
行政院國家科學委員會專題研究計畫 成果報告

點對點實況及移時播放之影音服務 II

研究成果報告(精簡版)

計 畫 類 別 ：個別型

計 畫 編 號 ： NSC 99-2221-E-009-103-

執 行 期 間 ： 99 年 08 月 01 日至 100 年 07 月 31 日

執 行 單 位 ：國立交通大學資訊工程學系（所）

計 畫 主 持 人 ：張明峰

計畫參與人員：碩士班研究生-兼任助理人員：邱順胤

碩士班研究生-兼任助理人員：魏睦倫

碩士班研究生-兼任助理人員：魏翔

處 理 方 式 ：本計畫可公開查詢

中 華 民 國 100 年 10 月 27 日

1

行政院國家科學委員會專題研究計畫成果報告
點對點實況及移時播放之影音服務

P2P Live and Time-shifted Streaming Services (II)
計畫編號：NSC 99-2221-E-009-103

執行期限：2010.08.01 至 2011.07.31

主持人：張明峰 交通大學資工系

計畫參與人員：邱順胤、魏翔、魏睦倫、陳志華 交通大學資工系

中文摘要

 點對點式網路架構目前廣泛應用於多媒體影音串流服務中，用以解決過去主從式網路架構

所無法負荷的龐大流量。然而在點對點影音串流的蓬勃發展中，移時影音串流服務，也就是提

供使用者觀看任意過去時間點上的影音串流服務的相關研究並不多。

於此篇報告中，我們提出了一個數學模型來評估移時影音串流服務的可行性，並且實作了

一支援移時服務的點對點實況串流系統。此系統提出針對移時串流影音資料的分散式快取管理

解決策略，並加強移時影音用戶的合作關係以分散對於整體系統的負擔。最後我們在

PlanetLab 平台上進行實驗，分析整體系統的效能以及特性。在我們實驗中全部移時用戶錯過

少於 0.5%的影音片段，並且只有造成影音伺服器少於全部移時影音服務流量的 3%的負擔。而

移時串流訂閱機制使移時用戶直接分享正在觀看的影音內容，其中有 30%的移時串流流量來自

此種方式，並且降低了 15%原本需由實況用戶提供的移時串流流量。我們相信這將提供此類系

統的深入了解，幫助我們進一步的發展多媒體串流服務。

Abstract
Peer to peer (P2P) technologies have been applied to multimedia streaming services to solve the

problem of heavy traffic flow on the servers in server-client architecture. However, there are few

researches on the P2P time-shifted streaming service, where viewers can choose an arbitrary offset of

time to watch. In this report, we present a numeric model to analyze the feasibility conditions of P2P

time-shifted streaming, and the design and implementation of a P2P live and time-shifted streaming

system. In this system, we propose a distributed cache management strategy for time-shifted

streaming contents and enhance the cooperation among time-shifted peers to balance the traffic load

in the system. Experiments were performed on PlanetLab to evaluate the system performance. Our

experiment results show the feasibility of P2P time-shifted video streaming systems and the

effectiveness of the proposed strategies. The video block missed rate of Time-shifted viewers is less

than 0.5% and the server stress of time-shifted streams is less than 3% of all time-shifted traffic. By

establishing supplier-subscriber relationship among time-shifted peers, more than 30% of the

time-shifted streams are supplied by other time-shifted peers. This reduces 15% transmission load of

time-shifted streams on live streaming peers.

I. Introduction

With the increasing prevalence of broadband Internet access, multimedia streaming services

have been very popular on the Internet in recent years. In the early developments of media streaming

applications, client-server architecture suffers from scalability problems; as the number of

simultaneous users increases, the servers are quickly overloaded [1]. Content delivery networks

(CDNs) with strategically placed proxies have been developed to alleviate the load of the servers, but

2

CDNs are too costly for general streaming applications [2]. IP multicast is probably the most

bandwidth-efficient vehicle, but its deployment is very limited due to many practical issues, such as

the lack of IP multicast supporting infrastructures and the lack incentives for network operators to

carry streaming data traffic [3]. Application-level multicast, by constructing an overlay network with

unicast connections between peers in the system, has been widely used to deal with the scalability

issue in many Internet applications. Thus, streaming services based on P2P technologies are also very

popular.

Current P2P multimedia streaming service researches can be classified into two categories: live

streaming and VOD (video on demand) services. Live streaming is like a broadcast TV channel; it

delivers the same video content to viewers simultaneously. On the other hand, a VOD is a video clip

watched by viewers at different positions, and thus the video contents delivered to viewers are

different. Recently there are few studies on P2P time-shifted streaming services. A time-shifted

streaming service allows viewer to choose an arbitrary offset of time to retrieve the streaming

contents; it is like a VOD whose length keeps growing constantly.

Sachin Deshpande and Jeonghun Noh [15] proposed a time-shifted and live streaming system

(P2TSS) where peers cache part of the video contents to serve other peers’ time-shifted demands. If

there is no peer can provide time-shifted contents, the time-shifted viewers retrieve from the server.

However, time-shifted peers in P2TSS cannot share contents in their playback buffers; only the

distributed stream cache (DSC) is shared. In this report, we implement a live streaming system that

supports time-shifted streaming service. Moreover, time-shifted peers cooperate in pulling the

desired contents from live streaming peers to reduce the load on live peers. We also performed

experiments on the PlanetLab platform to evaluate our system performance.

The remaining part of this report is organized as follows. Chapter 2 describes the current work

in P2P streaming studies related to our research. Chapter 3 presents the idea, design and

implementation of our system in details. Chapter 4 presents an analytic model to estimate the

feasibility of the time-shifted system. Chapter 5 presents the experiment setup, results, system

performance. Finally, we give our conclusions in Chapter 6.

II. Related Work

2.1 P2P live streaming

To provide P2P live streaming service, peers need to receive continuous delivery of video

streams and may need to forward the streams to other peers. Peers can form an overlay structure to

efficiently deliver video streams in a real-time fashion. CoopNet [6] adopts a hybrid model; a source

node is responsible for maintaining a multi-tree overlay of stream delivery and asisting new peers to

join. Using a multiple-description-coding (MDC) technique, each tree transmits a different MDC

description. CoopNet is a complement to a client-server framework; the multi-tree overlay is only

invoked when the video server is unable to handle the load imposed by clients.

In SplitStream [7], the video stream is split into multiple stripes and independent multicast trees

are constructed to deliver a stripe on each tree. The multicast trees are constructed such that an

interior node in one tree is a leaf node in all the remaining trees. In this way, the load of video

forwarding can be evenly spread across all the peers. However, such node-disjointness is a property

hard to achieve, especially in heterogeneous environments [8]. In GridMedia [4], a rendezvous point

assists peers to join the overlay. A new peer first contacts the rendezvous point to obtain a list of

peers on the overlay. Then, the new peer measures the end-to-end delay to each peer in the list and

selects a number of peers as partners, with the probability of a peer being selected in inverse

proportion to the end-to-end delay. This enables nearby peers to become partners, so that the latency

of stream delivery can be reduced. In DONet/CoolStreaming [3], a peer first contacts an origin node

and the origin node randomly selects a deputy peer and redirects the new peer to the deputy. The new

3

peer can obtain a list of partner candidates from the deputy and establish partnership with these

candidates. In addition, the video stream is divided into segments of uniform length, and the

availability of segments in a peer’s buffer is represented as a bitmap called Buffer Map (BM). Each

peer continuously exchanges its BM with its partners, and pulls segments from its partners

accordingly. The scheduling of segment pulling operations takes both availability and the partners’

upload ability into consideration. The segment with the least number of available providers will be

pulled first, from the partner with the highest available and sufficient bandwidth among the multiple

potential providers.

