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Due to extensive applicability and computational ease,
moderated multiple regression (MMR) has been widely
employed to analyze interaction effects between two
continuous predictor variables. Accordingly,
considerable attention has been drawn toward the
supposed multicollinearity problem between predictor
variables and their cross-product term. This article
attempts to clarify the misconception of
multicollinearity in MMR studies. The counter-
intuitive yet beneficial effects of multicollinearity
on the ability to detect moderator relationships are
explored. Comprehensive treatments and numerical
investigations are presented for the simplest
interaction model and more complex three-predictor
setting. The obtained results provide critical insight
that not only avoids misleading interpretation but
also yields better understanding of the impact of
intercorrelation among predictor variables on MMR
analyses.
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On the misconception of multicollinearity in detecting moderating effects:
Multicollinearity is not always detrimental

Abstract

Due to its extensive applicability and computational ease, moderated multiple
regression (MMR) has been widely employed to analyze interaction effects between two
continuous predictor variables. Accordingly, considerable attention has been drawn toward the
supposed multicollinearity problem between predictor variables and their cross-product term.
This article attempts to clarify the misconception of multicollinearity in MMR studies. The
counter-intuitive yet beneficial effects of multicollinearity on the ability to detect moderator
relationships are explored. Comprehensive treatments and numerical investigations are
presented for the simplest interaction model and more complex three-predictor setting. The
results provide critical insight that both helps avoid misleading interpretations and also yields
better understanding for the impact of intercorrelation among predictor variables in MMR

analyses.
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The use of moderated multiple regression (MMR) has become common across a wide
variety of social science disciplines in the search for interaction effects. But despite its
popularity, substantial concerns have been raised regarding the considerable difficulties of
detecting moderation relationships that are strongly expected or theoretically supported.
Numerous researchers have noted that the hypothesis tests of moderating effects often have
low statistical power and yield erroneous conclusions, impeding the theoretical development
and scientific advancement of moderation research. In response to this problem, design
considerations and model characteristics pertaining to power issues in MMR applications
have been examined both conceptually and empirically. Notably, Aguinis (1995) identified
prominent factors that attenuate statistical power and proposed practical solutions to
low-power situations, especially for models with continuous moderators. On the other hand,
Aguinis and Stone-Romero (1997), and Stone-Romero, Alliger and Aguinis (1994) focused on
the methodological artifacts and critical implications associated with statistical power of
dichotomous moderators. Furthermore, the recent review by Aguinis et al. (2005) emphasized
the importance of effect size and power in assessing moderating effects in the context of
categorical moderators. In light of these discussions in the current literature, the responsible
factors that stand out as being most crucial include sample size, magnitude of moderating
effect, reliability of criterion and predictor variable scores, joint distribution of predictor
variables, and intercorrelation of predictor variables.

In addition to the general treatment by Aguinis (1995) mentioned above, the
multicollinearity problem in MMR has been examined by Cronbach (1987), Dunlap and
Kemery (1987, 1988), Ganzach (1998), Morris, Sherman and Mansfield (1986), and among
others. It should be evident that the intercorrelation among the continuous predictor variables
and their cross-product term is inevitably relevant to the detection of interaction in general.

Hence, no single study of MMR with continuous variables will be adequate without



considering the notion of multicollinearity. Accordingly, it is important to emphasize the
distinction between essential and nonessential multicollinearity (Marquardt, 1980). Essential
multicollinearity exists because of actual relationships between predictor variables, whereas
the latter occurs merely due to the scaling or nonzero mean of predictor variable, and can be
removed by centering predictor variables. Related issues can be found in Kromrey and
Foster-Johnson (1998), Smith and Sasaki (1979) and Tate (1984). It is generally known that
other remedies exist for coping with multicollinearity, as discussed in linear regression
textbooks such as Cohen et al. (2003) and Kutner, Nachtsheim and Neter (2004). However,
for clear understanding it is essential that researchers should direct the subtle formulation and
evaluation of moderating effects with sound theory and consider the delicate interrelationships
and significance within the response and predictor variables.

In line with the forgoing concerns, Dunlap and Kemery (1988) examined the effects of
both predictor reliabilities and predictor correlations on the statistical power of MMR. Their
Monte Carlo simulation results showed that, as anticipated, the power to detect moderating
effects is diminished by predictor unreliability. However, the corresponding empirical
evidence gives rise to the surprising contention that the ability to detect interaction effects
increases with increasing correlation between predictor variables. Since their discussions were
focused more on the major issue of measurement error, and numerical findings were obtained
from somehow limited settings in the context of two-predictor interaction models, Dunlap and
Kemery (1988) did not provide insight into the counterintuitive power behavior in relation to
multicollinearity diagnostics. It seems that this particular result has been overlooked in the
literature and a further explanation that incorporates the notion of multicollinearity does not
exist to our knowledge. Accordingly, it is of practical importance to assess whether this
situation persists over a broader range of model configurations without the complication of

unreliability.



In order to enhance the methodological integrity and fundamental usefulness of MMR,
this article aims to explore the implications of intercorrelations among the continuous
predictors and to account for misconception in the detection of moderating effects. In
particular, the distinct power performance of the interactive models involving two predictor
variables is presented to highlight the possible misapprehension when researchers apply
heuristics learned from regular linear regression to MMR. Moreover, similar treatment and
in-depth discussion are extended to the three-variable interaction model. For completeness,
the Appendix summarizes the main results from the significance test of regression coefficients
in the context of multiple linear regression, with particular emphasis on the consideration of
stochastic predictor variables. Informative figures and numerical results are presented to

illustrate the essential features of MMR analyses.

