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Abstract--The theory of  gearing and geometry of  the straight-sided rack cutter are employed to develop 
a mathematical model of  elliptical gears that takes backlash into consideration. The mathematical model 
also includes the bottom land of  the elliptical gear, which is equidistant from the pitch ellipse. A computer 
program is developed to generate the tooth profile of  elliptical gears. The profile of elliptical gears obtained 
by applying the proposed method is compared with that obtained by the evolute method. Undercutting 
of elliptical gears is also investigated. The results of  this research should be helpful in the design, 
manufacture, and measurement of  elliptical gears. Copyright 1996 Elsevier Science Ltd 

I N T R O D U C T I O N  

Cycloidal cranks, cyclic three-gear drives, and drag-links are typical irregular rotation mechanisms 
that meet various purposes. The elliptical gear is a type of noncircular gear whose pitch curve is 
an ellipse. This type of gear also works well when irregular motion without full stop is required. 
Therefore, the elliptical gear, which is kinematically equivalent to the crossed link, can also be used 
to produce irregular motion [1]. The elliptical gear is well known for providing excellent 
characteristics such as accurate transmission, compact size, and ease of dynamic balance. Hence 
elliptical gears have been successfully used in various types of automatic machinery, packaging 
machines, quick-return mechanisms, flying shears, pumps, flow meters, and a wide array of 
instruments [2, 3]. 

In the past, elliptical gears have not been widely used in industry because of difficulties in their 
design and manufacture. To date, little research has been devoted to this topic. Most research has 
focused on computer-aided design (CAD) and kinematic analysis of elliptical pitch curves [1~4]. 
Litvin [5, 6] proposed extending tooth evolute curves to form the tooth profile, and derived the 
tooth evolute of an ellipse. Chang [7] developed a mathematical model of elliptical gears, based 
on the tooth evolute curve, whose rotation shaft coincides with one of its foci. A computer program 
for generating the tooth profile of elliptical gears was also developed by Chang. However, a 
mathematical model for the complete tooth profile of elliptical gears including fillets and bottom 
land curves is not yet available in the literature. 

Several different methods have been used to manufacture elliptical gears [6]. All of these methods 
may be considered theoretically to consist of a cutter performing a pure rolling motion on the pitch 
ellipse. Recently, the development of more advanced CAD and CNC gear-cutting machines has 
made the design and manufacture of elliptical gears more efficient and economical than ever. In 
this paper, the cutting mechanism is considered in a manner such that the driving ellipse with its 
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rotation shaft coincides with one of its foci, and the driven rack cutter translates along 
two perpendicular directions and performs pure rolling without sliding on the pitch ellipse. A 
complete mathematical model of elliptical gears is developed based on the theory of gearing and 
the geometry of the straight-sided rack cutter, which includes fillets, working regions and top lands. 
In addition, backlashes of the elliptical gear are considered in the mathematical modol. The 
elliptical gear tooth profiles obtained by applying the proposed method are then compared with 
those obtained by the evolute method [7]. The comparison shows that the working parts of 
the tooth profiles are exactly the same, and the method proposed here can also be used to obtain 
the fillet, bottom land, and backlash of elliptical gears. In order to avoid undercutting in the 
manufacturing process, the parameters of the rack cutter must be properly limited. In this 
paper, a general equation for the conditions under which undercutting occurs in the cutting 
process proposed here is derived by examining when a singular point appears on the generated 
elliptical gear tooth surface. Therefore, the relative velocity and equation of meshing [5] between 
the rack cutter and elliptical gear must be considered. The mathematical model and undercutting 
analysis proposed here are very helpful in the design and production of high-precision elliptical 
gears. 