2.2 P2P VoD streaming

Video-on-Demand (VoD) service allows users to watch any video programs at any time. The

major design issues of P2P VoD service include what a peer should cache to alleviate the load of the

VoD servers and how to locate and retrieve cached contents from other peers. In P2Cast [9], peers

watching video clips within a short time interval form a session in a single-tree fashion. Each peer

caches the beginning part of the video program and a new peer can be patched with the cached

beginning part from its parent’s cache. In P2Vod [10], peers form generations, where in each

generation, peers have a synchronized buffer start. A new peer tries to join a generation, or form a

new generation. A number of generations form a video session. If no peer in a session caches the first

video block of the program, the session is closed to new peer, and a new video session is created for

new peers. Both P2Cast and P2Vod only support viewing from the beginning of VoD programs.

oStream [11] allows peers to view from arbitrary positions of a program, but since oStream inserts

new peers into the existing overlay, video disruption is noticeable on the child peers of the new

peers.

BASS [12] uses BitTorrent protocol to distribute video contents, with the VoD server supporting

emergency content dilivery. Their simulation results indicate that the server’s load in terms of

transmission bandwidth is reduced by 34% when the peers’ average outgoing bandwidth is about the

same as the video bit-rate. However, the required bandwidth from the server still increases linearly as

the number of peer increases. PONDER [13] adopts a mesh-based overlay similar to BitTorrent, but

a different delivery strategy to accommodate VoD service. While BitTorrent treats all data units,

called chunks, with equal importance, PONDER partitions the video into equal sized sub-clips, each

of which contains hundreds of chunks. The sub-clip close to the playback deadline is given a higher

priority to download, so that the urgent data can be downloaded first. PONDER also gives up the

tit-for-tat incentives of BitTorrent; peers are served based only on their needs without considering

their contributions. This maximizes the probability that video contents can be downloaded before the

playback time. PONDER achieves 70% saving of server bandwidth with users’ average outgoing

bandwidth being about 80% of video bit-rate, and up to 93% saving with users’ average outgoing

bandwidth being 112% of the video bit-rate.

2.3 Live streaming with time-shifted streaming support

P2P time-shifted streaming services are not as popular as P2P live and P2P VOD streaming. In

recent years, researches on P2P time-shifted streaming include LiveShift [14], P2TSS [15], DRPSS

[16], Pseudo-DHT [17], and J-Tree [18]. LiveShift is a live streaming system based on a multiple

layered tree overlay. When the video buffer reaches a pre-defined size of one segment, the segment

then is stored on a long-lasting storage and the peer adds a reference to the segment on the DHT.

P2TSS proposed a similar system architecture with two distributed cache algorithms: Initial Playback

Position Caching (IPP) and Live Stream Position Caching (LSP) to determine which video block to

be cached for others. Their simulation results indicate that P2TSS achieved low server stress with

7-15 connections to the server every hour. DRPSS and Pseudo-DHT are both based on P2TSS, and

reduce the DHT searching cost. J-tree constructed independent multicast trees to deliver video

4

content. Each multicast tree consists of peers whose playback positions are within 30 seconds after

the root of the multicast tree. The roots of the multicast trees also forms a connected list with their

playback positions in increasing order, so that each root forwards video blocks to its successor. The

root of the first multicast tree receives video blocks from the video source. Their simulation results

indicate the block missing rate is less than 1.5% when time-shifted peers do not change viewing

positions.

2.4 Kademlia DHT

Kademlia is a DHT system based on XOR metric. Each Kademlia node has a 160-bit identifier;

each node chooses its identifier at random when joining the system. The keys used for the hash table

mapping are also 160-bit identifiers. Given two identifiers x and y, the distance between them is the

bitwise XOR (exclusive OR) result interpreted as an integer. The detailed operation will not be

described here, but two major functions used in our system are PUT<key, value> and GET<key>.

PUT<key, value> function stores the <key, value> pair on K nodes closest to the key, where K is a

system parameter that can be adjusted. The GET<key> function retrieves the value associated with

the previous PUT<key, value> have performed.

III. System Design & Implementation

3.1 System overview

We intend to design a P2P streaming service that provides both live and time-shifted streams to

viewers. Our system needs to cope with the following issues: the delivery of live streams, the

caching and publishing of live streams, and the retrieval of time-shifted contents.

1. Live streaming framework

A live streaming framework provides a base for our system, because it supports live streaming

service and the live streaming peers may need to store the received contents for the future use of

time-shifted streaming viewers. Since many live streaming frameworks have been developed and

comprehensively studied, we would not create a brand new live streaming system; instead, we

adopted the design of the latest DONet/Coolstreaming with modifications to suit our needs.

2. Caching strategy

Live streaming peers need to cache the contents they have watched to support time-shifted

streaming peers, and thus the caching strategy is an important issue. Since a live streaming peer may

go off-line, and thus its cached contents cannot be retrieved by time-shifted peers. We will study how

many replicas of live streams need to be cached to ensure that most time-shifted viewers can retrieve

all the contents they need.

3. Time-shifted content retrieval

Time-shifted peers must first locate the cached contents in their interests before they can

retrieve the contents. Kademlia [19-20] distributed hash table (DHT) is used for publishing and

locating the cached contents with special care being taken to ensure that PUT operations do not

over-write each other. In addition, time-shifted peers interested in the same video position would

cooperate to retrieve the cached contents in order to reduce the transmission load on live peers

caching the contents.

Figure 3-1 depicts the architecture of our system. The system consists of three types of nodes: a

bootstrap server, channel providers and streaming viewers. The bootstrap server maintains a list of

available channels and a partial list of participating peers of each channel, in order to bootstrap new

peers. A channel provider is the source node of a streaming channel and registers its channel

information with the bootstrap server. When a viewer joins the system, it first obtains the information

of available channels and participating peers from the bootstrap server, and then retrieves the desired

5

video contents for live or time-shifted streaming.

Live Viewer

Time-shift Viewer

Live Viewer

Live Viewer

Time-shift Viewer

Channel Provider

Bootstrap Server

Channel 1
Live Streaming

Channel 1
Time-shift Streaming

sinaling

Live streaming

Time-shifted streaming

Figure 3-1 The system architecture.

3.2 The streaming transmission

 The streaming transmission of our system is depicted in Figure 3-2. A video source

generates continuous video contents of a channel. A channel provider encodes the video contents into

a continuous stream of video packets and transmits the video packets to the viewers. At the video

source, the video is encoded into UDP packets by a VLC media player [21]. The UDP packets are

then sent to the channel provider via local loopback interface. The channel provider measures the

duration of each packet and adds the duration and packet length for each received UDP packet. In

addition, the channel provider packs continuous packets received in one second into a video block.

Furthermore, in order to support time-shifted streaming, 10 consecutive video blocks, with the

starting block’s timestamp aligned to multiples of 10 seconds, are packed into a video file stored in

local file system. The file is named after the information given by the channel provider, along with

the timestamp of the first video block. For example, a video file with name

“ProviderName_Channel1_20100620182520” stands for 10 blocks of Channel 1 provided by

ProviderName, with timestamp 2010/06/20 18:25:20. Figure 3-3 shows the structures of a video

block and a video file.

Video
Source

Packet Packet Packet...

Provider ViewerP2P overlay

Encodes

Video
Player

Decodes

Figure 3-2 The streaming packet transmission.

6

Duration Packet Length UDP packet payload from VLC

Timed PacketTimestamp Timed Packet Timed Packet ... Timed Packet

Block Length Block Block Length Block ... Block Length Block

Packet with timing information:

A video block of length 1 second:

A video file for storage:

Figure 3-3 The structures of a video block and a video file.