Two-predictor interaction model
Most MMR research has focused on the occurrence of interactive effects between two
continuous predictor variables that are usually conceptualized in terms of the model
Yi =B+ XiPx + ZiBz + XiZiPxz + &i, (1)
where Y; is the value of the response variable Y; X; and Z; are the known constants of the
predictors X and Z; &; are iid N(0, c®) random errors for i =1, ..., N; and By, Bx, Pz, and pxz are
unknown parameters. The existence of the regression coefficient Bx; associated with the
cross-product term in Equation (1) indicates that the linear relationship between the criterion
variable and predictor variable is dependent on the level of the other predictor variable. In
contrast, the simple additive model without the multiplicative term
Yi= B+ Xifx + Zifz + &i
reveals that the association or strength between the response variable and each of the predictor

variable is unaffected by or immaterial to the value of other predictor variable. The objective



of MMR is to determine whether the underlying data structure can best be approximated by an
additive or an interactive formulation. In practice, the detection of moderating effects is
conducted with the partial F or partial t test for the hypothesis Ho: Bxz = 0 versus H;: Bxz # 0
in the multiple linear regression framework.

It is generally known that the parameter estimation and hypothesis testing of multiple
regression analysis can be plagued by the effects of multicollinearity. According to the
fundamental properties of standard linear regression analysis presented in Appendix A, the
estimated variances of the least squares coefficient estimators given in Equation (A5) are
linked to the formal measure of variance inflation factor (VIF) for identifying the degree of
multicollinearity. When a predictor variable has a strong linear association with other
predictor variables, the associated VIF and variance estimate of regression coefficient
estimator are excessively large. A commonly used rule of thumb is that a VIF of 10 or more is
evidence of severe multicollinearity. Hence, the hypothesis testing of interaction effects is
hampered and the power for detecting the moderation relationship is reduced because of the
intercorrelation among the predictor variables.

Moreover, the adverse effects of multicollinearity on the linear regression analysis with

the additive model are clearly apparent. Let ﬁx denote the least squares estimator of

regression coefficient Bx, then the simple additive structure gives the following VIF of

predictor variable X and estimated variance of ﬁx:

1 &2 VIF(X
VIF(X) = 7= and U(By) = %—L
X

where r = r(X, Z) is the Pearson product-moment correlation coefficient between the two

predictor variables X and Z, G is the usual unbiased estimator of 7, and Si = 3 X — X)?is
i=1

the corrected sum of squares with X = $ Xi/N. Similar results can be readily obtained for the
i=1



second predictor variable Z. It is evident from the expressions just described that the degree of
linear dependence between the two predictor variables measured by the simple correlation r

has a significant influence on the multicollinearity index of VIF and the variance estimate

\’7(’B\x). The great simplicity of the additive model both makes it possible to convey the notion
of multicollinearity without the burden of complex formulas and also permits computational
ease in empirical examination. For example, related implication and numerical illustration are
well demonstrated in the acclaimed texts of Cohen et al. (2003, Section 10.5) and Kutner,
Nachtsheim and Neter (2004, Section 7.6). This reinforces the general perception and
common practice that researchers should fully understand the intercorrelations among the
predictor variables and carefully attend to the potential multicollinearity problem in a multiple
regression analysis.

In view of the continuous characteristics of measurements X and Z, it is clear that the
sample values and data characteristics in a study vary from one application to another.
Accordingly, the value of simple correlation coefficient r represents only a realization of r
over the whole range of [-1, 1]. Hence, it is of theoretical importance to investigate the
overall impact of any underlying correlation between the two predictor variables on the
various properties of MMR. In fact, the intercorrelation structure among the predictor
variables is one of the inherent characteristics determined by the joint distribution of predictor
variables, which in turn represents an indispensable artifact for detecting moderating effects.
To extend the concept and applicability of MMR, it is more appropriate to employ the random
regression or unconditional setup in which not only are values of the response variable for
each subject available after the observations are made, but the levels of predictor variables are
also outcomes of the study. Thus the continuous predictor and moderator variables {(Xi, Zi), i
=1, ..., N} in Equation (1) are random variables with a joint probability distribution. This

assumption is closely related to the consideration of stochastic regressors arises with



considerable frequency in econometrics. The impacts of the intercorrelation relationship on
multicollinearity diagnostics and statistical features for identifying interaction effects are
presented in the following analytical and numerical investigation.

Because of the complex nature of the random formulation under study, a complete
theoretical solution is not feasible and the investigation is conducted in two stages. In the first
stage, statistical derivations are carried out to gain an understanding of some specific
phenomena for random regression models, subsuming the prescribed additive and interactive
models and other MMR as special cases. The second stage is a large-scale simulation study, in
which pseudo-random data were generated with desired structural equations, and then
analyzed to determine the overall power behavior for discovering the main and interaction
effects and unconditional performance of commonly used multicollinearity measures.

First, the corresponding important statistical features for identifying interaction effects
and multicollinearity diagnostics with the extra complication of stochastic predictor variables
are described in Equations (A7)-(A9) of Appendix A. The resulting formulas are difficult to
comprehend in generic expressions; however, they allow various distributions for regressor
variables to be treated as variations on a common theme and they serve to tie together the
notions of moderation and correlation. Nevertheless, they contain essential information as to
whether a given correlation structure reduces the power for detecting moderation relation
whenever the distribution of predictor variables is available. Regarding the distributional
assumptions of the associated predictor variables, it is common to assume that the two
continuous predictor variables have a joint bivariate normal distribution in illustrative and
theoretical treatments of MMR such as McClelland and Judd (1993), O’Connor (2006), and
Shieh (2009). The bivariate normality assumption not only provides a useful situation in its
own right, but also has the advantage of naturally including the correlation between the two

variables as a single free parameter. It is important to note that, although both X and Z are



normally distributed, the interaction term XZ is obviously not a normal random variable. As
mentioned earlier, joint distribution of the predictor variables is one of the deterministic
factors of detecting moderating effects, and so it may distort statistical power analysis and
lead to invalid conclusions if one mistakenly applies a multinormal setup to the regressors of
MMR.