G E O M E T R I C  P R O P E R T I E S  OF T H E  E L L I P S E  

The geometric equations and properties of ellipses have been described in detail in the 
literature [4, 8]. Several important equations will be derived here for convenience and to pro¢ide 
a more complete characterization of elliptical gears. Figure 1 shows a pitch curve of  the elliptical 
gear; the pitch curve can be represented in polar coordinates by 

a(1 -- ~2) 
r~ - 1 + Ecos~b~ 

b 2 
- a(l + EcosqS,) ' (1) 

where E = e/a = x ~ - b 2 / a  is the eccentricity, a is the major semi-axis, and b is the minor 
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Fig. 1. Basic properties of pitch ellipse for elliptical gears. 
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semi-axis. The position vector of  the pitch ellipse may also be represented in the Cartesian 
coordinate system as follows: 

b2cosq~, 
x~ - a(1 + Ecosq~I) 

b2sinq~l (2) 
Y~ = a(1 + Ecostpt) 

The unit tangent vector at any point M on the pitch ellipse can be obtained by differentiating and 
znormalizing equation (2). Therefore, 

z t = r ,  i t + r y J ,  

- sin~b, 

x/E: + 2ECOS~b, + 1 

i, + E + cos~b, j, (3) 

x/E 2 + 2EcosqS~ + 1 

From the geometry of the pitch ellipse shown in Fig. 1, it can be found that the tangent vector 
at any point on the pitch ellipse is 

z~ = cos7 i~ + sing, j, (4) 

From equations (3) and (4), the relationship between ~, and 7 can be expressed as follows: 

- sin~b, 
COS~f = 

x / d  + 2EcosqL + 1 

o r  

sin), = E + cos4~, (5) 
x/E 2 + 2ECOS~Pl + 1 

The unit normal vector n~ may also be obtained by 

nl = T~ × k~ 

= sin 7 i~ - cos7 j~ 

= n ,  i, + n,. j , ,  (6)  

where k~ is the unit vector along the Z,-axis of  the Cartesian coordinate system. The arc length 
on the pitch ellipse, measured from initial point N to point M, can be calculated by applying the 
equation 

r7 (dr)  SMX = r2+  ~ d~bl 
dO 

*~" a(1 - E-)x/E + 2Ecosq~, + 1 
= (1 + Ecosq51) 2 d4), (7) 

M A T H E M A T I C A L  M O D E L  O F  T H E  R A C K  C U T T E R  

For simplicity, the generation of elliptical gears can be considered a two-dimensional problem. 
All methods for manufacturing of elliptical gears can be kinematically considered to consist of a 
rack cutter that performs pure rolling on the pitch ellipse in the generating process, as shown in 
Fig. 2(a). In this paper, a standard rack cutter [9] with a complete cutter surface, as shown in 
Fig. 2(b), is chosen. The shape of the rack cutter consists of two straight lines that form a pressure 
angle ~, with respect to the )(,-axis. The circular arcs of radius r with centers at C and D generate 
the fillet surfaces of elliptical gears, while the straight line M~oi)M~( ) ( i  = 3, 4 indicates regions 3 and 
4 o f  the rack cutter, respectively) generates the working tooth surfaces of the elliptical gears. 
Backlash is also considered in the mathematical model, when a negative value of Ab is chosen. In 
the process of tooth surface generation, axis Y, must coincide with the tangent direction of  the pitch 
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Fig. 2. Generat ing  mechani sm and geometry o f  rack cutter. 

ellipse, as shown in Fig. 2(a). The contact point of  the pitch ellipse and rack cutter pitch line is 
located at the Y,-axis of coordinate system S,(X<,Y<), and the rack cutter translates along the X, 
and Y, axes. Because each tooth of an elliptical gear may have a different shape, both sides of the 
rack cutter must be considered. Therefore, the rack cutter may be divided into six regions, as shown 
in Fig. 2(b). Regions 1 and 6 of the rack cutter surface can be considered to generate the bottom 
land of elliptical gears, regions 2 and 5 the fillet surface, and regions 3 and 4 the working tooth 
surface. The addendum curve, which may be considered to be the shape of  the gear blank, is a 
curve equidistant from the pitch ellipse [4]. The equations of the rack cutter, represented in the 
coordinate system S,(X,,Y,), can be obtained as described in Sections 3.1-3.3. 
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Regions 1 and 6 o f  rack cutter surfaces 

Recall that regions 1 and 6 (the top land) of the rack cutter surface are used to generate the 
bottom land of elliptical gears. As shown in Fig. 2, d"' is the design parameter of the rack cutter 
surface that determines the location of points on the rack cutter surface. From the rack cutter 
geometry, equations for regions 1 and 6 of  the rack cutter surface can be expressed as follows: 

and 

,, = yxl"] = { - a, + rsin¢, - I [  ~m _ ~,,, R, 
_ + r 

(8) 

