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中文摘要 

 點對點式網路架構目前廣泛應用於多媒體影音串流服務中，用以解決過去主從式網路架構

所無法負荷的龐大流量。然而在點對點影音串流的蓬勃發展中，移時影音串流服務，也就是提

供使用者觀看任意過去時間點上的影音串流服務的相關研究並不多。 

於此篇報告中，我們提出了一個數學模型來評估移時影音串流服務的可行性，並且實作了

一支援移時服務的點對點實況串流系統。此系統提出針對移時串流影音資料的分散式快取管理

解決策略，並加強移時影音用戶的合作關係以分散對於整體系統的負擔。最後我們在

PlanetLab 平台上進行實驗，分析整體系統的效能以及特性。在我們實驗中全部移時用戶錯過

少於 0.5%的影音片段，並且只有造成影音伺服器少於全部移時影音服務流量的 3%的負擔。而

移時串流訂閱機制使移時用戶直接分享正在觀看的影音內容，其中有 30%的移時串流流量來自

此種方式，並且降低了 15%原本需由實況用戶提供的移時串流流量。我們相信這將提供此類系

統的深入了解，幫助我們進一步的發展多媒體串流服務。 

 

Abstract 
Peer to peer (P2P) technologies have been applied to multimedia streaming services to solve the 

problem of heavy traffic flow on the servers in server-client architecture. However, there are few 

researches on the P2P time-shifted streaming service, where viewers can choose an arbitrary offset of 

time to watch. In this report, we present a numeric model to analyze the feasibility conditions of P2P 

time-shifted streaming, and the design and implementation of a P2P live and time-shifted streaming 

system. In this system, we propose a distributed cache management strategy for time-shifted 

streaming contents and enhance the cooperation among time-shifted peers to balance the traffic load 

in the system. Experiments were performed on PlanetLab to evaluate the system performance. Our 

experiment results show the feasibility of P2P time-shifted video streaming systems and the 

effectiveness of the proposed strategies. The video block missed rate of Time-shifted viewers is less 

than 0.5% and the server stress of time-shifted streams is less than 3% of all time-shifted traffic. By 

establishing supplier-subscriber relationship among time-shifted peers, more than 30% of the 

time-shifted streams are supplied by other time-shifted peers. This reduces 15% transmission load of 

time-shifted streams on live streaming peers. 

I. Introduction 

With the increasing prevalence of broadband Internet access, multimedia streaming services 

have been very popular on the Internet in recent years. In the early developments of media streaming 

applications, client-server architecture suffers from scalability problems; as the number of 

simultaneous users increases, the servers are quickly overloaded [1]. Content delivery networks 

(CDNs) with strategically placed proxies have been developed to alleviate the load of the servers, but 
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CDNs are too costly for general streaming applications [2]. IP multicast is probably the most 

bandwidth-efficient vehicle, but its deployment is very limited due to many practical issues, such as 

the lack of IP multicast supporting infrastructures and the lack incentives for network operators to 

carry streaming data traffic [3]. Application-level multicast, by constructing an overlay network with 

unicast connections between peers in the system, has been widely used to deal with the scalability 

issue in many Internet applications. Thus, streaming services based on P2P technologies are also very 

popular. 

Current P2P multimedia streaming service researches can be classified into two categories: live 

streaming and VOD (video on demand) services. Live streaming is like a broadcast TV channel; it 

delivers the same video content to viewers simultaneously. On the other hand, a VOD is a video clip 

watched by viewers at different positions, and thus the video contents delivered to viewers are 

different. Recently there are few studies on P2P time-shifted streaming services. A time-shifted 

streaming service allows viewer to choose an arbitrary offset of time to retrieve the streaming 

contents; it is like a VOD whose length keeps growing constantly. 

Sachin Deshpande and Jeonghun Noh [15] proposed a time-shifted and live streaming system 

(P2TSS) where peers cache part of the video contents to serve other peers’ time-shifted demands. If 

there is no peer can provide time-shifted contents, the time-shifted viewers retrieve from the server. 

However, time-shifted peers in P2TSS cannot share contents in their playback buffers; only the 

distributed stream cache (DSC) is shared. In this report, we implement a live streaming system that 

supports time-shifted streaming service. Moreover, time-shifted peers cooperate in pulling the 

desired contents from live streaming peers to reduce the load on live peers. We also performed 

experiments on the PlanetLab platform to evaluate our system performance.  

The remaining part of this report is organized as follows. Chapter 2 describes the current work 

in P2P streaming studies related to our research. Chapter 3 presents the idea, design and 

implementation of our system in details. Chapter 4 presents an analytic model to estimate the 

feasibility of the time-shifted system. Chapter 5 presents the experiment setup, results, system 

performance. Finally, we give our conclusions in Chapter 6. 

II. Related Work 

2.1 P2P live streaming 

To provide P2P live streaming service, peers need to receive continuous delivery of video 

streams and may need to forward the streams to other peers. Peers can form an overlay structure to 

efficiently deliver video streams in a real-time fashion. CoopNet [6] adopts a hybrid model; a source 

node is responsible for maintaining a multi-tree overlay of stream delivery and asisting new peers to 

join. Using a multiple-description-coding (MDC) technique, each tree transmits a different MDC 

description. CoopNet is a complement to a client-server framework; the multi-tree overlay is only 

invoked when the video server is unable to handle the load imposed by clients. 

In SplitStream [7], the video stream is split into multiple stripes and independent multicast trees 

are constructed to deliver a stripe on each tree. The multicast trees are constructed such that an 

interior node in one tree is a leaf node in all the remaining trees. In this way, the load of video 

forwarding can be evenly spread across all the peers. However, such node-disjointness is a property 

hard to achieve, especially in heterogeneous environments [8]. In GridMedia [4], a rendezvous point 

assists peers to join the overlay. A new peer first contacts the rendezvous point to obtain a list of 

peers on the overlay. Then, the new peer measures the end-to-end delay to each peer in the list and 

selects a number of peers as partners, with the probability of a peer being selected in inverse 

proportion to the end-to-end delay. This enables nearby peers to become partners, so that the latency 

of stream delivery can be reduced. In DONet/CoolStreaming [3], a peer first contacts an origin node 

and the origin node randomly selects a deputy peer and redirects the new peer to the deputy. The new 
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peer can obtain a list of partner candidates from the deputy and establish partnership with these 

candidates. In addition, the video stream is divided into segments of uniform length, and the 

availability of segments in a peer’s buffer is represented as a bitmap called Buffer Map (BM). Each 

peer continuously exchanges its BM with its partners, and pulls segments from its partners 

accordingly. The scheduling of segment pulling operations takes both availability and the partners’ 

upload ability into consideration. The segment with the least number of available providers will be 

pulled first, from the partner with the highest available and sufficient bandwidth among the multiple 

potential providers. 