3.3 Live streaming framework based on DONet/Coolstreaming

We adopted the design of the latest DONet/Coolstreaming as the live streaming framework to

deliver live contents. For reader’s interest, we briefly present the characteristics of the latest

DONet/Coolstreaming, and our modifications.

1. Node hierarchy

Each live streaming peer maintains three levels of peers: members, partners and parents.

Members are a subset of live-streaming peers watching the same channel as the peer. No connection

is established between the peer and the members. Connections are established between partners to

exchange the availabilities of video blocks. Parent-child relations are formed when connections are

established for the transmission of video blocks. Apparently a peer’s parents and children are a

subset of its partners.

2. Multiple sub-streams

As described before, the video stream is encoded and packed into continuous video blocks, each

of which is one-second long and time-stamped. The stream is also decomposed into S sub-streams,

by grouping blocks whose timestamps have the same modulo of S. By dividing the stream into

multiple sub-streams, each sub-stream can be retrieved from different parent peers independently,

which means a peer can retrieve blocks from up to S peers. Figure 3-4 shows a video stream is

divided into four sub-streams (i.e., S=4). In our implementation, the video stream is divided into 8

sub-streams.

1716151454321

...13951

...141062

...151173

...161284

...

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

Video Stream

Figure 3-4 Sub-stream decomposition.

3. Joining procedure

When an new LS peer joins, it first contacts the bootstrap server and retrieves a list of available

channels. After selecting a channel, the new peer retrieves a partial list of the active peers of the

channel; the active peers become members known to the peer. Then the new peer randomly selects

24 of the members as its partners. Partners exchange their known members and the availabilities of

video blocks periodically. Since each partner may receive the video sub-streams at different paces for

different sub-streams, The new peer selects from its partners the fastest (with the largest timestamp)

sub-stream of each sub-stream, and then sets initial playback position at the end of the slowest

sub-stream among the S selected sub-streams. This would shorten the end-to-end delay since the

fastest sub-streams are selected. After that, for each sub-stream, the new peer would subscribe the

7

sub-stream from a partner whose pace is closest to the initial playback position. This would allow the

peer to receive all sub-streams at about the same pace.

4. Hybrid push-pull mechanism

To form a parent-child relationship, a peer subscribes a sub-stream with a partner. When a

partner receives a subscription message with a starting position of a sub-stream, the partner becomes

the parent of the subscriber and stores the subscriber’s IP address, a communication port number and

a data port number in a sub-stream subscriber list. The parent starts sending to the subscriber the

subscribed sub-stream starting from the requested position. The parent can be the provider or another

live-streaming peer. The provider pushes a block to each subscriber whenever a new block is

generated. A parent peer pushes a block to each subscriber whenever it receives a new block.

Subscription contracts end when the subscriber re-selects its parents and sends an un-subscription

message to its old parents.

5. Parent re-selection

As the subscription to a parent peer increases, the parent may be overloaded and lags in pushing

blocks to its subscribers. A subscriber can detect such lagging by comparing block availabilities of its

parents, or comparing block availabilities of itself and its partners. The subscriber measures the

lagging of each sub-stream by comparing the position of each sub-stream with the average position

of all sub-streams. If there is a sub-stream lagging over two blocks, which indicates the parent may

be overloaded, the peer re-subscribes the most lagging sub-stream the partner whose position of the

sub-stream is the nearest to the average position. As shown in the lower part of Figure 3-5, the peer

compares the block availabilities in its buffer with a partner’s buffer, and discovers that its

sub-stream 2 is lagging behind the partner’s sub-stream 2 by three blocks. The parent re-selection

procedure is triggered, and a new parent is selected to provide the lagging sub-stream and the

original subscription is cancelled. The new parent can be selected from the current partners or

parents with better block availabilities.

...13951

...141062

...151173

...161284

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

A Peer’s Buffer

...13951

...141062

...151173

...161284

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

A Partner’s Buffer

Block not received

Block received

Figure 3-5 Comparing sub-stream block availabilities for parent re-selection.

8

IP:PortRecord 1

...

IP:PortRecord 2

IP:PortRecord 10

Figure 3-6 The owner list of each video file.

3.4 Distributed cache management strategy

Live streaming peers need to cache streaming contents for TS viewers in the future. The goal of

our distributed cache management strategy is to effectively keep a desired number of replicas of

video files for TS peers. The strategy is composed of two parts: content caching based on probability

and publishing policy.

1. Caching based on probability

To distribute the responsibility of caching streaming contents and keep a desired number of

replicas in the system, we adopted a probability algorithm to determine whether a file should be

cached or not. Assume that the system wants to keep R replicas, and the system has N live streaming

peers. A simple way to do it is that each node should cache the received content with a probability of

R/N. Since R is a given, the discovery of N is the issue here.

To estimate N, first, a local knowledge based on the design of DONet/Coolstreaming is used.

Since each peer keeps connections with its partners and parents, which are active LS peers. It is clear

that N must be no less than the number of partners plus the number of parents. In addition, the

number of the current active LS peers can be obtained by a modified peer-startup procedure. When a

peer joins the system, heartbeat messages are periodically sent to the bootstrap server to update the

member list maintained by the server, and the number of active LS peers can piggybacked to the peer

in the reply messages. With the two values, N is selected as the larger one of the two. The local

knowledge helps the peer to react fast to the change of active peers, especially when the size of

viewers is small, since they would form an almost fully-connected mesh structure, and the number of

the current active viewers helps the peer to make better decisions when the size of viewers becomes

larger.

2. Content publishing policy

After a video file is collected for future time-shifted viewers, the peer publishes the ownership

information of the file on the DHT. In addition, the channel provider caches all video contents but

never publishes the ownership information. The channel provider would act as a backup source; its

cached contents can only be accessed at emergency. For example, when a block is 5 seconds to the

time-shifted playback deadline but had not been received, or when no owner information of a video

file is published on the DHT. Since the system would keep multiple replicas for each video file, the

published record on the DHT is a list of <IP_address:Port> tuples. Fig.3-6 depicts the data structure

of the owner list. The owner list contains records of the <IP_address:Port> of the owners of a video

file, and it can be retrieved by the hashed file name as a key GET(hash(filename)).

When a peer wants to update an owner list, it first tries to get the list from the DHT. If the size

of the list is less than the desired number of replicas, the peer adds its IP address and a port number

9

to the list, and puts the list back to the DHT. However, in this way the accesses of the DHT from the

peers are not coordinated, which means a published record may be overwritten by another peer. This

is a well-known write-after-write data hazard, and will be referred to as publishing collision.

To deal with the publishing collisions, each peer would perform an indirect DHT publishing to

avoid such collisions. The publishing of the owner list of each video file on the DHT is performed by

an LS peer chosen by the bootstrap server. First, the bootstrap server randomly chooses an LS peer

from the partial peer list to be the collector responsible for publishing the owner list of the current

video file. The bootstrap server puts a record <key(video-filename), the chosen peer’s

<IP_address:Port> on the DHT, i.e., the collector (the chosen peer) is the first on the owner list.

Since a video file 10-sec. long, this is done every ten seconds. Second, an LS peer who wants to

publish a video file needs to first check (get) the owner list of the file from the DHT. The LS peer

would also check if the number of owners is less than R (the desired number of replicas). If so, the

LS peer sends a publishing request to the collector, the first peer on the owner list. Third, the

collector receives the publishing requests from LS peers, and sequentially updates the owner list on

the DHT according to the requests.

The collectors are requested to report their publishing results to the bootstrap server. If the

collector fails to publish the owner list on the DHT, it reports to the bootstrap server, and the

bootstrap server will not choose the peer as a collector. This enables the bootstrap server to have a

more reliable list of collectors.