7~m 
0 <_ {o~< ---2- _ b , -  a, t a n q / , -  rcostp,, i = 1,6. 

where {"~= IM~o'~Ml~l (i = 1, 6) represents the distance measured from the initial point Ml;k along 
the straight line M~o'~M[ '~ to any point MI ') on the top land of rack cutter surface. Parameter m is 
the module, r is the radius of the circular arc, 0, is the pressure angle, and a, and b, are design 
parameters shown in Fig. 2. The upper sign of  equation (8) indicates region 1 of the rack cutter 
surface while the lower sign indicates region 6. The unit normals and normals to regions 1 and 
6 of the rack cutter surface are represented by the equation 

and 

"~(i) 
,,,I " ,  i =  1,6 (9) 
"" I h r l '  ' 

= --- '  x k,, - ' ,  ~?fl0 

where R-~ ~ indicates the position vector of the rack cutter surface represented in coordinate system 
S,, as expressed in equation (8). Equations (8) and (9) yield the following for the unit normals to 
regions 1 and 6 of the rack cutter surface: 

Regions 2 and 5 o f  rack cutter surfaces 

Regions 2 and 5 of the rack cutter surface are used to generate different sides of the fillet surface 
of elliptical gears. O is the design parameter of  the rack cutter surface which determines the location 
of  points on the fillet. Here we have d"~ = O (Fig. 2(b)) in this case. The position vectors for regions 
2 and 5 of the rack cutter surface can be expressed as follows: 

R:!' J "xli~'~ { - a , + r s i n ~ b , - r c o s O  
= ~-"h'"qJ = _+ b, + a, tamk, +_ rcos~,-T- r s in0J '  (11) 

and 

0 < 0 < 90 ° - ~,., i = 2,5 

The upper sign of equation (11) indicates region 2 of the rack cutter surface, while the lower sign 
represents region 5. The unit normals to regions 2 and 5 of the rack cutter surfaces can be obtained 
by applying equation (9), which results in the following expression: 

-T- cosO'( 
n~'i' = - s i n 0  J ( 1 2 )  

Regions 3 and 4 o f  rack cutter surfaces 

Regions 3 and 4 of the rack cutter surface are used to generate different sides of the working 
tooth surface of  elliptical gears. (~'~ is the design parameter of the rack cutter surface which 
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determines the location of points on the working surface. The position vector for regions 3 and 
4 of  the rack cutter surface can be obtained as follows: 

and 

.,,, I } ' = ~),l'>J = + b,. + a,.tan$,-T- #%in~0, ' (13) 

~'"= IM'0"M?I, i=  3,4 

The upper sign of  equation (13) indicates region 3 of the rack cutter surface, while the lower sign 
indicates region 4 of  the rack cutter surface. The unit normals to regions 3 and 4 of the rack cutter 
surfaces can be obtained as follows: 

n . , =  )" -T- sinO,'~ 
" [ - c o s O ,  J (14) 

GENERATED ELLIPTICAL GEAR TOOTH SURFACES 

To derive the mathematical model for the complete tooth profile of elliptical gears, coordinate 
systems S , (X , ,  IT,), SI(XI, Y0, and Ss(X s, Yt) must be set up. The coordinate systems S,, S~, and 5'i 
are attached to the rack cutter, elliptical gear, and gear housing, respectively, as shown in Fig. 2(a). 
The contact lines of  the gear blank and rack cutter, represented in coordinate system S,, can be 
obtained by simultaneously considering the following equations [5]: 

and 

R ( / ' =  R(,f'({"'), i =  1 . . . . .  6 (15) 

and 

f sin7 cos7 rlcos(~l + S'cos'~ 1 
[M~,] = - cos), sin7 - r l s i n q S l  + S'sin7 , 

0 0 1 

where ~t) = 0 and E') = - S; S is the translation distance of the rack cutter and can be obtained 
from the equation of meshing (equation (18)); and r~ is the distance measured from the rotation 
axis Z1 to the instantaneous center of rotation I. According to equations (8)-(14), (17) and (18), 
a complete tooth profile of an elliptical gear generated by regions 1 to 6 of the rack cutter can 
be obtained as described in Sections 4.14.3.  