2.2 P2P VoD streaming 

Video-on-Demand (VoD) service allows users to watch any video programs at any time. The 

major design issues of P2P VoD service include what a peer should cache to alleviate the load of the 

VoD servers and how to locate and retrieve cached contents from other peers. In P2Cast [9], peers 

watching video clips within a short time interval form a session in a single-tree fashion. Each peer 

caches the beginning part of the video program and a new peer can be patched with the cached 

beginning part from its parent’s cache. In P2Vod [10], peers form generations, where in each 

generation, peers have a synchronized buffer start. A new peer tries to join a generation, or form a 

new generation. A number of generations form a video session. If no peer in a session caches the first 

video block of the program, the session is closed to new peer, and a new video session is created for 

new peers. Both P2Cast and P2Vod only support viewing from the beginning of VoD programs. 

oStream [11] allows peers to view from arbitrary positions of a program, but since oStream inserts 

new peers into the existing overlay, video disruption is noticeable on the child peers of the new 

peers. 

BASS [12] uses BitTorrent protocol to distribute video contents, with the VoD server supporting 

emergency content dilivery. Their simulation results indicate that the server’s load in terms of 

transmission bandwidth is reduced by 34% when the peers’ average outgoing bandwidth is about the 

same as the video bit-rate. However, the required bandwidth from the server still increases linearly as 

the number of peer increases. PONDER [13] adopts a mesh-based overlay similar to BitTorrent, but 

a different delivery strategy to accommodate VoD service. While BitTorrent treats all data units, 

called chunks, with equal importance, PONDER partitions the video into equal sized sub-clips, each 

of which contains hundreds of chunks. The sub-clip close to the playback deadline is given a higher 

priority to download, so that the urgent data can be downloaded first. PONDER also gives up the 

tit-for-tat incentives of BitTorrent; peers are served based only on their needs without considering 

their contributions. This maximizes the probability that video contents can be downloaded before the 

playback time. PONDER achieves 70% saving of server bandwidth with users’ average outgoing 

bandwidth being about 80% of video bit-rate, and up to 93% saving with users’ average outgoing 

bandwidth being 112% of the video bit-rate. 

2.3 Live streaming with time-shifted streaming support 

P2P time-shifted streaming services are not as popular as P2P live and P2P VOD streaming. In 

recent years, researches on P2P time-shifted streaming include LiveShift [14], P2TSS [15], DRPSS 

[16], Pseudo-DHT [17], and J-Tree [18]. LiveShift is a live streaming system based on a multiple 

layered tree overlay. When the video buffer reaches a pre-defined size of one segment, the segment 

then is stored on a long-lasting storage and the peer adds a reference to the segment on the DHT. 

P2TSS proposed a similar system architecture with two distributed cache algorithms: Initial Playback 

Position Caching (IPP) and Live Stream Position Caching (LSP) to determine which video block to 

be cached for others. Their simulation results indicate that P2TSS achieved low server stress with 

7-15 connections to the server every hour. DRPSS and Pseudo-DHT are both based on P2TSS, and 

reduce the DHT searching cost. J-tree constructed independent multicast trees to deliver video 
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content. Each multicast tree consists of peers whose playback positions are within 30 seconds after 

the root of the multicast tree. The roots of the multicast trees also forms a connected list with their 

playback positions in increasing order, so that each root forwards video blocks to its successor. The 

root of the first multicast tree receives video blocks from the video source. Their simulation results 

indicate the block missing rate is less than 1.5% when time-shifted peers do not change viewing 

positions. 

2.4 Kademlia DHT 

Kademlia is a DHT system based on XOR metric. Each Kademlia node has a 160-bit identifier; 

each node chooses its identifier at random when joining the system. The keys used for the hash table 

mapping are also 160-bit identifiers. Given two identifiers x and y, the distance between them is the 

bitwise XOR (exclusive OR) result interpreted as an integer. The detailed operation will not be 

described here, but two major functions used in our system are PUT<key, value> and GET<key>. 

PUT<key, value> function stores the <key, value> pair on K nodes closest to the key, where K is a 

system parameter that can be adjusted. The GET<key> function retrieves the value associated with 

the previous PUT<key, value> have performed. 

III. System Design & Implementation 

3.1 System overview 

We intend to design a P2P streaming service that provides both live and time-shifted streams to 

viewers. Our system needs to cope with the following issues: the delivery of live streams, the 

caching and publishing of live streams, and the retrieval of time-shifted contents. 

1. Live streaming framework 

A live streaming framework provides a base for our system, because it supports live streaming 

service and the live streaming peers may need to store the received contents for the future use of 

time-shifted streaming viewers. Since many live streaming frameworks have been developed and 

comprehensively studied, we would not create a brand new live streaming system; instead, we 

adopted the design of the latest DONet/Coolstreaming with modifications to suit our needs. 

2. Caching strategy 

Live streaming peers need to cache the contents they have watched to support time-shifted 

streaming peers, and thus the caching strategy is an important issue. Since a live streaming peer may 

go off-line, and thus its cached contents cannot be retrieved by time-shifted peers. We will study how 

many replicas of live streams need to be cached to ensure that most time-shifted viewers can retrieve 

all the contents they need. 

3. Time-shifted content retrieval 

Time-shifted peers must first locate the cached contents in their interests before they can 

retrieve the contents. Kademlia [19-20] distributed hash table (DHT) is used for publishing and 

locating the cached contents with special care being taken to ensure that PUT operations do not 

over-write each other. In addition, time-shifted peers interested in the same video position would 

cooperate to retrieve the cached contents in order to reduce the transmission load on live peers 

caching the contents.  