Peers who cannot access the DHT request the channel provider to publish all of their cached

files. The provider does not perform the indirect DHT publishing, but directly publishes the

requested file name by appending the owner to the owner list on the DHT.

3.5 Time-shifted streaming

A TS peer can retrieve time-shifted video content by per-block pulling from other peers, or by

subscribing with TS peers. Using per-block pulling, the TS peer finds the owner list of video blocks,

and pulls video blocks one by one from one of the owners, which can be LS or TS peers. Using

subscription, the TS peer finds a TS peer whose playback buffer contains the needed video blocks,

and subscribes for subsequent video blocks.

1. Per-block pulling

After a TS peer selects playback position, the name of the video file containing the video

content is known. The TS peer hashes the file name to a key and obtains the owner list of the file by

querying the DHT. Then the TS peer tries to pull up to 3 blocks per second, each from a randomly

selected owner. When the TS peer has buffered 20 blocks, i.e. 20-second video, it starts to play back,

or it is forced to play back after it starts to pull video blocks for 30 seconds. After playing back, the

peer pulls 2 blocks per second until un-played blocks occupied half of the playback buffer, and then

it pulls 1 block per second. For emergency handling, un-received blocks that is 10 seconds to the

playback deadline are pulled from the channel provider. In addition, when no owner list is found on

the DHT, the TS peer also pulls blocks from the channel provider. To retrieve video blocks smoothly,

the owner list of the next 10 seconds from the current pulling position should be retrieved in advance.

For example, the file of timestamp 10-19 should be retrieved when the file of timestamp 0-9 is

pulled.

The video contents in the playback buffers of TS peers can be shared with other TS peers. As a

TS peer pulls new blocks into its playback buffer, the old blocks are shifted out of because of the

limited size of the playback buffer. We would like the keep the playback position at the middle of the

playback buffer, so that half of the buffer are watched blocks that can be shared with other TS peers

whose playback positions are older and the other half are real buffer for blocks to be played back.

When the playback position is within 10 video blocks around the middle of the playback buffer, as

depicted in Fig. 3.7, the TS peer’s playback buffer is said to be in stable state.

10

 Range of stable state
10 blocks 10 blocks

½ buffer size ½ buffer size

Buffer Start Playback Position Buffer End

Figure 3-7 The stable state of a TS peer’s buffer

2. Time-shifted stream subscription

TS Peers with overlapping playback buffers can share video blocks with each other. TS peers

are partitioned into groups; peers in each group may share blocks in their playback buffers. The

current playback position of each TS peer can be estimated by its initial playback position and the

lapse of time after the playback. Using the estimated playback position of each TS peer, the bootstrap

server can instruct TS peers with playback positions within a short distance to form a group. The

median of a group is defined to be the average playback positions of all peers in the group. If a new

TS peer’s initial playback position is within 8 minutes of a group median, the bootstrap server

instructs the peer join the group. Otherwise, the bootstrap server creates a new group for the peer.

The peer receives from the bootstrap server a member list of the group. Peers in a group exchange

playback buffer range (the buffer start and end) and the member list every 10 seconds.

With the exchanges of buffer range information, peers can check if their playback buffers are

overlapping or not. After reaching the stable state, two peers with overlapping buffers can form a

supplier-subscriber relation. The peer with an older playback position subscribes time-shifted stream

with the other peer. Once the subscription is accepted, the supplier pushes time-shifted video blocks

to the subscriber one block per second. If more than two peers have overlapping buffers, each peer

would subscribe with the one whose buffer head is closest to its own. This means each supplier

serves at most one subscriber at a time, and the supplier-subscriber relation of two peers will be

rearranged when a new peer joins in the middle of them. The new peer would subscribe with the

original supplier, and the original supplier cancels the contract with the original subscriber. The

original subscriber will find that the new peer is with the closest buffer head and then subscribe with

it. In subscription mode, the emergency handling for un-received blocks is the same as in that of

per-block pulling.

3. Switching between DHT per-block pulling and time-shifted stream subscription

A new TS peer would first start in per-block pulling mode to retrieve initial playback blocks.

After it reaches the stable state and finds a suitable supplier, it sends a subscription message to the

potential supplier, and stops per-block pulling thread if the subscription is accepted. When a peer is

served by a supplier, it stops requesting buffer range information with its group member, but still

replies buffer range requests.

If a subscriber has not received video contents from its supplier for 3 seconds, it sends an

un-subscription message to the supplier and starts per-block pulling. This is designed to react to

unexpected behaviors on the supplier’s side, such as, the shortage of network bandwidth shortage or

disgraceful leaving. The supplier sends an un-subscription message to the subscriber when it changes

its playback position or when another peer with a closer buffer head subscribes. Whenever a

time-shifted peer switches from time-shifted subscription to per-block pulling, it needs to keep

per-block pulling for at least a cycle time (10 sec.) of buffer range exchange to obtain buffer range

information.

When a peer is in time-shifted stream subscription mode, it also continuously retrieves the

current owner list and the next owner list as in per-block pulling mode to achieve smooth switching.

Otherwise it may suffer from a longer startup delay when switching to per-block pulling mode.

11

3.6 System architecture

Figure 3-7 the block diagram of a channel provider. A VLC player encodes the original video

stream into packet streams, and the provider packs the packets into video blocks and put the video

blocks in a streaming buffer for serving LS peers. In addition, the video blocks are packed into video

files and stored in local file system to serve emergent requests from TS peers. Streaming

transmissions are carried out over TCP connections to avoid data losses in the network layer.

 Figure 3-8 depicts the block diagram of a viewer node. The received video blocks are put in

the playback buffer for playback, generating block availabilities and potential block transmission to

other peers. To share video content among peers, the buffered video blocks can be transmitted to

other peers for live streaming or time-shifted streaming. The live stream can only be provided from

the playback buffer, while the time-shifted stream can be provided from both the playback buffer and

the video files stored in the file system. The member, partner and parent management handle peer

hierarchy and the exchange of video block availabilities for LS peers, while only member

management is performed by TS peers. The sub-stream management puts the received video blocks

at the right places in the playback buffer, and fetches the right video blocks to transmit for

sub-stream subscription. The video file management and cache and publish policy cache the buffered

content into the file system and publish the contents to the DHT. Publishing messages are transmitted

over UDP packets. The DHT also takes the responsibility of obtaining block availability published

by block owners in time-shift streaming.

Live Streaming Part

Streaming
Buffer

Provider

Time-shift Streaming Part

File
System

VLC Player

Subscriber Management

Sub-stream Management

Request Handler Video Block Handler
Network Interface

Node NodeNode

Video File management

Figure 3-8 The block diagram of a channel provider

12

Live Streaming Part

Playback Buffer

Viewer

Time-shift Streaming Part

File
System

VLC Player

Member Management
Partner Management
Parent Management

Sub-stream Management

DHT

Request Handler Video Block Handler
Network Interface

Node NodeNode

Cache and Publish Policy

Video File Management

Both Part

Figure 3-9 The block diagram of a viewer.

IV. Feasibility analysis of time-shifted streaming

 A time-shifted viewer chooses a video position in the past and tries to obtain the time-shifted

contents cached by live peers. We intend to determine whether a time-shifted viewer can retrieve his

or her desired contents in full. It is clear that the answer depends on whether the desired contents

have been cached by live peers and whether the peers with the cached contents are on-line or not.