~ "  - x l "  E '~ - y l  '> 
nt,<> - nl,< > , (16) 

where i indicates regions 1 to 6 of the corresponding rack cutter surface; J~/~ and E '~ are coordinates, 
represented in coordinate system S<, of the instantaneous center of rotation for the generation 
mechanism; xl i~ and yl ~ are the surface coordinates of the rack cutter; and n(~!< ~ and n',!< ~ are the direction 
cosines of the rack cutter surface unit normal nl/I. The relation shown in equation (16) is the 
so-called equation of meshing. It relates the surface coordinates &~) of the rack cutter to the motion 
parameter ~ of the elliptical gear. The generated elliptical gear tooth surfaces can be considered 
a set of contact lines, represented in coordinate system St, of  rack cutter surface Xc and gear blank 
surface L'l. The homogeneous coordinate transform matrix equation can be applied to transform 
the contact lines from coordinate system S, to SI. Therefore, the equation of the generated elliptical 
gear tooth surface is expressed by 

RI ~ = [M~,]R~/~, i = 1 . . . . .  6 ( 1 7 )  

~ "  - x ?  E." - y ?  
(18) 
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Bot tom lands o f  the elliptical gear tooth surfaces 

Recall that the bottom lands of the elliptical gear tooth surfaces are generated by the top lands 
(regions 1 and 6) of the rack cutter. According to equations (8)-(10), (17) and (18), the bottom 
lands of the elliptical gear tooth surfaces can be represented by 

( ) .v~, '~ = ( - a, + rsin~9, -- r)sin7 + _ -~- T- g"" cos)' + r,cos¢, + Scos7 

y~,"= - ( - a ,  + r s i n ~ , - - r ) c o s ? +  _+ ~ -  -T-{~" s i n T - r , s i n ¢ , + S s i n 7  

S =  T- ~ -  ±F") .  (19) 

where 0 </"~ _ (nm/2  - b , -  a, tanO, . -  rcosffc) and i = 1, 6. The upper sign indicates the bottom 
land generated by region 1 of the rack cutter and the lower sign indicates the bottom land generated 
by region 6 of the rack cutter. Equation (19) may be simplified as follows: 

)'~fJ = - r~sin¢,J + ( - a, + r s i n ~ , -  

where matrix {n,,n,} r represents the unit normal at any point on the pitch ellipse, as expressed by 
equation (6). Equation (20) shows that the bottom land of an elliptical gear is a curve equidistant 
from the pitch ellipse, and this equidistance is ( a , -  rsin$, + r) in the negative direction of the unit 
normal. 

Fillets o f  the elliptical gear tooth surfaces 

Fillets of the elliptical gear tooth surfaces are generated by regions 2 and 5 of the rack cutter 
surface, as shown in Fig. 2. According to equations (11), (12), (17) and (18), the fillet of elliptical 
gear tooth surfaces can be represented by 

xl ~= ( - a, + r s i n $ , -  rcos0)sin)' 

+ ( + b, ++_ a, tan~, + rcos¢,.-T- rsin0)cos7 + r~cos¢l + Scos7 

yt,~) = _ (  _ a, + rsin~, - rcos0)cos7 

+ ( + h, + a, t a n $ , +  rcosqJ, T- rsin0)sin7 - r,sin¢, + Ssin7 

S = + ( - a, + rsinqL)tanO T- (b, + a,.tan$, + rcos@,), (21) 

where 0 < 0 _< 90 c - $, and i = 2, 5. The upper sign indicates the fillet of  elliptical gears generated 
by region 2 of the rack cutter, while the lower sign represents the fillet of elliptical gears generated 
by region 5 of the rack cutter. 

Work ing  surfaces o f  the elliptical gear 

Working surfaces of the elliptical gear are generated by regions 3 and 4 of  the rack cutter surface, 
as shown in Fig. 2. According to Equations (13), (14), (17) and (18), the working surface of an 
elliptical gear can be represented by 

.'d, ~>= ( - a, + F"~cos~p,)sin7 + ( _+ b, +_ a, tan$, T- ((i~sin@,)cos7 + rlcos¢l + Scos]J 

yl i' = - (  - a, + #"'cos¢,)cos7 + ( + b,. + a,.tan~k,-T- {")sin¢,)sin7 - r,sin¢, + Ssin 7 