Figure 3-1 depicts the architecture of our system. The system consists of three types of nodes: a 

bootstrap server, channel providers and streaming viewers. The bootstrap server maintains a list of 

available channels and a partial list of participating peers of each channel, in order to bootstrap new 

peers. A channel provider is the source node of a streaming channel and registers its channel 

information with the bootstrap server. When a viewer joins the system, it first obtains the information 

of available channels and participating peers from the bootstrap server, and then retrieves the desired 
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video contents for live or time-shifted streaming. 

Live Viewer

Time-shift Viewer

Live Viewer

Live Viewer

Time-shift Viewer

Channel Provider

Bootstrap Server

Channel 1 
Live Streaming

Channel 1 
Time-shift Streaming

sinaling

Live streaming

Time-shifted streaming

 
Figure 3-1 The system architecture. 

3.2 The streaming transmission 

 The streaming transmission of our system is depicted in Figure 3-2. A video source 

generates continuous video contents of a channel. A channel provider encodes the video contents into 

a continuous stream of video packets and transmits the video packets to the viewers. At the video 

source, the video is encoded into UDP packets by a VLC media player [21]. The UDP packets are 

then sent to the channel provider via local loopback interface. The channel provider measures the 

duration of each packet and adds the duration and packet length for each received UDP packet. In 

addition, the channel provider packs continuous packets received in one second into a video block. 

Furthermore, in order to support time-shifted streaming, 10 consecutive video blocks, with the 

starting block’s timestamp aligned to multiples of 10 seconds, are packed into a video file stored in 

local file system. The file is named after the information given by the channel provider, along with 

the timestamp of the first video block. For example, a video file with name 

“ProviderName_Channel1_20100620182520” stands for 10 blocks of Channel 1 provided by 

ProviderName, with timestamp 2010/06/20 18:25:20. Figure 3-3 shows the structures of a video 

block and a video file. 

Video
Source

Packet Packet Packet...

Provider ViewerP2P overlay

Encodes

Video
Player

Decodes

 
Figure 3-2 The streaming packet transmission. 
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Duration Packet Length UDP packet payload from VLC

Timed PacketTimestamp Timed Packet Timed Packet ... Timed Packet

Block Length Block Block Length Block ... Block Length Block

Packet with timing information:

A video block of length 1 second:

A video  file for storage:
 

Figure 3-3 The structures of a video block and a video file. 

 

3.3 Live streaming framework based on DONet/Coolstreaming 

We adopted the design of the latest DONet/Coolstreaming as the live streaming framework to 

deliver live contents. For reader’s interest, we briefly present the characteristics of the latest 

DONet/Coolstreaming, and our modifications. 

1. Node hierarchy 

Each live streaming peer maintains three levels of peers: members, partners and parents. 

Members are a subset of live-streaming peers watching the same channel as the peer. No connection 

is established between the peer and the members. Connections are established between partners to 

exchange the availabilities of video blocks. Parent-child relations are formed when connections are 

established for the transmission of video blocks. Apparently a peer’s parents and children are a 

subset of its partners. 

2. Multiple sub-streams 

As described before, the video stream is encoded and packed into continuous video blocks, each 

of which is one-second long and time-stamped. The stream is also decomposed into S sub-streams, 

by grouping blocks whose timestamps have the same modulo of S. By dividing the stream into 

multiple sub-streams, each sub-stream can be retrieved from different parent peers independently, 

which means a peer can retrieve blocks from up to S peers. Figure 3-4 shows a video stream is 

divided into four sub-streams (i.e., S=4). In our implementation, the video stream is divided into 8 

sub-streams. 

1716151454321

...13951

...141062

...151173

...161284

...

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

Video Stream

 
Figure 3-4 Sub-stream decomposition. 

 

3. Joining procedure 

When an new LS peer joins, it first contacts the bootstrap server and retrieves a list of available 

channels. After selecting a channel, the new peer retrieves a partial list of the active peers of the 

channel; the active peers become members known to the peer. Then the new peer randomly selects 

24 of the members as its partners. Partners exchange their known members and the availabilities of 

video blocks periodically. Since each partner may receive the video sub-streams at different paces for 

different sub-streams, The new peer selects from its partners the fastest (with the largest timestamp) 

sub-stream of each sub-stream, and then sets initial playback position at the end of the slowest 

sub-stream among the S selected sub-streams. This would shorten the end-to-end delay since the 

fastest sub-streams are selected. After that, for each sub-stream, the new peer would subscribe the 
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sub-stream from a partner whose pace is closest to the initial playback position. This would allow the 

peer to receive all sub-streams at about the same pace. 

4. Hybrid push-pull mechanism 

To form a parent-child relationship, a peer subscribes a sub-stream with a partner. When a 

partner receives a subscription message with a starting position of a sub-stream, the partner becomes 

the parent of the subscriber and stores the subscriber’s IP address, a communication port number and 

a data port number in a sub-stream subscriber list. The parent starts sending to the subscriber the 

subscribed sub-stream starting from the requested position. The parent can be the provider or another 

live-streaming peer. The provider pushes a block to each subscriber whenever a new block is 

generated. A parent peer pushes a block to each subscriber whenever it receives a new block. 

Subscription contracts end when the subscriber re-selects its parents and sends an un-subscription 

message to its old parents. 

5. Parent re-selection 

As the subscription to a parent peer increases, the parent may be overloaded and lags in pushing 

blocks to its subscribers. A subscriber can detect such lagging by comparing block availabilities of its 

parents, or comparing block availabilities of itself and its partners. The subscriber measures the 

lagging of each sub-stream by comparing the position of each sub-stream with the average position 

of all sub-streams. If there is a sub-stream lagging over two blocks, which indicates the parent may 

be overloaded, the peer re-subscribes the most lagging sub-stream the partner whose position of the 

sub-stream is the nearest to the average position. As shown in the lower part of Figure 3-5, the peer 

compares the block availabilities in its buffer with a partner’s buffer, and discovers that its 

sub-stream 2 is lagging behind the partner’s sub-stream 2 by three blocks. The parent re-selection 

procedure is triggered, and a new parent is selected to provide the lagging sub-stream and the 

original subscription is cancelled. The new parent can be selected from the current partners or 

parents with better block availabilities. 