Assume that the arrivals of live viewers form a Poisson process with arrival rate , a live viewer

watches the live program for a random duration exponentially distributed with mean 1/ It is clear

that the number of live peers can be modeled as a Markov process depicted in Fig 4-1, i.e., an

M/M/ queue. If each live peer caches all the contents that the viewer watches, the number of live

peers caching a video segment equals to the number of replicas cached for the segment. The steady

state probability of state k, denoted by Pk, can be derived as follows,

 /

!

)/( e
k

u
p

k

k (1)

0 1 2 3

  

4

 

••••

   

Figure 4-1 Markov process of the number of live viewers

In addition, we need to consider whether the peers who cached the desired time-shifted contents

13

are on-line or not; only the on-line peers with the cached contents can provide. Assume that the

on-line and off-line state of a peer forms an alternating renewal process where the on-line intervals

are exponentially distributed with mean 1/μon, and the off-line intervals are also exponentially

distributed with mean 1/μoff. Let Pon denote the probability that a peer is on-line, and Poff the

probability of being off-line. It is clear that Poff = 1 – Pon, and Pon can be obtained as follows.

onoff

off

offon

on
onp















/1/1

/1

(2)

When a time-shifted viewer chooses an initial playback position, the time-shifted peer re-visits

the Markov process of the live viewers at the chosen position. The process is recorded in the form of

cached contents by the live peers. In addition, the time-shifted peer is a random observer of the

on-and-off alternating renewal processes of the live peers at the current time. Counting the number of

the on-line live peers observed by the time-shifted peer, is a birth-death process. If the interval

between the chosen position and the current time is large enough, with respect to the viewing

intervals, and the on-line and off-line intervals of live peers, the Markov process and the birth-death

process are independent. The state initially observed by the time-shifted viewer can be modeled by

superimposing the Markov process and the birth-death process, and we obtain a two-dimensional

continuous Markov chain as depicted in Fig. 4-2, where State (i, j) represents that i+j peers cached

the desired contents, i of them are on-line and j of them off-line. Note that this Markov chain

superimposes two different time-spans; the time-span when the chosen playback contents were live,

and the time-span of the current time. The former will be referred to as the time-shifted time-span,

and the latter as the current time-span. Note that if we merge all states in each column, i.e., states

with the same i+j value, the Markov chain in Fig. 4-2 is reduced to that in Fig. 4-1.

14

Figure 4-2 The number of available replicas for time-shifted contents

There are at most four types of events that cause out-flow transitions at state (i, j) in Fig. 4-2.

Take state (2, 1) for example, i.e., we have three live peers caching the desired contents in the

time-shifted time-span, and two of them are on-line and one of them is off-line in the current

time-span. First, in the time-shifted time-span, state (2, 1) transits to state (1, 1) with rate

2indicating one of the on-line live viewers finished watching, and transits to state (2, 0) with rate

indicating the on-line live viewer finished watching. Second, state (2, 1) transits to state (3, 1)

with rate Pon and to state (2, 2) with rate Poff, indicating a new live viewer arrived. These

transitions are the mixed effect of the time-shifted and current time-spans; the live viewer arrived at

the time-shifted time-span, but its on-line/off-line state is determined in the current time-span. Third,

in the current time-span, state (2, 1) transits to state (3, 0) with rate μoff indicating the off-line live

viewer becomes on-line. Last, state (2, 1) transits to state (1, 2) with rate 2μoff indicating one of the

two on-line live viewers becomes off-line.

The Markov process in Fig. 4-2 satisfies Detail Balance Equations, i.e., for each pair of

neighboring states, the flows of transitions to each other are the same. For example, consider two

neighboring states a and b. Let and denote the state probabilities, respectively, the

transition rate from a to b, and that of b to a. We have a Detail Balance Equation as

 (3)

Like all Markov processes, the Markov process in Fig. 4-2 also satisfies Global Balance

0,0 1,0 2,0 3,0   4,0
 ••••

pon

••••

••••

••••

••••

pon pon pon pon

0,1 1,1 2,1
  3,1 
pon pon pon pon

0,2 1,2 2,2
 

pon pon pon

0,3 1,3
 

pon pon

on
off

poff


on

off
poff


on

off
poff


on

off
poff



on
off

poff


on

off
poff


onoff

poff



on
off

poff


on

off
poff



poff


on

off

poff



poff



poff



poff



15

Equations, i.e., the flow of transitions into each state equals to the flow of transitions out of the state.

Consider state a, the Global Balance Equation can be express as

 (4)

Let Pi,j denote the stationary state probability of state (i, j) in Fig. 4-2. Since the Markov process

of the number of live peers at the time-shifted time-span, and the birth-death process of on-line

live-peers at the current time span are independent, Pi,j can be obtained as

 λ μ

 λ μ

 (5)

The intuition behind Eq. (5) is simple; Pi,j equals the probability of having i+j live peers times

the probability that i of them are on-line. One can also verify that the Pi,j given in Eq. (5) satisfies the

Detail Balance Equation in Eq.(3).

The steady state probabilities of the Markov chain in Fig. 4.2 are what a time-shifted viewer

would observe when the viewer chooses an initial playback position. Assume that the time-shifted

viewer would watch the chosen time-shifted contents for a time interval of length exponentially

distributed with mean 1/ Let Pc denote the probability that the time-shifted viewer can completely

watch the desired contents, i.e., there are on-line peers to provide all the desired contents. Pc can be

obtained from the Imbedded Markov chain of the Markov chain depicted in Fig. 4-3. Note that the

Markov chain is modified from the Markov chain in Fig. 4-2. A new state c is added; it represents

that the time-shifted viewer has retrieved all the desired contents. All states (i, j), i  0, make a

transition to state c with rate . In addition, no out-flow transition exists for states (0, j), because at

those states, it is determined that the time-shifted peer cannot obtain the desired contents, and thus

the viewer could not watch the desired contents in full.

16

0,0 1,0 2,0 3,0S() S() S() 4,0
S() S()••••

••••

••••

••••

••••

ponS() ponS() ponS() ponS()

0,1 1,1 2,1
S() S() 3,1S() S()

ponS() ponS() ponS()

0,2 1,2S() 2,2
S() S()

ponS() ponS()

0,3 1,3
S() S()

ponS()

onS()
On

S()off

S()poffS()

S() on

S()
off

S()Poff

S()

S() On

S()
Off

S()Poff

S()

S()

onS()
on

S()off

S()poffS()

S()
on

S()



off

S()



Poff

S()

S()

onS()
On

S()off

S()poffS()

S()

onS()

Poff

S()

S()

Poff

S()

S()

Poff

S()

S()

poffS()

S()c

ν/S(i,j) ν/S(i,j)

ν/S(i,j)

ν/S(i,j)

...
...

...

on
Figure 4-3 A modified Markov process observed by a time-shifted viewer

The steady state probabilities of the Markov chain in Fig. 4-2 were used as the initial state

probabilities of the imbedded Markov chain in Fig. 4-3. Note that the initial probability of state c is 0.

In the imbedded Markov chain, each transition has a transition probability, not a rate. Taking an

example of out-flow transitions of state (2,1) in Fig 4-4, the transition probability of a transition

equals to its rate divided by the sum of all the transition rates originated from the same state of the

transition. Let S(i,j) denote the sum of state transition rates out of state(i,j), for example, S(2,1) =

offλPon + λPoff + 2on +  2 A transition probability matrix P for the imbedded Markov

chain can be obtained. Let i denote the initial probability vector of the imbedded Markov chain, i.e.,

the steady state probabilities of the Markov chain in Fig. 4-2. Let  denote the limiting probability

vector of the imbedded Markov chain. We have

 ∞

Since state c and states (0, j) have no out-going transition, they have non-zero limiting

probabilities; other states’ limiting probabilities are all zero. Pc, the probability that a TS peer can

find all the desired contents from on line peers, equals to the limiting probability of state c.