In the second stage of numerical examination, the prescribed interactive models with
bivariate normal predictor variables are used as the base for Monte Carlo assessment. Without
loss of generality, the two predictors (X, Z) are assumed to have a bivariate normal
distribution with mean (0, 0), variance (1, 1) and correlation p ranging from —0.9 to 0.9 in
increments of 0.1. Moreover, the parameters are chosen as By = Bx = Bz = Pxz = 0.25 and 6° =
1. With sample size N = 100 and selected model configurations, the estimates of unconditional
magnitudes are then computed through simulation of 10,000 replicate data sets. For each
replicate, N sets of predictor variables are generated from the selected bivariate normal
distribution. These values in turn determine the mean responses for generating N normal
outcomes with the underlying linear regression model. Then the sample variance, test statistic,
VIF, and regressor correlation matrix determinant (RCMD) are calculated. The simulated
power is the proportion of the 10,000 replicates whose test statistic |t| values exceed the
critical value with significance level o = 0.05. In addition, the overall estimates of variance,
VIF, and RCMD are the arithmetic means of the corresponding 10,000 replicated values. All
calculations were performed using programs written with SAS/IML (SAS Institute, 2008).
Detailed numerical results of the simulation studies are reported in Table 1. Specifically, the

simulated values of unconditional variance, power, and VIF associated with predictor X are
denoted by v(ﬁx), n(tx) and ¢(X), respectively, while the corresponding values for product

term XZ are presented by v(ﬁxz), n(txz) and ¢(XZ). The overall RCMD is denoted by 6 in

Table 1 as well. Since predictors X and Z are interchangeable under bivariate normal



distribution, the symmetric situations of predictor Z are omitted. For a concise visualization of
the overall multicollinearity diagnostics with respect to the change of correlation p, Figure 1
depicts the relationship of simulated VIF for regressors X and XZ, and RCMD with p. In
addition, Figure 2 presents the plot of simulated power of tx and txz against p for the tests of
main and interaction effects, respectively.

It is clear from Table 1 that the effect of positive and negative correlation p is symmetric
on all seven measurements of variance, power, VIF and determinant. In particular, Figure 1
reveals that the graphs of VIF measure ¢(X) and determinant & are symmetric with respect to
p = 0 and the degrees of multicollinearity are increasing monotonous with increasing |p|.
However, the VIF measure ¢(XZ) remains almost constant. It should be noted that the

unconditional variances have opposite patterns with respect to the correlation between X and
Z. The overall v(ﬁx) is an increasing function of |p|, whereas V(/B\xz) is decreasing with

increasing magnitude of |p|. Moreover, the unconditional variance v(ﬁx) is larger than v(ﬁxz)
for |p| > 0.2, and this situation is reversed for |p| < 0.2. The distinct behaviors of variances
lead to power performance that is completely unexpected. As shown in Figure 2, the power
function =(tx) decreases as the correlation becomes stronger, while the power of detecting
interaction effects n(txz) is essentially amplified for larger value of |p|. Hence, this particular
exposition provides an obvious contradiction to the common impression that intercorrelation
or multicollinearity between predictor variables is always detrimental to the power for
detecting parameter effects. Consequently, researchers can make understandable but serious
mistakes when they apply heuristics learned from simple additive models to MMR. Since the
actual effect sizes of interaction terms in MMR applications are generally quite small, we also
performed similar numerical computations for regression coefficients B, = Bx = Bz = Pxz =

0.10 and sample size N = 250, while all other factors remained constant. The corresponding



results are presented in Table 2. Comparatively, the unconditional variances v(ﬁx) and v(ﬁxz),
and power levels n(tx) and n(txz) are much smaller than those in Table 1. However, the
prescribed phenomena regarding their behavior relative to correlation p continue to exist in
this case. In short, the advocated contention regarding the adverse relationship between
multicollinearity and power in the literature for linear regression models does not generalize
to MMR in a straightforward manner. The complex and yet important consequences of
multiplicative components in MMR analyses will further be exemplified for three-predictor

interaction models in the next section.

Three-predictor interaction model
In view of the counter-intuitive behavior in the most common procedure for detecting
two-way interaction effects, it is prudent to extend the investigations to other widely useful
MMR models. Particularly, the natural extension with three predictor variables represents
another important application of MMR, in which the relation between the response variable Y
and predictor variable X varies across levels of the other two predictor variables, Z and W, and
their combinations. This results in the following three-predictor interaction model:

Yi =B+ XiPx + ZiBz + WiPw +XiZifxz + XiWiBxw + ZiWiBzw + XiZiWiPxzw *+ &i, (2)
where Y; is the value of the response variable Y, X, Z; and W; are the known constants of the
predictors X, Z and W; g; are iid N(0, o®) random errors for i =1, ..., N; and B, Bx, Bz, Pw, Bxz,
Bxw;, Pzw, and Pxzw are unknown parameters. With the hierarchical or step-down approach, the
regression coefficient PBxzw associated with the highest order product term of all three
predictors XZW indicates the strength of the most essential moderating effect. On the other
hand, the two-way interactions (Bxz, Bxw, and Bzw) and first-order effects (Bx, Bz and Pw)
represent conditional effects that can be examined to facilitate the interpretation of the

underlying complex interaction structure. Readers can refer to Aiken and West (1991),

10



Dawson and Richter (2006), and Jaccard and Turrisi (2003) for further details. To provide an
insight into MMR research, the focus here is on the potential misunderstanding of the
influence of multicollinearity within the context of three-predictor interaction model. Similar
to the two-predictor case, Monte Carlo simulation study was conducted to evaluate the
influence of intercorrelations between predictor variables on the analysis of all first-, second-
and third-order effects.