...13951

...141062

...151173

...161284

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

A Peer’s Buffer

...13951

...141062

...151173

...161284

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

A Partner’s Buffer

Block not received

Block received
 

Figure 3-5 Comparing sub-stream block availabilities for parent re-selection. 

 



8 
 

IP:PortRecord 1
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IP:PortRecord 2

IP:PortRecord 10

 
Figure 3-6 The owner list of each video file. 

 

3.4 Distributed cache management strategy 

Live streaming peers need to cache streaming contents for TS viewers in the future. The goal of 

our distributed cache management strategy is to effectively keep a desired number of replicas of 

video files for TS peers. The strategy is composed of two parts: content caching based on probability 

and publishing policy. 

1. Caching based on probability 

To distribute the responsibility of caching streaming contents and keep a desired number of 

replicas in the system, we adopted a probability algorithm to determine whether a file should be 

cached or not. Assume that the system wants to keep R replicas, and the system has N live streaming 

peers. A simple way to do it is that each node should cache the received content with a probability of 

R/N. Since R is a given, the discovery of N is the issue here. 

To estimate N, first, a local knowledge based on the design of DONet/Coolstreaming is used. 

Since each peer keeps connections with its partners and parents, which are active LS peers. It is clear 

that N must be no less than the number of partners plus the number of parents. In addition, the 

number of the current active LS peers can be obtained by a modified peer-startup procedure. When a 

peer joins the system, heartbeat messages are periodically sent to the bootstrap server to update the 

member list maintained by the server, and the number of active LS peers can piggybacked to the peer 

in the reply messages. With the two values, N is selected as the larger one of the two. The local 

knowledge helps the peer to react fast to the change of active peers, especially when the size of 

viewers is small, since they would form an almost fully-connected mesh structure, and the number of 

the current active viewers helps the peer to make better decisions when the size of viewers becomes 

larger. 

2. Content publishing policy 

After a video file is collected for future time-shifted viewers, the peer publishes the ownership 

information of the file on the DHT. In addition, the channel provider caches all video contents but 

never publishes the ownership information. The channel provider would act as a backup source; its 

cached contents can only be accessed at emergency. For example, when a block is 5 seconds to the 

time-shifted playback deadline but had not been received, or when no owner information of a video 

file is published on the DHT. Since the system would keep multiple replicas for each video file, the 

published record on the DHT is a list of <IP_address:Port> tuples. Fig.3-6 depicts the data structure 

of the owner list. The owner list contains records of the <IP_address:Port> of the owners of a video 

file, and it can be retrieved by the hashed file name as a key GET(hash(filename)). 

When a peer wants to update an owner list, it first tries to get the list from the DHT. If the size 

of the list is less than the desired number of replicas, the peer adds its IP address and a port number 
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to the list, and puts the list back to the DHT. However, in this way the accesses of the DHT from the 

peers are not coordinated, which means a published record may be overwritten by another peer. This 

is a well-known write-after-write data hazard, and will be referred to as publishing collision. 

To deal with the publishing collisions, each peer would perform an indirect DHT publishing to 

avoid such collisions. The publishing of the owner list of each video file on the DHT is performed by 

an LS peer chosen by the bootstrap server. First, the bootstrap server randomly chooses an LS peer 

from the partial peer list to be the collector responsible for publishing the owner list of the current 

video file. The bootstrap server puts a record <key(video-filename), the chosen peer’s 

<IP_address:Port> on the DHT, i.e., the collector (the chosen peer) is the first on the owner list. 

Since a video file 10-sec. long, this is done every ten seconds. Second, an LS peer who wants to 

publish a video file needs to first check (get) the owner list of the file from the DHT. The LS peer 

would also check if the number of owners is less than R (the desired number of replicas). If so, the 

LS peer sends a publishing request to the collector, the first peer on the owner list. Third, the 

collector receives the publishing requests from LS peers, and sequentially updates the owner list on 

the DHT according to the requests.  

The collectors are requested to report their publishing results to the bootstrap server. If the 

collector fails to publish the owner list on the DHT, it reports to the bootstrap server, and the 

bootstrap server will not choose the peer as a collector. This enables the bootstrap server to have a 

more reliable list of collectors. 

Peers who cannot access the DHT request the channel provider to publish all of their cached 

files. The provider does not perform the indirect DHT publishing, but directly publishes the 

requested file name by appending the owner to the owner list on the DHT. 

3.5 Time-shifted streaming 

A TS peer can retrieve time-shifted video content by per-block pulling from other peers, or by 

subscribing with TS peers. Using per-block pulling, the TS peer finds the owner list of video blocks, 

and pulls video blocks one by one from one of the owners, which can be LS or TS peers. Using 

subscription, the TS peer finds a TS peer whose playback buffer contains the needed video blocks, 

and subscribes for subsequent video blocks. 

1. Per-block pulling  

After a TS peer selects playback position, the name of the video file containing the video 

content is known. The TS peer hashes the file name to a key and obtains the owner list of the file by 

querying the DHT. Then the TS peer tries to pull up to 3 blocks per second, each from a randomly 

selected owner. When the TS peer has buffered 20 blocks, i.e. 20-second video, it starts to play back, 

or it is forced to play back after it starts to pull video blocks for 30 seconds. After playing back, the 

peer pulls 2 blocks per second until un-played blocks occupied half of the playback buffer, and then 

it pulls 1 block per second. For emergency handling, un-received blocks that is 10 seconds to the 

playback deadline are pulled from the channel provider. In addition, when no owner list is found on 

the DHT, the TS peer also pulls blocks from the channel provider. To retrieve video blocks smoothly, 

the owner list of the next 10 seconds from the current pulling position should be retrieved in advance. 

For example, the file of timestamp 10-19 should be retrieved when the file of timestamp 0-9 is 

pulled. 

The video contents in the playback buffers of TS peers can be shared with other TS peers. As a 

TS peer pulls new blocks into its playback buffer, the old blocks are shifted out of because of the 

limited size of the playback buffer. We would like the keep the playback position at the middle of the 

playback buffer, so that half of the buffer are watched blocks that can be shared with other TS peers 

whose playback positions are older and the other half are real buffer for blocks to be played back. 