17

2,1S()

ponS()

offS()
S()

onS()
poffS()c

νS()

Figure 4-4 Out-flow transitions of a state

 Let Pi,j denote the stable state probability of state (i,j). Let ER denote the expected number of

available replicas; ER = .

Selecting reasonable values for λ, μ, ν, μon, μoff, we can obtain Pc and ER as indicators of the

feasibility of TS streaming service. The average inter-arrival time of LS peers, 1/λ was assumed to be

4.28 min. This small arrival rate is chosen for being conservative. After arrival, all peers, LS or TS,

would watch for 60 min., i.e., 1/μ = 60 and 1/ν = 60, because TV programs are usually 1 hour long.

The expected number of cached replicas for each video block, λ/μ, equals 14. Four combinations of

μon and μoff were tested; 1/μon:1/μoff = 6:18 (hr), 8:16, 10:14, and 12:12. Fig. 4-5 depicts ER for the

four combinations. It is clear that ER increases linearly as the on-line interval (1/μon) increases. Fig.

4-6 depicts Pc. The results indicate that Pc drop sharply when the on-line interval is less than 8 hr., i.e,

ER is less than 5, When the on-line interval is 12 hr., i.e., ER equals 7, a TS viewer would view the

desired contents in full with probability greater than 99%.

Figure 4-5 The expected number of replicas with 1/λ = 4.28, 1/μ = 60, 1/ν = 60 (min.)

2

3

4

5

6

7

8

06:18 08:16 10:14 12:12

ER

1/μon:1/μoff (hr.)

18

Figure 4-6 Pc with 1/λ = 4.28, 1/μ = 60, 1/ν = 60 (min.)

 Computer simulations have been performed to validate our analytic model. Computer

simulation consists of two stages. At stage 1, the arrival and departure records of live viewer were

recorded. As depicted in Fig. 4-7, the arrivals of live viewers form a Poisson process with arrival rate

 and a live viewer watches the live program for an exponentially distributed duration mean 1/For

each live peer, we record its arrival and departure times. Stage2 simulates the on-and-off alternating

renewal process of the live peers, and time-shifted viewers retrieving the desired contents. As

depicted in Fig. 4-8, the on-line or off-line status of each live peer is determined independently with

probability Pon being on-line. For each peer, its alternating on-line and off-line periods were

generated with mean 1/μon and 1/μoff, respectively. For each peer, we record the on-line and off-line

events. A time-shifted viewer randomly chooses an initial video position, and a viewing duration

exponentially distributed with mean 1/. The peers’ arrival and departure records at the chosen

position and the peer’s on-line and off-line records are compared to verify if there are on-line peers

to provide the contents to the time-shifted viewers for the entire duration.

 We randomly generate and record 1000 sets of LS peers’ events. Each set contains LS peers’

arrival and departure events in a three-day period. For each event set, 10000 TS viewers view the

three-day video content starting from independently random positions. The simulation and analytic

results are plotted in Figs. 4-9 and 4-10. We can see that the analytic and simulation results match.

This validates our analytic model.

0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

06:18 08:16 10:14 12:12

P
c

1/μon:1/μoff (hr.)

19

Figure 4-7 The arrivals and departures of LS viewers

Figure 4-8 Simulation with LS peers getting online and offline

Figure 4-9 Pc with 1/λ = 4.28, 1/μ = 60, 1/ν = 60 (min.)

0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

06:18 08:16 10:14 12:12

P
c

1/μon:1/μoff (hr.)

analysis

simulation

20

Figure 4-10 The expected number of replicas with 1/λ = 4.28, 1/μ = 60, 1/ν = 60 (min.)

V. Performance Measurements

5.1 Experiment Environment

 To evaluate the system performance, we performed experiments on PlanetLab, an open

global research network [20]. A channel provider was located in the Internet Communication

Laboratory, NCTU. The number of PlanetLab nodes we use is not the same in every experiment

because of the availability of the nodes. The total number of nodes was targeted at 120; half of them

were live peers, and the other half were time-shifted peers. The peers were located in the United

States, European and East Asia. The bit-rate of the video stream is 400 kbps, the number of

sub-streams is 8, and each peer can connect to up to 24 peers as partners. The buffer size of each peer

is 120 video blocks, i.e., 120 seconds. The system intends to keep 10 replicas for each video block.

Time-shifted peers cache each received block with probability 0.5. Table 4-1 lists the system

parameters used in our system.

Table 5-1 Experiment Parameters

System parameters Value

Video streaming bit-rate 400 kbps

The number of sub-streams 8

The maximum number of partners 24

The number of replicas to keep 10

Buffer size 120 blocks

In the experiment, we first started the bootstrap server and the streaming provider, and then

peers joined the system as in a Poisson process, with an expected inter-arrival time of 60 seconds.

Whether a PlanetLab node is chosen to be a live or a time-shifted viewer is determined randomly in

advance. For each time-shifted peer, it randomly selects streaming playback position between the

beginning of the streaming and the current streaming. The experiment lasts 2 hours.

2

3

4

5

6

7

8

06:18 08:16 10:14 12:12

ER

1/μon:1/μoff (hr.)

analysis

simulation

21

5.2 System performance and Analysis

5.2.1 The live streaming

 First, we examine three commonly used criterions in evaluating a live streaming service: startup

delay, end-to-end delay and playback continuity. The startup delay is the time after a user tunes to a

channel, and before the video content can be played out. End-to-end delay, also referred to as

playback delay, is the average transmission delay of video packets between the source and the viewer

peers. Continuity index is the number of blocks that arrive before the playback deadlines over the

total number of blocks that a peer should receive.

Figure 5-1 The startup delay distribution

Figure 5-2 The end-to-end delay distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<10 10-20 20-30 30-40 40-50

P
e

rc
e

n
ta

ge
 o

f
n

o
d

e
s

startup delay in second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<10 10-20 20-30 30-40

P
e

rc
e

n
ta

ge
 o

f
 n

o
d

e
s

end-to-end delay (sec.)

22

Figure 5-3 The continuity index distribution

Figure 5-1 depicts the distribution of startup delay of the live streaming peers in our experiment.

Most of the peers experience a startup delay less than 20 sec.; the average startup delay is 16 sec.,

which is a satisfactory result for P2P live streaming service. Figure 5-2 depicts the distribution of the

end-to-end delay of the live streaming nodes. Most of the nodes experience an end-to-end delay less

than 30 sec., and the average end-to-end delay is 22 sec. Note that the total number of peers in Fig.

5-2 is different from that of Fig. 5-1. It is because peers with negative end-to-end delay, which is

impossible, is eliminated from Fig. 5-2. The negative end-to-end delays were the results of

un-calibrated NTP time on the PlanetLab nodes, but we do not have the authority to adjust the NTP

time. Fig. 5-3 depicts the distribution of continuity index of live streaming nodes. 75% of them

achieve over 97% continuity index; the average continuity index is 96%.

5.2.2 The time-shifted streaming

 To serve time-shifted peers, live streaming video files collected by the live peers need to be

published on the DHT properly. First, we examine the probability that a file is successfully published.

The probability can be obtained by dividing the total size of the owner lists of all video files on the

DHT by the total number of video files cached by live peers. Note that all the owner lists are

retrieved from the DHT at the end of the experiment. In the experiment on PlanetLab described

above, the probability of success publishing is 97.39% , i.e., only less than 3% of the cached video

files fail to be published.
 The performance measurements that we are interested for time-shifted streaming include startup

delay, the missed ratio of time-shifted blocks, and the provider stress. In our experiment, there were

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1-0.99 0.99-0.98 0.98-0.97 0.97-0.96 0.96-0.95 0.95-0.9 0.9-0.7 0.7-0.5

P
e

rc
e

n
ta

ge
 o

f
 n

o
d

e
s

continuity index

23

51 time-shifted peers and 60 live peers. Fig. 5-4 depicts the distribution of startup delay. The average

startup delay of TS peers is 16.5 sec. The peak in the interval 26-30 seconds is the consequence of a

30-second startup delay bound in forced starting for TS streaming.