F(i) _ a, + b,sinff,. + Ssinff , . ,  (22) COSI//, 

where {"' = ]M~)MI~]. The upper sign indicates the working surface of the elliptical gear generated 
by region 3 of the rack cutter, and the lower sign represents the working surface of the elliptical 
gear generated by region 4 of the rack cutter. 
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The mathematical model represented in equations (20)-(22) was used to develop a computer 
program to generate the complete tooth profile of elliptical gears. In the design of elliptical 
gears, one constraint that must be satisfied is that the circumference of the pitch ellipse must 
equal the product of the number of  teeth n and the circular pitch p. Otherwise, the generated 
elliptical gear will have an incomplete tooth [7]. An example is given below that illustrates how 
to determine the tooth profile of an elliptical gear. The tooth profile of an elliptical gears 
obtained by applying the proposed method is compared with that obtained by applying the 
evolute method. 

Example 1. The standard rack cutter shown in Fig. 2(b) is chosen to generate an elliptical gear 
with module m = 5.0 mm, number of teeth n = 45, pressure angle ~b, = 20 °, radius of circular 
arc r = 0.3 module, Ab = 0 mm for non-backlash, and major semi-axis a = 125 mm. The short 
semi-axis b is calculated by solving for the pitch ellipse circumference S = rtmn and equation (7). 
It is found that b = 99.261 mm and E = 0.608. 

The computer program developed here and computer graphics were applied to obtain the 
complete tooth profile of the elliptical gear shown in Fig. 3(a). Figure 3(b) compares the tooth 
profile obtained by applying the proposed method with that obtained from the evolute method [7]. 
It is clear that the proposed mathematical model and generation method can be used to generate 
the tooth profile not only for working surfaces but also for fillets and bottom lands, whereas the 
evolute method can only generate the working surfaces. The addendum and dedendum curves are 
generated so that they are equidistant from the pitch ellipse. The results also show that the profiles 
of the working surfaces generated by these two methods are exactly the same. 

Example 2. The standard rack cutter shown in Fig. 2(b) is also chosen to generate an elliptical 
gear with major axis 2a = 41.465 mm, short axis 2b = 38.103 mm, number of teeth n = 21, 
pressure angle ~b, = 20 ,  radius of circular arc r = 0.3 module and Ab = - 0.03 mm for backlash 
consideration. The module m is then calculated by solving for the pitch ellipse circumference 
S = rtmn and equation (7). It is found that m = 1.895 mm and e = 0.394. 

By substituting the above design and calculated parameters into the developed mathematical 
model and computer program, the profile of the elliptical gear can be obtained. Figure 4 shows 
the meshing elliptical gear pair manufactured by the proposed mathematical model and CNC wire 
cut. It is one of the elliptical gear pairs resulting from application of the developed computer 
program (which was used to design the gear for Professor Tshen-Chan Lin, in Department of 
Agricultural Machinery Engineering, National Chung Hsing University) and manufactured by 
CNC wire cut. This elliptical gear pair has been used successfully in the agricultural machine design 
by Professor Lin. 

UNDERCUTTING ANALYSIS 

Undercutting is an important problem in gear design and manufacturing. When undercutting 
occurs, the thickness near the gear fillets will be decreased. Therefore, both the load capacity of 
the tooth and the length of the line of action are also reduced. Mathematically, the problem of 
preventing undercutting is the problem of avoiding the appearance of singular points on the 
generated tooth shape. A method proposed by Litvin [5], which considers the relative velocity and 
equation of meshing between the gear blank and rack cutter, is applied here to determine the limit 
of the rack cutter parameters, Figure 2 shows the relative motion between the gear blank and rack 
cutter. We shall consider under what circumstances a singular point appears on the working surface 
of  elliptical gears generated by region 3 of the rack cutter. 