When the playback position is within 10 video blocks around the middle of the playback buffer, as 

depicted in Fig. 3.7, the TS peer’s playback buffer is said to be in stable state. 
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   Range of stable state
10 blocks 10 blocks

½ buffer size ½ buffer size

Buffer Start Playback Position Buffer End

Figure 3-7 The stable state of a TS peer’s buffer 

 
2. Time-shifted stream subscription  

TS Peers with overlapping playback buffers can share video blocks with each other. TS peers 

are partitioned into groups; peers in each group may share blocks in their playback buffers. The 

current playback position of each TS peer can be estimated by its initial playback position and the 

lapse of time after the playback. Using the estimated playback position of each TS peer, the bootstrap 

server can instruct TS peers with playback positions within a short distance to form a group. The 

median of a group is defined to be the average playback positions of all peers in the group. If a new 

TS peer’s initial playback position is within 8 minutes of a group median, the bootstrap server 

instructs the peer join the group. Otherwise, the bootstrap server creates a new group for the peer. 

The peer receives from the bootstrap server a member list of the group. Peers in a group exchange 

playback buffer range (the buffer start and end) and the member list every 10 seconds. 

With the exchanges of buffer range information, peers can check if their playback buffers are 

overlapping or not. After reaching the stable state, two peers with overlapping buffers can form a 

supplier-subscriber relation. The peer with an older playback position subscribes time-shifted stream 

with the other peer. Once the subscription is accepted, the supplier pushes time-shifted video blocks 

to the subscriber one block per second. If more than two peers have overlapping buffers, each peer 

would subscribe with the one whose buffer head is closest to its own. This means each supplier 

serves at most one subscriber at a time, and the supplier-subscriber relation of two peers will be 

rearranged when a new peer joins in the middle of them. The new peer would subscribe with the 

original supplier, and the original supplier cancels the contract with the original subscriber. The 

original subscriber will find that the new peer is with the closest buffer head and then subscribe with 

it. In subscription mode, the emergency handling for un-received blocks is the same as in that of 

per-block pulling. 

3. Switching between DHT per-block pulling and time-shifted stream subscription 

A new TS peer would first start in per-block pulling mode to retrieve initial playback blocks. 

After it reaches the stable state and finds a suitable supplier, it sends a subscription message to the 

potential supplier, and stops per-block pulling thread if the subscription is accepted. When a peer is 

served by a supplier, it stops requesting buffer range information with its group member, but still 

replies buffer range requests. 

If a subscriber has not received video contents from its supplier for 3 seconds, it sends an 

un-subscription message to the supplier and starts per-block pulling. This is designed to react to 

unexpected behaviors on the supplier’s side, such as, the shortage of network bandwidth shortage or 

disgraceful leaving. The supplier sends an un-subscription message to the subscriber when it changes 

its playback position or when another peer with a closer buffer head subscribes. Whenever a 

time-shifted peer switches from time-shifted subscription to per-block pulling, it needs to keep 

per-block pulling for at least a cycle time (10 sec.) of buffer range exchange to obtain buffer range 

information. 

When a peer is in time-shifted stream subscription mode, it also continuously retrieves the 

current owner list and the next owner list as in per-block pulling mode to achieve smooth switching. 

Otherwise it may suffer from a longer startup delay when switching to per-block pulling mode. 
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3.6 System architecture  

Figure 3-7 the block diagram of a channel provider. A VLC player encodes the original video 

stream into packet streams, and the provider packs the packets into video blocks and put the video 

blocks in a streaming buffer for serving LS peers. In addition, the video blocks are packed into video 

files and stored in local file system to serve emergent requests from TS peers. Streaming 

transmissions are carried out over TCP connections to avoid data losses in the network layer.  

 Figure 3-8 depicts the block diagram of a viewer node. The received video blocks are put in 

the playback buffer for playback, generating block availabilities and potential block transmission to 

other peers. To share video content among peers, the buffered video blocks can be transmitted to 

other peers for live streaming or time-shifted streaming. The live stream can only be provided from 

the playback buffer, while the time-shifted stream can be provided from both the playback buffer and 

the video files stored in the file system. The member, partner and parent management handle peer 

hierarchy and the exchange of video block availabilities for LS peers, while only member 

management is performed by TS peers. The sub-stream management puts the received video blocks 

at the right places in the playback buffer, and fetches the right video blocks to transmit for 

sub-stream subscription. The video file management and cache and publish policy cache the buffered 

content into the file system and publish the contents to the DHT. Publishing messages are transmitted 

over UDP packets. The DHT also takes the responsibility of obtaining block availability published 

by block owners in time-shift streaming. 

Live Streaming Part

Streaming 
Buffer

Provider

Time-shift Streaming Part

File 
System

VLC Player

Subscriber Management

Sub-stream Management

Request Handler Video Block Handler
Network Interface

Node NodeNode

Video File management

 
Figure 3-8 The block diagram of a channel provider 
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Live Streaming Part

Playback Buffer

Viewer

Time-shift Streaming Part

File 
System

VLC Player

Member Management
Partner Management
Parent Management

Sub-stream Management

DHT 

Request Handler Video Block Handler
Network Interface

Node NodeNode

Cache and Publish Policy

Video File Management

Both Part

 
Figure 3-9 The block diagram of a viewer. 

 

IV. Feasibility analysis of time-shifted streaming  

 A time-shifted viewer chooses a video position in the past and tries to obtain the time-shifted 

contents cached by live peers. We intend to determine whether a time-shifted viewer can retrieve his 

or her desired contents in full. It is clear that the answer depends on whether the desired contents 

have been cached by live peers and whether the peers with the cached contents are on-line or not. 

Assume that the arrivals of live viewers form a Poisson process with arrival rate , a live viewer 

watches the live program for a random duration exponentially distributed with mean 1/ It is clear 

that the number of live peers can be modeled as a Markov process depicted in Fig 4-1, i.e., an 

M/M/ queue. If each live peer caches all the contents that the viewer watches, the number of live 

peers caching a video segment equals to the number of replicas cached for the segment. The steady 

state probability of state k, denoted by Pk, can be derived as follows, 

 /

!