The empirical study involves multivariate normal predictor variables X, Z and W with
null means pux = uz = pw = 0, unit variance ci = oi = 63\, = 1, correlation Cor(X, Z) = p
ranging from —0.9 to 0.9 in increments of 0.1, and Cor(X, W) = Cor(Z, W) = 0. It should be
clear from a theoretical standpoint that there are many situations with practical usefulness
among sets of correlations. The designated correlation matrix of the three predictors
represents merely a single possibility and serves the purpose well for demonstrating the
concealed feature of MMR. Moreover, the model parameters in Equation (2) are chosen as B
= Bx = Bz = Pw = Pxz = Pxw = Pzw = Pxzw = 0.25, 6° = 1, and sample size N = 100. The
simulation follows closely the previous numerical investigation, in which the Monte Carlo
integration procedure was implemented to determine the unconditional measurements through
10,000 replicate data sets.

The corresponding simulated results for main effects, two-way interactions and
three-way interaction are summarized in Tables 3-5, respectively. Due to the model’s
complexity, the resultant phenomenon can be made more comprehensible with the help of
diagrams. The multicollinearity VIF measurements of regressors X, W, XZ, XW and XZW,
denoted by ¢(X), (W), d(XZ), $(XW), and ¢p(XZW), respectively, and RCMD & are depicted in
Figure 3. Alternatively, the respective simulated power levels n(tx), n(tw), 7(txz), ©(tzw) and
n(txzw) Of t tests tx, tw, txz, tzw and txzw are plotted in Figure 4. Because of the

interchangeability between X and Z, and XW and ZW, the results associated with regressors Z

11



and ZW are not presented here. According to the visual information of Figure 3, all the
diagrams of VIF values are concave while the RCMD curve is convex, but all are symmetric
about p = 0. It follows from simple guideline that multicollinearity is declared to exist
whenever any VIF value is at least equal to 10. Thus, the resultant degrees of multicollinearity
are not severe according to the reported magnitudes of VIF values. In contrast, the small &
values for |p| > 0.5 indicate that the degree of multicollinearity is considered to be problematic.
The patterns of the VIF and RCMD diagnostics are unguestionably clear that the levels of
intercorrelation among the regressors increase with the strength of correlation between the
two predictors X and Z. Consequently, the heuristic about the adverse effects of
multicollinearity would suggest that the corresponding estimated variance of regression
coefficients should be inflated and power of the resulting test of main effects, two-way
interactions or three-way interaction will decline as the only present pairwise correlation p of
X and Z increases in absolute size. The results show that the general notion is applicable only

to the cases associated with regressors X, W and cross-product XW. In other words, the
unconditional estimated variances v(ﬁx), v(ﬁw) and v(ﬁxw) are convex functions of correlation

p, and conversely, power levels n(tx), =(tw) and =(tzw) are concave with respect to correlation

p. Nonetheless, the conventional account does not apply to the other two regressors in terms

of product terms XZ and XZW. Surprisingly, the two variance estimates v(ﬁxz) and v(ﬁxzw) are
concave with respect to p, and in turn, the respective power functions n(txz) and m(txzw) are
convex, as shown in Figure 4. Thus, the established guidance about the detrimental impact of
multicollinearity in the context additive multiple regression is not completely applicable to
interaction models. As in the previous case of a two-predictor interaction model, the empirical
investigation was extended to the setting with B, = Bx = Bz = Bw = Bxz = Bxw = Bzw = Bxzw =

0.10, and sample size N = 250. According the results summarized in Tables 6-8, it is clear that
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the general contention described above can still apply in this situation with smaller effect size.
Although these empirical examinations depend exclusively on simulation results, the
assessments of the three-predictor interaction formulation illustrate the advocated caution and
unfavorable perception of intercorrelations among predictor variables should not be applied
indiscriminately. More importantly, the positive influence of correlation p on the detection of
a three-way moderating effect raises a practical concern for MMR researchers to reevaluate

the underlying predictor interrelationships and their impact on model selection and inference.

Numerical Example

In addition to the detailed empirical investigations employing Monte Carlo simulation
study, it is instructive to exemplify the impact of multicollinearity on the detection of
three-way interactions that might be encountered in applied work. The study of the
importance of relationship in Kwong and Leung (2002) is used as an illustrative context. In
that study they examined the compensatory effect between procedural justice and outcome
favorability in determining people’s reaction to a decision. Given the compensatory effect,
procedural fairness has a particularly strong and positive impact on people’s response to low
outcomes. However, they argued that the compensatory effect is conditional upon other
contextual variables and studied the three-way interaction in which the perceived importance
of the relationship between people moderates the compensatory effect of procedural justice.
They tested the hypothesis that the tendency for procedural justice to have a stronger and
more positive impact on people’s response when outcome is low versus high should be more
pronounced for an important relationship than for an unimportant relationship. The study
concluded that the interaction effect is operative only when the relationship with the other
party is important to that person.