Fig. 5-5 depicts the distribution of the block missed ratios. The total number of video blocks

received by all the time-shifted viewers was 176,802. The block missed ratio was only 0.42%, which

is satisfactory. Half of the time-shifted peers experience no missed block. 85% of them achieve a low

missed rate less than 1%. Only one peer encounters an unacceptable missed rate of 9.38%. The

reason may be the temporary overloading with other people’s application on that node, since all

nodes on PlanetLab are shared.

The channel provider stress can be measured by the ratio of blocks that are obtained from the

provider. These blocks can furthermore be divided into three categories: emergency pulling, failure

to obtain from the owners, no owner found on the DHT. The experiment results in Table 5-2 indicate

that only 2.73% of the video blocks were obtained from the provider, i.e., more than 97% of the

blocks were served by peers. Among the 2.73% of the blocks obtained from the provider, 1.11%

were for emergency pulling, 0.28% were due to failures to obtain from the owners, and 1.34% were

because of no owner found. Overall, the stress on the channel provider from TS peers is slight.

Table 5-2 The TS streaming load on the channel provider

From provider

Emergency pulling

2.73%

1.11%

Failing to obtain from the owners 0.28%

No owner found 1.35%

Figure 5-4 The startup delay distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 6-10 11-15 16-20 21-25 26-29 30

P
e

rc
e

n
ta

ge
 o

f
n

o
d

e
s

Startup delay (sec.)

24

Figure 5-5 The distribution of block missing rates

 We also performed another experiment in which time-shifted viewers may change their

playback positions. In this experiment, TS viewers watch for a random interval from 15 to 25

minutes, and then change the playback position randomly chosen between the system startup time

and the current time. The number of total received blocks was 195632, and the number of TS peers

in this experiment was 56. Fig 5-6 depicts the distribution of startup delay. The delay in playing out

after a TS viewer changes his/her playback position is also considered as startup delay. The average

startup delay is 15.0 sec., which is 1.5 sec. shorter than that of the previous experiment where TS

viewers do not change playback positions. This is because some startup procedures, such as

initializing network connections, are only necessary in the first startup. As a result, the average

startup delay decreases.

Table 5-3 The TS streaming load on the channel provider with peers changing playback positions

From provider

Emergency pulling

3.01%

0.75%

Failing to obtain from the owners 1.01%

No owner found 1.12%

-0.1

6E-16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0-0.1% 0.1-0.5% 0.5-1% 1-2% 2-5% 5-10%

P
e

rc
e

n
ta

ge
 o

f
 n

o
d

e
s

The block missing rate

25

Figure 5-6 The startup delay distribution with changing playback positions

Figure 5-7 The distribution of block missing rate with peers changing playback positions

0

0.1

0.2

0.3

0.4

0.5

0.6

 6-10 11-15 16-20 21-25 26-29 30

p
e

rc
e

n
ta

ge
 o

f
n

o
d

e
s

seconds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0-0.1% 0.1-0.5% 0.5-1% 1-2% >2% (78%)

P
e

rc
e

n
ta

ge
 o

f
 n

o
d

e
s

The block missing rate

26

Fig. 5-7 depicts the distribution of the block missing ratios for the TS peers. The average block

missed ratio was 0.65%. 84% of the TS peers achieve a low missing rate less than 1%. Only one

peer experience an ultra high missed ratio of 78%, which may be due to a temporary overloading on

that node.

Table 5-3 lists the percentage of video blocks that is obtained from the channel provider by TS

peers. The results indicate that although time-shifted viewers change their playback positions, only

3% of video blocks were obtained from the provider. The provider stress only increases by 0.3%.

This imply that when TS peers change viewing positions, they experience about the same video

block shortage from the DHT.

The subscription rate is defined to be the proportion of blocks received by subscription among

the total received blocks. To evaluate how effectively the time-shifted stream subscription enhances

the cooperation between time-shifted viewers and reduces the block transmission load on LS peers,

we performed further experiments to analyze the time-shifted streaming sources. We categorize the

experiments into four cases, cases (1-4) as indicated in Table 5.4, depending on whether time-shifted

stream subscription and/or changing playback positions are allowed or not. The way that TS peers

change playback positions is the same as the previous experiment, and the number of time-shifted

peers are also around 60.

Table 5.4 The categories of experiments to analyze the time-shifted streaming sources

 No peer changing

playback positions

With peer changing

playback positions

No TS subscription (1) None (3) CP

With TS subscription (2) Sub (4) CP+Sub

Figure 5-8 The effects of TS subscription with no peer changing playback positions

Fig. 5-8 depicts the source distribution of TS video blocks sources in cases (1) and (2). When no

TS subscription is allowed, 43% of the video blocks are pulled from LS peers and 57% pulled from

Pulling from LS
peers
57%

Pulling from TS
peers
43%

None

Pulling from LS
peers
42%

Pulling from TS
peers 26%

TS subscription
32%

Sub

27

TS peers. When TS subscription is used, 32% of the video blocks are provided by TS subscription,

26% pulled from TS peers and 42% pulled from LS peers. Fig 5-9 depicts the effect of TS

subscription when TS peers may change their playback positions. The way they change playback

position is the same as in the previous experiments. When a peer changes its playback position, the

peer may have a chance to rewind to the previously watched video segment, and some of the video

blocks may be cached in local storage. When TS subscription is not allowed, 18% of the video

blocks are obtained from local storage, 37% pulled from TS peers, and 45% from LS peers. When TS

subscription is used, 28% for the video blocks are provided by TS subscription, 10% o obtained from

local storage, 24% pulled from TS peers, and 38% from LS peers. In any case, TS subscription

significantly reduce the pulling requests on both TS and LS peers.

Figure 5-9 The effects of TS subscription with peer changing playback positions

VI. Conclusions

In this report, we have developed an analytic model to estimate the number of video replicas

required to support TS streaming. Our analytic results indicate seven on-line replicas are sufficient to

serve 99.5% of TS viewers obtaining all the needed video. Based on the analytic results, the desired

number of replicas was chosen to be 10 in our PlanetLab experiment. We had implemented a P2P

live/time-shifted streaming system and presented a distributed cache management strategy to cache a

desired number of time-shifted streaming replicas for time-shifted streaming and an indirect

publishing mechanism to improve the successful publishing rate. The time-shifted stream

subscription further enhances the cooperation between time-shifted peers. We also studied the

performance of the system on PlanetLab. Our experiment results show the feasibility of

live/time-shifted P2P streaming systems. In our experiments, the live streaming achieved a startup

delay of 16 seconds, an end-to-end delay of 22 seconds, a continuity index over 96% and a

successful publishing rate over 97%.. For the time-shifted streaming, with the video provider as an

emergency handler, we achieved a block missing rate of 0.42%, with less than 3% of the streaming

data from the provider. The time-shifted stream subscription mechanism reduces 15% load on live

peers when TS peers do not change playback positions, and 8% when they change playback

Pulling from LS
peers
45% Pulling from TS

peers
 37%

Local cached files
18%

CP

Pulling from LS
peers
38%

Pulling from TS
peers
24%

Local cached files
10%

TS subscription
28%

CP+Sub

28

positions.