)/(  e
k

u
p

k

k               (1) 

0 1 2 3

  

4

 

••••

   

 
Figure 4-1 Markov process of the number of live viewers 

 

In addition, we need to consider whether the peers who cached the desired time-shifted contents 



13 
 

are on-line or not; only the on-line peers with the cached contents can provide. Assume that the 

on-line and off-line state of a peer forms an alternating renewal process where the on-line intervals 

are exponentially distributed with mean 1/μon, and the off-line intervals are also exponentially 

distributed with mean 1/μoff. Let Pon denote the probability that a peer is on-line, and Poff the 

probability of being off-line. It is clear that Poff = 1 – Pon, and Pon can be obtained as follows.  

onoff

off

offon

on
onp















/1/1

/1

         

(2) 

When a time-shifted viewer chooses an initial playback position, the time-shifted peer re-visits 

the Markov process of the live viewers at the chosen position. The process is recorded in the form of 

cached contents by the live peers. In addition, the time-shifted peer is a random observer of the 

on-and-off alternating renewal processes of the live peers at the current time. Counting the number of 

the on-line live peers observed by the time-shifted peer, is a birth-death process. If the interval 

between the chosen position and the current time is large enough, with respect to the viewing 

intervals, and the on-line and off-line intervals of live peers, the Markov process and the birth-death 

process are independent. The state initially observed by the time-shifted viewer can be modeled by 

superimposing the Markov process and the birth-death process, and we obtain a two-dimensional 

continuous Markov chain as depicted in Fig. 4-2, where State (i, j) represents that i+j peers cached 

the desired contents, i of them are on-line and j of them off-line. Note that this Markov chain 

superimposes two different time-spans; the time-span when the chosen playback contents were live, 

and the time-span of the current time. The former will be referred to as the time-shifted time-span, 

and the latter as the current time-span. Note that if we merge all states in each column, i.e., states 

with the same i+j value, the Markov chain in Fig. 4-2 is reduced to that in Fig. 4-1.  
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Figure 4-2 The number of available replicas for time-shifted contents 

 
There are at most four types of events that cause out-flow transitions at state (i, j) in Fig. 4-2. 

Take state (2, 1) for example, i.e., we have three live peers caching the desired contents in the 

time-shifted time-span, and two of them are on-line and one of them is off-line in the current 

time-span. First, in the time-shifted time-span, state (2, 1) transits to state (1, 1) with rate 

2indicating one of the on-line live viewers finished watching, and transits to state (2, 0) with rate 

indicating the on-line live viewer finished watching. Second, state (2, 1) transits to state (3, 1) 

with rate Pon and to state (2, 2) with rate Poff, indicating a new live viewer arrived. These 

transitions are the mixed effect of the time-shifted and current time-spans; the live viewer arrived at 

the time-shifted time-span, but its on-line/off-line state is determined in the current time-span. Third, 

in the current time-span, state (2, 1) transits to state (3, 0) with rate μoff indicating the off-line live 

viewer becomes on-line. Last, state (2, 1) transits to state (1, 2) with rate 2μoff indicating one of the 

two on-line live viewers becomes off-line. 

The Markov process in Fig. 4-2 satisfies Detail Balance Equations, i.e., for each pair of 

neighboring states, the flows of transitions to each other are the same. For example, consider two 

neighboring states a and b. Let    and    denote the state probabilities, respectively,      the 

transition rate from a to b, and      that of b to a. We have a Detail Balance Equation as 

                              (3) 

 
Like all Markov processes, the Markov process in Fig. 4-2 also satisfies Global Balance 
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Equations, i.e., the flow of transitions into each state equals to the flow of transitions out of the state. 

Consider state a, the Global Balance Equation can be express as 

                                    (4) 
 

Let Pi,j denote the stationary state probability of state (i, j) in Fig. 4-2. Since the Markov process 

of the number of live peers at the time-shifted time-span, and the birth-death process of on-line 

live-peers at the current time span are independent, Pi,j can be obtained as 

     
 λ  μ  

   

      
   λ  μ     

 
   
      

    
 

          
               (5) 

 
The intuition behind Eq. (5) is simple; Pi,j equals the probability of having i+j live peers times 

the probability that i of them are on-line. One can also verify that the Pi,j given in Eq. (5) satisfies the 

Detail Balance Equation in Eq.(3).   

The steady state probabilities of the Markov chain in Fig. 4.2 are what a time-shifted viewer 

would observe when the viewer chooses an initial playback position. Assume that the time-shifted 

viewer would watch the chosen time-shifted contents for a time interval of length exponentially 

distributed with mean 1/ Let Pc denote the probability that the time-shifted viewer can completely 

watch the desired contents, i.e., there are on-line peers to provide all the desired contents. Pc can be 

obtained from the Imbedded Markov chain of the Markov chain depicted in Fig. 4-3. Note that the 

Markov chain is modified from the Markov chain in Fig. 4-2. A new state c is added; it represents 

that the time-shifted viewer has retrieved all the desired contents. All states (i, j), i  0, make a 

transition to state c with rate . In addition, no out-flow transition exists for states (0, j), because at 

those states, it is determined that the time-shifted peer cannot obtain the desired contents, and thus 

the viewer could not watch the desired contents in full.  
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Figure 4-3 A modified Markov process observed by a time-shifted viewer 

 

The steady state probabilities of the Markov chain in Fig. 4-2 were used as the initial state 

probabilities of the imbedded Markov chain in Fig. 4-3. Note that the initial probability of state c is 0. 

In the imbedded Markov chain, each transition has a transition probability, not a rate. Taking an 

example of out-flow transitions of state (2,1) in Fig 4-4, the transition probability of a transition 

equals to its rate divided by the sum of all the transition rates originated from the same state of the 

transition. Let S(i,j) denote the sum of state transition rates out of state(i,j), for example, S(2,1) = 

offλPon + λPoff + 2on +  2 A transition probability matrix P for the imbedded Markov 

chain can be obtained. Let i denote the initial probability vector of the imbedded Markov chain, i.e., 

the steady state probabilities of the Markov chain in Fig. 4-2. Let  denote the limiting probability 

vector of the imbedded Markov chain. We have 

     
  ∞

   
    

Since state c and states (0, j) have no out-going transition, they have non-zero limiting 

probabilities; other states’ limiting probabilities are all zero. Pc, the probability that a TS peer can 

find all the desired contents from on line peers, equals to the limiting probability of state c. 
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Figure 4-4 Out-flow transitions of a state 

 

 Let Pi,j denote the stable state probability of state (i,j). Let ER denote the expected number of 

available replicas; ER =                 .  