The relative velocity between the gear blank and rack cutter, represented in coordinate system 
S,, can be obtained as follows: 

V~, ~2' = co~(b, + a, tan~, - {'3'sin~b, + S) i, + og~(a, - {~3~cos~b,) j, (23) 

Recall that the equation of meshing for the working surface and rack cutter surface is expressed 
by the third part of equation (22). It is rewritten here for convenience: 

f({~3))=('3~ a" ( ) cos~b, S ~b~ sin~b,- b, sin~b, = 0 (24) 
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The relative velocity of the generated elliptical gear can be obtained by applying the equation 

vp, = v;” + (vi;’ - vi;‘) 

= V”’ + V”” r (25) 

The subscript r represents the relative motion and the subscript tr represents the transfer motion. 
At a regular point of the generated tooth surface, a tangent vector T to the surface exists, that 
is, T # 0. When undercutting occurs, singular points appear on the generated elliptical gear surface 
and the tangent vector T = 0 at these points. Therefore, 

Vi” + V”? = 0 
(26) 

(a) Y, 

Generation 
method 

Fig. 3. (a) Complete tooth profile of an elliptical gear. (b) Comparison of the profile obtained by the 
generation method and the evolute method. 
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Fig. 4. Meshing elliptical gear pair manufactured by the proposed mathematical model and CNC wire 
cut. 

The relative velocity V "2~ expressed in equation (26) may be rewritten in X, and Y,, components 
as follows: 

d x ,  dteO) 

d? O) dt 

dye dd ~3~ _ _ l~tz) (27) 
d~ O) dt " 

Differentiation of the equation of meshing (equation (24)) yields 

8f d{ '3' 8f dqS, 
- ( 2 8 )  cgd ~3) dt 8~bl dt 

Equations (27) and (28) form a system of three linear equations with one unknown. The system 
of  equations possesses a unique solution if and only if the following equations are satisfied: 

dxc 
d / I  3~ _ 1/'(12) 

• ~' = 0 ( 2 9 )  
~f e f  de,  

(~ d(3) ~(~l dt 

and 

dye 
dfO~ _ ld, y ~ 

3J 8f d~, 
c~( °~ 3~bl dt 

= 0 ( 3 0 )  

It is noted that for noncircular gears oga = dT/dt [6]. Substituting equations (23) and (24) into 
equation (29) or (30), we can obtain the conditions of undercutting as follows: 
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When a, = 1.0m, at the lowest point on the straight-sided rack cutter, i.e. d ~3~ = 0, equation (31) 
entails that the limiting value of the gear module m is 

~3S .sin2~p, m = ~ -  

= p'sin2~, (32) 

where p is the radius of  the ellipse curvature. Note that Pmin could be obtained at both sides of  the 
major axis of  the ellipse and Pmin = b'-/a. The result is the same as that obtained by Wu et al. [10]. 

Example 3. When the same parameters given in the previous examples are used, the module of  
the rack cutter is 5.0 ram, which is smaller than the limiting value of the gear module calculated 
from equation (32), i.e. m = 9.22 mm. Therefore, undercutting of the generated elliptical gear tooth 
will not occur. However, suppose that another rack cutter with module m = 15 mm is used to 
generate an elliptical gear of  the same pitch ellipse, and that the number of  teeth of  the elliptical 
gear is 15. Then the proposed computer  program and computer graphics yield the tooth profile 
of  an elliptical gear shown in Fig. 5. It is clear that undercutting has occurred in this case. This 
verifies the equations developed above. 

For  the special case where the major semi-axis a and the minor semi-axis b are equal, and are 
equal to R, the elliptical gear will regress to a spur gear, and m = 2R/n and p = R can thus be 
obtained. Substituting these values into equation (32) yields the following expression for the 
minimum number of  teeth: 

2 
n - -  sin2¢, ~ (33) 

Pitch ellipse 

Undercut 

Fig. 5. Undercut in an elliptical gear. 
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S U M M A R Y  

A complete mathematical  model  o f  elliptical gears, including fillets, bo t tom lands, and working 
surfaces o f  the tooth  profile, has been developed in this paper. The model shows that the bo t tom 
land of  an elliptical gear is equidistant f rom the pitch ellipse. A computer  p rogram has also been 
developed to generate elliptical gear tooth  surfaces. The condit ions under which undercutt ing 
occurs have been analyzed so as to enable designers to avoid undercutt ing elliptical gears in the 
cutting process, and the constraints on the surface parameters o f  rack cutters have been 
investigated. The mathematical  model  and undercut t ing analysis proposed here for elliptical gears 
should be helpful in the design and product ion  o f  high-precision elliptical gears. They should also 
be helpful in the measurement  and finite element stress analysis o f  this type o f  gearing. 
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