For the purpose of demonstration, the summary statistics and analysis results presented

13



in Tables 1 and 2 of Kwong and Leung (2002) were utilized to generate the two hypothetical
data sets reported in Table 9. According to the formulation of Kwong and Leung (2002), the
criterion variable (Y) represents the measurement of feeling or happiness, and the three
predictor variables are interactional justice (X), outcome favorability (Z), and prior closeness
(W). As noted in Aiken and West (1991, p. 36), the so-called nonessential multicollinearity
can be removed by centering variables. Hence, the observed values of the three predictors in
Table 9 were mean-centered in the following MMR analyses. With the 30 observations in
Data 1, the simple correlations are r(X, Z) = 0.4883, r(X, W) = 0.3541, and r(Z, W) = 0.2605.
The sample data was analyzed with a three-way interaction regression model. We are
particularly concerned with the interaction term XZW, and the resulting test statistic is txzw =
—2.1873 with p-value = 0.0396. Hence, the test of three-way interaction Ho: Bxzw = 0 can be
rejected at the significance level oo = 0.05. However, close examination of the variance
inflation factor associated with the cross-product term XZW shows that VIF(XZW) = 11.94
and regressor correlation matrix determinant RCMD = 0.0098. In practice, the VIF values in
excess of 10 or the quantities RCMD close to 0 are considered to be problematic. In these
circumstances, the common procedure is to consider approaches to solving problem of
multicollinearity before concluding that there is sufficient evidence to indicate an interaction.
Accordingly, the collection of additional data provides a feasible solution and is commonly
recommended. With the additional 20 observations presented in Data 2 of Table 9, the
detection of three-way interaction was reanalyzed with a total of sample size N = 50. In this
case, the three pairwise correlations are r(X, Z) = 0.4799, r(X, W) = 0.2308, and r(Z, W) =
0.1868. The magnitudes of these correlations are less than those calculated with Data 1.
Moreover, the multicollinearity index VIF reduced to VIF(XZW) = 2.99, while regressor
correlation matrix determinant changed into RCMD = 0.1083. Thus, the severity of

multicollinearity is alleviated to some extent as intended by the inclusion of extra samples.
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However, the resulting test statistic for the interaction effect is tx,w = —1.9104 and the
corresponding p-value = 0.0629. Unfortunately, we are unable to claim there is a significant
moderation effect at a 0.05 level of significance for the expanded data.

Unlike the typical results of regression analyses, this numerical example reveals a
contrasting and positive impact of predictor intercorrelations on the detection of moderating
effects. Researchers using MMR should be aware of this tendency of power for the detection
of moderator effects to be lost, at the expense of overemphasis on mitigation of
multicollinearity between predictor variables. From the methodological standpoint, the
techniques of multiple regression and other multivariate methods were developed to
synthesize the complex information of correlated data in the first place. It seems paradoxical
that the common practice has been overwhelmingly prone to remove or diminish
intercorrelation and multicollinearity among variables, while the advanced methodologies are
supposed to fully account for their intertwined structure in order to help advance social

science theory.

Conclusion

It is well known that multicollinearity is closely related to the popular statistical tool of
multiple linear regression. Hence, practitioners in applied research must become conversant
with various diagnostic procedures for identifying, reducing or removing the cause and threat
of multicollinearity. The simplest MMR is essentially a special case of multiple linear
regression that allows particularly the relation between the response variable and a predictor
variable to depend on the level of another predictor variable. The basic rationale of
moderation can be readily extended to three-way interactions and more complex situations. In
view of the apparent intercorrelated structure between the predictor variables and their

combined higher order or cross-product terms in interaction models, the supposed adverse
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effects associated with high or extreme multicollinearity are often encountered in many MMR
applications. Unfortunately, it is subject to serious misunderstanding that predictor
intercorrelations incur nothing but harm to the detection of moderation or interaction effects
in MMR study.

This article focuses on the two most fundamental MMR models with two- and
three-predictor interaction effects and explores the impact of intercorrelations on the
multicollinearity diagnostics and power in testing for main and interaction effects under the
convenient distributional assumption of bivariate or multivariate normal predictors. The
extensive empirical results of Monte Carlo simulation studies showed that the power of
detecting interaction effects may increase with greater correlation between predictor variables
when all other factors are fixed. Hence, the detrimental effects of multicollinearity associated
with additive multiple linear regression are not necessarily present with MMR analysis.
Regarding the distributional configuration of predictor variables, normality is of course not
the only situation of practical interest. There are also many useful assumptions to consider for
the continuous predictor variables. More importantly, additional Monte Carlo simulations
confirmed that the emphasized counter-intuitive phenomenon is not unique to the normality
assumption of the predictor variables. In view of the indispensable role of the joint
distribution of predictors, researchers should make a comprehensive appraisal of the
underlying data characteristics and their impact on statistical power for the detection of
moderating effects. Given the complex interrelationships that exist among predictor variables
and cross-product terms in MMR studies, it is important to reorient the general idea about the
presence of multicollinearity because the detection of interaction effects need not be hindered

by increased correlation between predictor variables.

16



References

Aguinis, H. (1995). Statistical power problems with moderated multiple regression in
management research. Journal of Management, 21, 1141-1158.

Aguinis, H., Beaty, J. C., Boik, R. J., & Pierce, C. A. (2005). Effect size and power in
assessing moderating effects of categorical variables using multiple regression: A 30-year
review. Journal of Applied Psychology, 90, 94-107.

Aguinis, H., & Stone-Romero, E. F. (1997). Methodological artifacts in moderated multiple
regression and their effects on statistical power. Journal of Applied Psychology, 82,
192-206.

Aiken, L. S., & West, S. G. (1991). Multiple Regression: Testing and Interpreting Interactions.
Newbury Park, CA: Sage.

Busemeyer, J. R., & Jones, L. E. (1983). Analysis of multiplicative combination rules when
the causal variables are measured with error. Psychological Bulletin, 93, 549-562.

Cohen, J.,, Cohen, P, West, S. G.,, & Aiken, L. S. (2003). Applied multiple
regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ:
Erlbaum.

Cronbach, L. J. (1987). Statistical tests for moderator variables: Flaws in analyses recently
proposed. Psychological Bulletin, 102, 414-417.