Selecting reasonable values for λ, μ, ν, μon, μoff, we can obtain Pc and ER as indicators of the 

feasibility of TS streaming service. The average inter-arrival time of LS peers, 1/λ was assumed to be 

4.28 min. This small arrival rate is chosen for being conservative. After arrival, all peers, LS or TS, 

would watch for 60 min., i.e., 1/μ = 60 and 1/ν = 60, because TV programs are usually 1 hour long. 

The expected number of cached replicas for each video block, λ/μ, equals 14. Four combinations of 

μon and μoff were tested; 1/μon:1/μoff = 6:18 (hr), 8:16, 10:14, and 12:12. Fig. 4-5 depicts ER for the 

four combinations. It is clear that ER increases linearly as the on-line interval (1/μon) increases. Fig. 

4-6 depicts Pc. The results indicate that Pc drop sharply when the on-line interval is less than 8 hr., i.e, 

ER is less than 5, When the on-line interval is 12 hr., i.e., ER equals 7, a TS viewer would view the 

desired contents in full with probability greater than 99%. 

 
Figure 4-5 The expected number of replicas with 1/λ = 4.28, 1/μ = 60, 1/ν = 60 (min.) 
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Figure 4-6 Pc with 1/λ = 4.28, 1/μ = 60, 1/ν = 60 (min.) 

 

 Computer simulations have been performed to validate our analytic model. Computer 

simulation consists of two stages. At stage 1, the arrival and departure records of live viewer were 

recorded. As depicted in Fig. 4-7, the arrivals of live viewers form a Poisson process with arrival rate 

 and a live viewer watches the live program for an exponentially distributed duration mean 1/For 

each live peer, we record its arrival and departure times. Stage2 simulates the on-and-off alternating 

renewal process of the live peers, and time-shifted viewers retrieving the desired contents. As 

depicted in Fig. 4-8, the on-line or off-line status of each live peer is determined independently with 

probability Pon being on-line. For each peer, its alternating on-line and off-line periods were 

generated with mean 1/μon and 1/μoff, respectively. For each peer, we record the on-line and off-line 

events. A time-shifted viewer randomly chooses an initial video position, and a viewing duration 

exponentially distributed with mean 1/. The peers’ arrival and departure records at the chosen 

position and the peer’s on-line and off-line records are compared to verify if there are on-line peers 

to provide the contents to the time-shifted viewers for the entire duration. 

 We randomly generate and record 1000 sets of LS peers’ events. Each set contains LS peers’ 

arrival and departure events in a three-day period. For each event set, 10000 TS viewers view the 

three-day video content starting from independently random positions. The simulation and analytic 

results are plotted in Figs. 4-9 and 4-10. We can see that the analytic and simulation results match. 

This validates our analytic model. 
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Figure 4-7 The arrivals and departures of LS viewers 

 

 
Figure 4-8 Simulation with LS peers getting online and offline  

 

 

Figure 4-9 Pc with 1/λ = 4.28, 1/μ = 60, 1/ν = 60 (min.) 
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Figure 4-10 The expected number of replicas with 1/λ = 4.28, 1/μ = 60, 1/ν = 60 (min.) 

 

V. Performance Measurements  

5.1 Experiment Environment  

 To evaluate the system performance, we performed experiments on PlanetLab, an open 

global research network [20]. A channel provider was located in the Internet Communication 

Laboratory, NCTU. The number of PlanetLab nodes we use is not the same in every experiment 

because of the availability of the nodes. The total number of nodes was targeted at 120; half of them 

were live peers, and the other half were time-shifted peers. The peers were located in the United 

States, European and East Asia. The bit-rate of the video stream is 400 kbps, the number of 

sub-streams is 8, and each peer can connect to up to 24 peers as partners. The buffer size of each peer 

is 120 video blocks, i.e., 120 seconds. The system intends to keep 10 replicas for each video block. 

Time-shifted peers cache each received block with probability 0.5. Table 4-1 lists the system 

parameters used in our system.  

Table 5-1 Experiment Parameters 

System parameters Value 

Video streaming bit-rate 400 kbps 

The number of sub-streams 8 

The maximum number of partners 24 

The number of replicas to keep 10 

Buffer size 120 blocks 

 

In the experiment, we first started the bootstrap server and the streaming provider, and then 

peers joined the system as in a Poisson process, with an expected inter-arrival time of 60 seconds. 

Whether a PlanetLab node is chosen to be a live or a time-shifted viewer is determined randomly in 

advance. For each time-shifted peer, it randomly selects streaming playback position between the 

beginning of the streaming and the current streaming. The experiment lasts 2 hours. 

2 

3 

4 

5 

6 

7 

8 

06:18 08:16 10:14 12:12 

ER
 

1/μon:1/μoff  (hr.) 

analysis 

simulation 



21 
 

5.2 System performance and Analysis 

5.2.1 The live streaming 

 First, we examine three commonly used criterions in evaluating a live streaming service: startup 

delay, end-to-end delay and playback continuity. The startup delay is the time after a user tunes to a 

channel, and before the video content can be played out. End-to-end delay, also referred to as 

playback delay, is the average transmission delay of video packets between the source and the viewer 

peers. Continuity index is the number of blocks that arrive before the playback deadlines over the 

total number of blocks that a peer should receive. 

 
Figure 5-1 The startup delay distribution 

 

 
Figure 5-2 The end-to-end delay distribution 
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Figure 5-3 The continuity index distribution 

 
Figure 5-1 depicts the distribution of startup delay of the live streaming peers in our experiment. 

Most of the peers experience a startup delay less than 20 sec.; the average startup delay is 16 sec., 

which is a satisfactory result for P2P live streaming service. Figure 5-2 depicts the distribution of the 

end-to-end delay of the live streaming nodes. Most of the nodes experience an end-to-end delay less 

than 30 sec., and the average end-to-end delay is 22 sec. Note that the total number of peers in Fig. 

5-2 is different from that of Fig. 5-1. It is because peers with negative end-to-end delay, which is 

impossible, is eliminated from Fig. 5-2. The negative end-to-end delays were the results of 

un-calibrated NTP time on the PlanetLab nodes, but we do not have the authority to adjust the NTP 

time. Fig. 5-3 depicts the distribution of continuity index of live streaming nodes. 75% of them 

achieve over 97% continuity index; the average continuity index is 96%. 