References
[1] F. Douglis and M.F. Kaashoek, “Scalable Internet Services,” IEEE Internet Computing, vol. 5, no.

4, 2001, pp. 36–37.

[2] A. Vakali, and G. Pallis, “Content delivery networks: status and trends” IEEE Internet

Computing, vol. 7, no. 6, 2003, pp. 68-74.

[3] Xinyan Zhang, et al., “CoolStreaming/DONet: a data-driven overlay network for peer-to-peer

live media streaming” INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings IEEE, vol. 3, pp. 2102-2111. Mar. 2005

[4] Li Zhao, et al., “Gridmedia: A Practical Peer-to-Peer Based Live Video Streaming System”

Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pp. 1-4. Nov. 2005

[5] Bo Li, et al., “Inside the New Coolstreaming: Principles, Measurements and Performance

Implications” INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pp.

1031-1039, Apr. 2008

[6] V. N. Padmanabhan, et al., “Distributing streaming media content using cooperative networking,”

in Proc. 12th international workshop on Network and operating systems support for digital audio

and video, pp. 177-186. Apr. 2002.

[7] M. Castro, et al., “Splitstream: High-bandwidth content distribution in a cooperative

environment,” in Proc. nineteenth ACM symposium on Operating systems principles, pp.

292-303. Oct. 2003.

[8] V. Venkataraman. K. Yoshida, and P. Francis, “Chunkyspread: Heterogeneous Unstructured

Tree-Based Peer-to-Peer Multicast” Network Protocols, 2006. ICNP '06. Proceedings of the

2006 14th IEEE International Conference on, pp 2-11. Nov. 2006

[9] Yang Guo, et al., “P2Cast: Peer-to-peer Patching Scheme for VoD Service” Multimedia Tools

and Applications, vol. 33, pp. 109-129, 2007

[10] T.T. Do, K.A. Hua, and M.A. Tantaoui, “P2VoD: providing fault tolerant video-on-demand

streaming in peer-to-peer environment” Communications, 2004 IEEE International Conference

on, vol. 3, pp. 1467-1472, Jun. 2004

[11] Yi Cui, Baochun Li, and K. Nahrstedt, “oStream: asynchronous streaming multicast in

application-layer overlay networks” Selected Areas in Communications, IEEE Journal on,

vol. 6, no. 1, Jan. 2004

[12] C. Dana et al., “BASS: BitTorrent Assisted Streaming System for Video-on-Demand”

Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pp. 1-4. Nov.2005

[13] Yang Guo et al., “PONDER: Performance Aware P2P Video-on-Demand Service” Global

Telecommunications Conference, 2007. GLOBECOM '07. IEEE, pp. 225-230, Nov. 2007

[14] F.V. Hecht et al., “LiveShift: Peer-to-Peer Live Streaming with Distributed Time-Shifting”

Peer-to-Peer Computing , 2008. P2P '08. Eighth International Conference on, pp. 187-188, Sept.

2008

[15] S. Deshpande, and J. Noh, “P2TSS: Time-shifted and live streaming of video in peer-to-peer

systems” Multimedia and Expo, 2008 IEEE International Conference on, pp.649-652. Jun. 2008

[16] Hou Xiuhong, Ding Ruipeng, “Research of providing live and time-shifting function for

structured P2P streaming system” Machine Vision and Human-Machine Interface (MVHI), 2010

29

International Conference on, pp. 239 - 242. April. 2010

[17] S. Deshpande, and J. Noh, “Pseudo-DHT: Distributed Search Algorithm For P2P Video

Streaming” Multimedia, 2008. ISM 2008. Tenth IEEE International Symposium on, pp. 348 -

355. Dec. 2008

[18] Weihui, Junpeng Xu, Cong Qing, “Dynamic Multicast Tree to Support time-shifting in

Real-Time Streaming” Intelligent Computing and Cognitive Informatics (ICICCI), 2010

International Conference on, pp. 251 - 254. June 2010

[19] P. Maymounkov and D. Mazi`eres, “Kademlia: A peerto- peer information system based on the

XOR metric.” Electronic Proceedings for the 1st International Workshop on Peer-to-Peer

Systems, Mar. 2002

[20] Plan-x, http://www.thomas.ambus.dk/plan-x/routing/

[21] VideoLAN – VLC Media Player, http://www.videolan.org/vlc/

[22] PlanetLab, http://www.planetlab.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Weihui.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Junpeng%20Xu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Cong%20Qing.QT.&newsearch=partialPref

國科會補助計畫衍生研發成果推廣資料表
日期:2011/10/27

國科會補助計畫

計畫名稱: 點對點實況及移時播放之影音服務 II

計畫主持人: 張明峰

計畫編號: 99-2221-E-009-103- 學門領域: 計算機網路與網際網路

無研發成果推廣資料

99 年度專題研究計畫研究成果彙整表

計畫主持人：張明峰 計畫編號：99-2221-E-009-103-
計畫名稱：點對點實況及移時播放之影音服務 II

量化

成果項目 實際已達成

數（被接受

或已發表）

預期總達成
數(含實際已
達成數)

本計畫實

際貢獻百
分比

單位

備 註 （ 質 化 說

明：如數個計畫
共同成果、成果
列 為 該 期 刊 之
封 面 故 事 ...
等）

期刊論文 0 0 100%
研究報告/技術報告 1 1 100%
研討會論文 0 0 100%

篇

論文著作

專書 0 0 100%
申請中件數 0 0 100%

專利
已獲得件數 0 0 100%

件

件數 0 0 100% 件
技術移轉

權利金 0 0 100% 千元

碩士生 4 4 100%

兩碩士生畢業，其
中一人的論文為
本計畫成果的一
部份。

博士生 0 0 100%
博士後研究員 0 0 100%

國內

參與計畫人力
（本國籍）

專任助理 0 0 100%

人次

期刊論文 0 1 100%
研究報告/技術報告 0 0 100%
研討會論文 0 0 100%

篇

論文著作

專書 0 0 100% 章/本
申請中件數 0 0 100%

專利
已獲得件數 0 0 100%

件

件數 0 0 100% 件
技術移轉

權利金 0 0 100% 千元
碩士生 0 0 100%
博士生 0 0 100%
博士後研究員 0 0 100%

國外

參與計畫人力
（外國籍）

專任助理 0 0 100%

人次

其他成果
(無法以量化表達之成

果如辦理學術活動、獲
得獎項、重要國際合
作、研究成果國際影響
力及其他協助產業技
術發展之具體效益事
項等，請以文字敘述填
列。)

無

 成果項目 量化 名稱或內容性質簡述
測驗工具(含質性與量性) 0
課程/模組 0
電腦及網路系統或工具 0
教材 0
舉辦之活動/競賽 0
研討會/工作坊 0
電子報、網站 0

科
教
處
計
畫
加
填
項
目 計畫成果推廣之參與（閱聽）人數 0

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估
■達成目標
□未達成目標（請說明，以 100 字為限）

□實驗失敗

□因故實驗中斷
□其他原因

說明：

2. 研究成果在學術期刊發表或申請專利等情形：
論文：□已發表 ■未發表之文稿 □撰寫中 □無

專利：□已獲得 □申請中 ■無

技轉：□已技轉 □洽談中 ■無

其他：（以 100 字為限）
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限）
本計畫之執行成果有下列兩項學術與應用創新：

1. 提出一創新的 Markov 程序分析方法，同時考量即時使用者及移時使用者的時間軸上的

事件，計算移時使用者取得所有所需影音資料的機率。

2. 實作了一支援移時服務的點對點實況串流系統。此系統提出針對移時串流影音資料的

分散式快取管理解決策略，並加強移時影音用戶的合作關係有效分散對於整體系統的負

擔。