Darrow, A. L., & Kahl, D. R. (1982). A comparison of moderated regression techniques
considering strength of effect. Journal of Management, 8, 35-47.

Dawson, J. F., & Richter, A. W. (2006). Probing three-way interactions in moderated multiple
regression: Development and application of a slope difference test. Journal of Applied
Psychology, 91, 917-926.

Dunlap, W. P, & Kemery, E. R. (1987). Failure to detect moderating effects: Is
multicollinearity the problem? Psychological Bulletin, 102, 418-420.

Dunlap, W. P., & Kemery, E. R. (1988). Effects of predictor intercorrelations and reliabilities
on moderated multiple regression. Organizational Behavior and Human Decision
Processes, 41, 248-258.

Evans, M. G. (1985). A Monte Carlo study of the effects of correlated method variance in
moderated multiple regression analysis. Organizational Behavior and Human Decision
Processes, 36, 305-323.

Ganzach, Y. (1998). Nonlinearity, multicollinearity and the probability of type Il error in
detecting interaction. Journal of Management, 24, 615-622.

Jaccard, J., & Turrisi, R. (2003). Interaction effects in multiple regression (2nd ed.). Thousand
Oaks, CA: Sage.

Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects
between continuous predictors using multiple regression: Multiple indicator and structural
equation approaches. Psychological Bulletin, 117, 348-357.

Kromrey, J. D., & Foster-Johnson, L. (1998). Mean centering in moderated multiple
regression: Much ado about nothing. Educational and Psychological Measurement, 58,
42-67.

Kwong, J. Y. Y., & Leung, K. (2002). A moderator of the interaction effect of procedural

17



justice and outcome favorability: Importance of the relationship. Organizational Behavior
and Human Decision Processes, 87, 278-299.

Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied Linear Regression Models (4th
ed.). New York, NY: McGraw-Hill.

Marquardt, D. W. (1980). You should standardize the predictor variables in your regression
models. Journal of the American Statistical Association, 75, 87-91.

McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and
moderator effects. Psychological Bulletin, 114, 376-390.

Morris, J. H., Sherman, J. D., & Mansfield, E. R. (1986). Failures to detect moderating effects
with ordinary least squares-moderated multiple regression: Some reasons and a remedy.
Psychological Bulletin, 99, 282-288.

O’Connor, B. P. (2006). Programs for problems created by continuous variable distributions in
moderated multiple regression. Organizational Research Methods, 9, 554-567.

SAS Institute (2008). SAS/IML user’s guide, Version 9.2. Cary, NC: author.

Shieh, G. (2009). Detecting interaction effects in moderated multiple regression with
continuous variables: Power and sample size considerations. Organizational Research
Methods, 12, 510-528.

Smith, K. W., & Sasaki, M. S. (1979). Decreasing multicollinearity: A method for models
with multiplicative functions. Sociological Methods & Research, 8, 35-56.

Stone-Romero, E. F., Alliger, G. M., & Aguinis, H. (1994). Type Il error problems in the use
of moderated multiple regression for the detection of moderating effects of dichotomous
variables. Journal of Management, 20, 167-178.

Tate, R. (1984). Limitations of centering for interactive models. Sociological Methods &
Research, 13, 251-271.

18



Appendix A
Fundamental results of random regression models

Consider the standard multiple linear regression model with dependent variable Y and
all the levels of p independent variables X, ..., X, fixed a priori:

Y = XB +¢, (A1)
where Y = (Y4, ..., Yx)", Yi is the value of the dependent variable Y; X = (1y, Xp) with 1y is the
N x 1 vector of all 1s, Xp = (X4, ..., Xn)" is often called the design matrix, X; = (Xiz, ..., Xip) ',
Xi1, ..., Xip are the known constants of the p independent variables for i = 1, ..., N; B = (Bo,
B1, ..y Bp)T with Bo, B1, ..., Bp are unknown parameters; and € = (e, ..., en)’ with & are iid

N(0, ®) random variables.

Frequently, the inferences are concerned mainly with the regression coefficients B,

(B1, ..., Bp)" in Equation (A1) and the corresponding ordinary least squares estimator is ﬁl
(XEXC)*XEY, where Xc = (In — JIN)Xp is the centered form of Xp, Iy is the identity matrix

of dimension N and J is the N x N square matrix of 1s. With this formulation, it is easily seen

that

N 2a—1

B1 | Xo ~ Np(B1, 6°Sx),
where Sy = X&Xc. Note that 62 = SSE/(N — p — 1) is the usual unbiased estimator of 2 and
SSE/s” is distributed as y*(N —p — 1), a chi-square distribution with N—p —1 degrees of

freedom and is independent of ﬁl.

For convenience of illustration, it can be shown that

Be | Xo ~ N(Bx, V(BK))

where
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Ri is the coefficient of determination or R? in the regression of X on all other variables

(X1, vy Xk=1, X+ 1, .-, Xp), and Si = g(Xik — X)? is the corrected sum of squares with X =
i=1

> Xa/Nfork=1, ..., p. The corresponding test for the hypothesis Ho: Bx = 0 versus Hy: Bk # 0
=1

is based on
= "a A A2
oy 42
where
N N _ 82
Vo=~ eae (A3)

If the null hypothesis Ho: Bk = O is true, the statistic ty is distributed as t(N —p — 1), a central t
distribution with N — p — 1 degrees of freedom, and Hy is rejected at the significance level o if
|txz| > tN-p-1, o2, Where ty_p_1, 2 iS the upper 100(o/2)th percentile of the t distribution
t(N-p-1).