5.2.2 The time-shifted streaming 

 To serve time-shifted peers, live streaming video files collected by the live peers need to be 

published on the DHT properly. First, we examine the probability that a file is successfully published. 

The probability can be obtained by dividing the total size of the owner lists of all video files on the 

DHT by the total number of video files cached by live peers. Note that all the owner lists are 

retrieved from the DHT at the end of the experiment. In the experiment on PlanetLab described 

above, the probability of success publishing is 97.39% , i.e., only less than 3% of the cached video 

files fail to be published. 
 The performance measurements that we are interested for time-shifted streaming include startup 

delay, the missed ratio of time-shifted blocks, and the provider stress. In our experiment, there were 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

1-0.99 0.99-0.98 0.98-0.97 0.97-0.96 0.96-0.95 0.95-0.9 0.9-0.7 0.7-0.5 

P
e

rc
e

n
ta

ge
 o

f 
 n

o
d

e
s 

continuity index 



23 
 

51 time-shifted peers and 60 live peers. Fig. 5-4 depicts the distribution of startup delay. The average 

startup delay of TS peers is 16.5 sec. The peak in the interval 26-30 seconds is the consequence of a 

30-second startup delay bound in forced starting for TS streaming.  

Fig. 5-5 depicts the distribution of the block missed ratios. The total number of video blocks 

received by all the time-shifted viewers was 176,802. The block missed ratio was only 0.42%, which 

is satisfactory. Half of the time-shifted peers experience no missed block. 85% of them achieve a low 

missed rate less than 1%. Only one peer encounters an unacceptable missed rate of 9.38%. The 

reason may be the temporary overloading with other people’s application on that node, since all 

nodes on PlanetLab are shared.  

The channel provider stress can be measured by the ratio of blocks that are obtained from the 

provider. These blocks can furthermore be divided into three categories: emergency pulling, failure 

to obtain from the owners, no owner found on the DHT. The experiment results in Table 5-2 indicate 

that only 2.73% of the video blocks were obtained from the provider, i.e., more than 97% of the 

blocks were served by peers. Among the 2.73% of the blocks obtained from the provider, 1.11% 

were for emergency pulling, 0.28% were due to failures to obtain from the owners, and 1.34% were 

because of no owner found. Overall, the stress on the channel provider from TS peers is slight. 

Table 5-2 The TS streaming load on the channel provider 

From provider 

Emergency pulling 

2.73% 

1.11% 

Failing to obtain from the owners 0.28% 

No owner found 1.35% 

 

 
Figure 5-4 The startup delay distribution 
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Figure 5-5 The distribution of block missing rates 
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in this experiment was 56. Fig 5-6 depicts the distribution of startup delay. The delay in playing out 
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viewers do not change playback positions. This is because some startup procedures, such as 

initializing network connections, are only necessary in the first startup. As a result, the average 

startup delay decreases.  

Table 5-3 The TS streaming load on the channel provider with peers changing playback positions 

From provider 

Emergency pulling 
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Failing to obtain from the owners 1.01% 

No owner found 1.12% 
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Figure 5-6 The startup delay distribution with changing playback positions 

 

 
Figure 5-7 The distribution of block missing rate with peers changing playback positions 
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Fig. 5-7 depicts the distribution of the block missing ratios for the TS peers. The average block 

missed ratio was 0.65%. 84% of the TS peers achieve a low missing rate less than 1%. Only one 

peer experience an ultra high missed ratio of 78%, which may be due to a temporary overloading on 

that node.  

Table 5-3 lists the percentage of video blocks that is obtained from the channel provider by TS 

peers. The results indicate that although time-shifted viewers change their playback positions, only 

3% of video blocks were obtained from the provider. The provider stress only increases by 0.3%. 

This imply that when TS peers change viewing positions, they experience about the same video 

block shortage from the DHT. 

The subscription rate is defined to be the proportion of blocks received by subscription among 

the total received blocks. To evaluate how effectively the time-shifted stream subscription enhances 

the cooperation between time-shifted viewers and reduces the block transmission load on LS peers, 

we performed further experiments to analyze the time-shifted streaming sources. We categorize the 

experiments into four cases, cases (1-4) as indicated in Table 5.4, depending on whether time-shifted 

stream subscription and/or changing playback positions are allowed or not. The way that TS peers 

change playback positions is the same as the previous experiment, and the number of time-shifted 

peers are also around 60. 

Table 5.4 The categories of experiments to analyze the time-shifted streaming sources 

 No peer changing 

playback positions 

With peer changing 

playback positions 

No TS subscription (1) None (3) CP 

With TS subscription  (2) Sub (4) CP+Sub 

 

 

 
Figure 5-8 The effects of TS subscription with no peer changing playback positions 
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TS peers. When TS subscription is used, 32% of the video blocks are provided by TS subscription, 

26% pulled from TS peers and 42% pulled from LS peers. Fig 5-9 depicts the effect of TS 

subscription when TS peers may change their playback positions. The way they change playback 

position is the same as in the previous experiments. When a peer changes its playback position, the 

peer may have a chance to rewind to the previously watched video segment, and some of the video 

blocks may be cached in local storage. When TS subscription is not allowed, 18% of the video 

blocks are obtained from local storage, 37% pulled from TS peers, and 45% from LS peers. When TS 

subscription is used, 28% for the video blocks are provided by TS subscription, 10% o obtained from 

local storage, 24% pulled from TS peers, and 38% from LS peers. In any case, TS subscription 

significantly reduce the pulling requests on both TS and LS peers. 

 

 
Figure 5-9 The effects of TS subscription with peer changing playback positions 

 

VI. Conclusions 

In this report, we have developed an analytic model to estimate the number of video replicas 

required to support TS streaming. Our analytic results indicate seven on-line replicas are sufficient to 
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delay of 16 seconds, an end-to-end delay of 22 seconds, a continuity index over 96% and a 

successful publishing rate over 97%.. For the time-shifted streaming, with the video provider as an 

emergency handler, we achieved a block missing rate of 0.42%, with less than 3% of the streaming 
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positions.  
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