, Mobile, Stefan, and Station. Each test sequence executes 100 frames. And then

the average PSNR value is calculated. Results show that the PSNR loss of the proposed algorithm is from 1.27

to 3.94dB.
Table 18: PSNR Comparison

Sequence Format H.264 (dB) Proposed (dB) PSNR loss
Akiyo CIF 43.72 41.16 2.56
Forman CIF 41.23 39.20 2.03
Mobile CIF 37.61 34.14 3.47
Stefan CIF 38.82 34.88 3.94
Station HDTV 39.12 37.84 1.27

Table 19 shows the comparison among previous work. It can be found that our proposed hardware
provides less hardware complexity and better visual quality. Especially, the proposed decoder just requires one
cycle with higher random accessibility for embedded compression without degrading overall system
performance. The power consumption of the proposed hardware is better than Lee’s [31] and Wu’s [32].
Figure 54 shows the Station sequence result of the original system with EC in HDTV format. The propagation

of quality loss is unavoidable but video quality remains acceptable.

62



Table 19: Comparison Among Previous Work

Lee’s [31] Wu’s [32] This Work
Technology CMOS 0.25um UMC 90nm UMC 90nm
H.264/SVC
System MPEG-2 Decoder H.264 Decoder
Decoder
Working Frequency 100MHz 100MHz 150MHz
Processing Data Unit 8x1 Block 4x4 Block 4x2 Block
Total Gate Count 20k 30k 4.9k
Cycle Count for 4x2 Encoder 2 cycles N/A 2 cycles
Block Decoder 2 cycles N/A 1 cycle
Encoder 33 cycles 72 cycles 33 cycles
Cycle Count for a MB
Decoder 33 cycles 34 cycles 32 cycles
6.08dB~ 1.31dB ~
PSNR Loss 1.27dB ~ 3.94dB
10.65dB 4.48dB
Encoder N/A 2.78mwW 158uW
Power Consumption
Decoder N/A 1.66mw 86uW
Station (HDTV) ——Original
" il Proposed
40
39 -
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Figure 54: Simulation result of station sequence (HDTV)
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The objective of this project contains six topics:
(1) the embedded compressor/decompressor,
(2) the high profile intra predictor.
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(3) The Reduced Patterns Comparison Embedded Compressor/Decompressor

(4)The Bitplane Truncation with Pattern Comparison Coding Embedded Compressor/Decompressor
(5) An Area-efficiently High-accuracy Prediction-based CABAC Decoder for H.264/AVC

(6) A Predefined Bit-Plane Comparison Coding for Mobile Video Applications

We described as below:

First, we proposed a flexible algorithm which achieves good coding efficiency and is suitable to be
integrated with any video decoder. The proposed architecture is synthesized with 90-nm CMOS standard-cell
library. The operation frequency is 108 MHz. The gate counts of proposed algorithm for
compressor/decompressor are 15.8K/14.2K respectively. With the help of this embedded compression engine,
we can reduce the bandwidth requirement and the external frame memory size. The proposed architecture
costs 30K gate counts and deals with a 4x4 block unit while MHT costs 20K gate counts in dealing with a 1x8
pixels array. The proposed algorithm not only gains 5.29dB in picture quality but also achieves an
area-efficient hardware implementation.

Second, we propose a high-profile intra predictor to support MBAFF and Luma intra_8x8 decoding. The
proposed memory hierarchy includes upper, left and corner memory buffer which reuses the neighboring
pixels for follow-up prediction procedures. In Luma_8x8 decoding process, we propose base-mode predictors
to minimize the additional hardware cost, latency penalty, and filtered pixel buffer memory size. Compared to
the existing design [10] without supporting intra 8x8 coding, this design only introduce 10% and 7.5% of
gate counts and SRAM overheads. The proposed design can achieve real-time processing requirement for
HD1080 format video in 30fps under the working frequency of 100MHz.

Third, we have proposed a new embedded compression algorithm for mobile video applications. With
these advantages of the proposed EC engine, we can lessen the size of external memory and bandwidth
utilization to achieve the goal of power saving. Due to the fixed Compression Ratio, the proposed function is
easy to be integrated with an H.264 system. The proposed architecture is synthesized with 90-nm CMOS
standard-cell library and the gate counts of the proposed algorithm for embedded compressor/decompressor
are 1.8K/3.1K respectively. The average PSNR loss of proposed algorithm is 5.98 dB. The working

frequencies are 5 (CIF), 100 (HD 720) and 150 (HD 1080 + HD720) MHz depending on different operation
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modes.

Fourth, we have proposed a new embedded compression algorithm for mobile video applications. With
these advantages of the proposed EC algorithm, we can lessen the size of external memory and bandwidth
utilization to achieve power saving. The pipelined architecture of the proposed decompressor requires 1 cycle,
thus the random accessibility becomes better. Due to the fixed CR, the proposed EC algorithm is easier to be
integrated with H.264 decoder. From the experimental results, the PSNR loss of the proposed EC algorithm is
from 1.27 to 3.94dB. The proposed architecture is synthesized with 90-nm CMOS standard-cell library and
the gate counts of the proposed algorithm for compressor/decompressor are 4.0k/0.9k respectively. The
working frequency is up to 150MHz@HD1080/720. For power consumption, the compressor is 158uW and
the decompressor is 86uW.

Fifth, we proposed a prediction-based CABAC decoder architecture. In our design, prediction process
combined parser and decoder to reduce most of SESO and raised the average hit rate to more than 90%.
Memory system reduced about 70% of information to be stored and get low cost because of single-bin engine
and buffer reused. Finally, we get low cost and memory bandwidth requirement and enough throughputs for
real-time decoding full-HD sequences.

Sixth, we have proposed a new embedded compression algorithm for mobile video applications. With
these advantages of the proposed EC algorithm, we can lessen the size of external memory and bandwidth
utilization to achieve power saving. The pipelined architecture of the proposed decompressor requires 1 cycle,
thus the random accessibility becomes better. Due to the fixed CR, the proposed EC algorithm is easier to be
integrated with H.264 decoder. From the experimental results, the PSNR loss of the proposed EC algorithm is
from 1.27 to 3.94dB. The proposed architecture is synthesized with 90-nm CMOS standard-cell library and
the gate counts of the proposed algorithm for compressor/decompressor are 4.0k/0.9k respectively. The
working frequency is up to 150MHz@HD1080/720. For power consumption, the compressor is 158uW and

the decompressor is 86uW.
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