Note that variance inflation factor (VIF) is a formal measure for identifying the extent

of multicollinearity. In this case, the VIF of X is

1
VIF(Xy) = ﬁ
— Ry

(Ad)
For example, see Kutner, Nachtsheim and Neter (2004, Section 10.5). With the definition in

Equation (A4), the variance of ﬁk is directly linked to the widely used multicollinearity

diagnostic of VIF through

Also, the corresponding estimated variance in Equation (A3) can be rewritten as

N2
VIF(X
_GTVIF(X) (A5)

-
(B s
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When X, has a substantial multicollinearity with the other predictor variables so that Ri IS

substantially larger than 0, then VIF(Xy) and \’7(’B\k) in Equations (A4) and (A5) are

considerably inflated and even unbounded. The immediate and adverse consequence of large

\/7(/B\k) is the ty test in Equation (A2) may lead to false null hypotheses of no effect that disagree

with prior knowledge and theoretical grounding. Another widely used multicollinearity

diagnostic is the regressor correlation matrix determinant |R|, where R = D™Y2(X:Xc)D ™ is

the regressor correlation matrix with diagonal matrix D = diag(Si, Sg, Sﬁ). The diagnostic
of regressor correlation matrix determinant ranges from 0 when there is perfect
multicollinearity, to 1 when there is no multicollinearity.
Moreover, the resulting power function for the test Ho: Bx = 0 versus Hy: By = 0 is
P{td>tn-p-1,02| Xp} =P{t(N-p -1, A)| >tn_p-1 a2 | Xo}, (A6)
where t(N —p —1, A) is the noncentral t distribution with N —p — 1 degrees of freedom and

noncentrality parameter

Ao B
VB

Traditionally, the multiple regression model defined above is referred to as a fixed
(conditional) model. The corresponding results would be specific to the particular values of
the predictor variables that are observed or preset by the researcher. Under the random
regression setup, the predictor variables X, i = 1, ..., N, are assumed to have a joint
probability density function f(Xii, ..., Xip) and the form of f(Xiy, ..., Xip) does not depend on any
of the unknown parameters (Bo, B1, ... Pp) and o It is conceivable that the extended
consideration of random feature associated with predictors complicates the fundamental
statistical properties of the inferential procedures. However, the estimates of parameters and

tests of hypotheses are the same under both fixed and random formulations. Nonetheless, the
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distinction between the two modeling approaches becomes important when unconditional or
overall properties are to be evaluated.

Note that the observed values of X;, i =1, ..., N, only represent one realization over the

whole domain of (Xi, ..., Xp). Interestingly, the unconditional mean E[ﬁk] of ﬁk remains

unbiased because

N N
E[B] = Ex[Ev{Bi}] = Ex[B] = B,
where the expectations Ey[-] and Ex[:] are taken with respect to the iid probability

distributions f(Y;) and f(Xi, ..., Xip) of Y; and X; = (X, ..., Xip)T, respectively, i =1, ..., N. Also,

the unconditional variance v(ﬁk) of ﬁk is given by

v(B) = E1Be - BY? = EEABx - B3] = o%Ex [M} (A7)

Sk
The power function in the context of random regression is defined as the expected value of
the conditional power function given in Equation (A6) as follows

(t) = P{Itd > tn—p -1, 2} = Ex[P{It(N = p =1, A)| > tn—p -1, as2}]. (A8)
Likewise, the unconditional multicollinearity diagnostics of VIF and determinant of regressor
correlation matrix are expressed as ¢(Xx) and 8, respectively, where

d(X) = Ex[VIF(X)] fork =1, ..., p, and & = Ex[|R]]. (A9)

In general, there is no simple closed-form expression for the preceding quantities given in
Equations (A7)-(A9) except in some special cases. Therefore, it is extremely cumbersome to
evaluate the multi-dimensional integration with respect to the joint probability density
distribution of (X, ..., Xp). Instead, Monte Carlo integration provides a computationally
feasible and practically accurate solution. Finally, the corresponding hypothesis testing
procedures and power functions for the two one-sided tests of Ho: Bk < 0 versus Hi: Bk > 0,
and Ho: Bk > 0 versus Hi: Bk < 0 and even nonzero minimum effect can be readily established

but the details are not given here.
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Figure 1. The simulated multicollinearity measures of two-predictor interaction model
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Figure 2. The simulated powers of two-predictor interaction model
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Table 1. The simulated results of two-predictor interaction model

with Bx = Pxz = 0.25 and N = 100

Variance Power VIF®  Variance Power VIF? RCMD"

P vBo o 00 VB altd)  $(XD) 5
-0.9 0.0555 0.1858 5.4778 0.0067 0.8546 1.0641 0.1802
-0.8 0.0294 0.3078 2.8882 0.0074 0.8236 1.0641 0.3404
-0.7 0.0208 0.4094 2.0351 0.0082 0.7906 1.0633 0.4816
-0.6 0.0167 0.4898 1.6220 0.0089 0.7602 1.0634 0.6031
-0.5 0.0142 0.5532 1.3870 0.0095 0.7333 1.0630 0.7039
-0.4 0.0127 0.5978 1.2396 0.0102 0.7031 1.0642 0.7860
-0.3 0.0118 0.6317 1.1423 0.0108 0.6802 1.0625 0.8525
-0.2 0.0112 0.6541 1.0858 0.0112 0.6653 1.0628 0.8970
-0.1 0.0109 0.6651 1.0531 0.0116 0.6507 1.0643 0.9239
0 0.0107 0.6702 1.0423 0.0116 0.6500 1.0639 0.9337
0.1 0.0108 0.6661 1.0530 0.0115 0.6547 1.0630 0.9248
0.2 0.0112 0.6535 1.0845 0.0112 0.6632 1.0630 0.8978
0.3 0.0117 0.6324 1.1434 0.0107 0.6831 1.0629 0.8517
0.4 0.0127 0.5983 1.2361 0.0102 0.7038 1.0642 0.7877
0.5 0.0142 0.5524 1.3852 0.0096 0.7315 1.0623 0.7051
0.6 0.0166 0.4899 1.6232 0.0088 0.7609 1.0616 0.6030
0.7 0.0208 0.4094 2.0363 0.0082 0.7899 1.0640 0.4813
0.8 0.0294 0.3082 2.8870 0.0074 0.8253 1.0626 0.3408
0.9 0.0556 0.1855 5.4697 0.0068 0.8509 1.0643 0.1807

a. Variance inflation factor

b. Regressor correlation matrix determinant
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Table 2. The simulated results of two-predictor interaction model

with Bx = Pxz = 0.10 and N = 250

Variance Power VIF*  Variance Power VIF? RCMD"

o vBy w0 60 VB ) 6XD) 5
-0.9 0.0215 0.1048 5.3410 0.0024 0.5441 1.0247 0.1861
-0.8 0.0114 0.1553 2.8232 0.0026 0.5063 1.0246 0.3516
-0.7 0.0080 0.2004 1.9929 0.0029 0.4700 1.0247 0.4974
—-0.6 0.0064 0.2393 1.5862 0.0032 0.4364 1.0240 0.6245
-0.5 0.0055 0.2723 1.3532 0.0034 0.4101 1.0245 0.7312
-0.4 0.0049 0.2985 1.2089 0.0037 0.3856 1.0241 0.8183
-0.3 0.0045 0.3185 1.1165 0.0039 0.3650 1.0248 0.8857
-0.2 0.0043 0.3325 1.0584 0.0041 0.3515 1.0249 0.9338
-0.1 0.0041 0.3422 1.0264 0.0042 0.3454 1.0242 0.9632
0 0.0041 0.3446 1.0162 0.0042 0.3416 1.0245 0.9727
0.1 0.0042 0.3416 1.0263 0.0042 0.3443 1.0244 0.9632
0.2 0.0043 0.3333 1.0584 0.0041 0.3529 1.0246 0.9341
0.3 0.0045 0.3188 1.1173 0.0039 0.3671 1.0244 0.8852
0.4 0.0049 0.2987 1.2093 0.0037 0.3861 1.0247 0.8178
0.5 0.0055 0.2721 1.3539 0.0034 0.4091 1.0248 0.7308
0.6 0.0064 0.2395 1.5865 0.0032 0.4376 1.0248 0.6240
0.7 0.0080 0.2005 1.9896 0.0029 0.4706 1.0242 0.4984
0.8 0.0113 0.1555 2.8185 0.0026 0.5057 1.0247 0.3522
0.9 0.0215 0.1047 5.3535 0.0024 0.5446 1.0244 0.1857

a. Variance inflation factor

b. Regressor correlation matrix determinant
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Table 3. The simulated results for X and W of three-predictor interaction model
with Bx = Bw = 0.25and N = 100

Variance Power VIF* Variance Power VIF?

p v w(t) 000  vBw)  mtw) W)

-0.9 0.0593 0.1772 5.8344 0.0172 0.4809 1.6646

-0.8 0.0315 0.2914 3.0941 0.0164 0.4986 1.5907

-0.7 0.0224 0.3866 2.1862 0.0156 0.5188 1.5103

—0.6 0.0178 0.4641 1.7464 0.0148 0.5397 1.4297

-0.5 0.0154 0.5218 1.4945 0.0139 0.5638 1.3489

-0.4 0.0138 0.5646 1.3411 0.0132 0.5853 1.2794

—0.3 0.0127 0.5989 1.2387 0.0125 0.6062 1.2171

0.2 0.0122 0.6184 1.1777 0.0121 0.6216 1.1718

-0.1 0.0118 0.6323 1.1430 0.0118 0.6319 1.1427

0 0.0117 0.6358 1.1333 0.0117 0.6354 1.1323

0.1 0.0118 0.6304 1.1439 0.0118 0.6310 1.1420

0.2 0.0121 0.6189 1.1760 0.0120 0.6231 1.1696

0.3 0.0128 0.5970 1.2396 0.0126 0.6046 1.2181

0.4 0.0138 0.5664 1.3409 0.0132 0.5858 1.2782

0.5 0.0153 0.5237 1.4920 0.0139 0.5631 1.3518

0.6 0.0179 0.4635 1.7449 0.0147 0.5401 1.4323

0.7 0.0223 0.3871 2.1868 0.0156 0.5192 1.5109

0.8 0.0315 0.2912 3.0974 0.0164 0.4997 1.5915

0.9 0.0594 0.1770 5.8503 0.0172 0.4802 1.6667

a. Variance inflation factor
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Table 4. The simulated results for XZ and XW of three-predictor interaction model

with sz = BXW =0.25and N =100

Variance Power VIF* Variance Power VIF?
N N
P v(Bxz) n(txz) $(X2) v(Bxw) T(txw) d(XW)

-0.9 0.0080 0.7994 1.2692 0.0663 0.1696 6.3426

-0.8 0.0087 0.7666 1.2701 0.0354 0.2762 3.3766

-0.7 0.0096 0.7323 1.2693 0.0251 0.3654 2.3758

—0.6 0.0103 0.7026 1.2588 0.0202 0.4353 1.8955

-0.5 0.0112 0.6685 1.2550 0.0174 0.4882 1.6215

-0.4 0.0120 0.6419 1.2493 0.0157 0.5285 1.4525

—0.3 0.0125 0.6232 1.2407 0.0145 0.5596 1.3417

0.2 0.0129 0.6076 1.2350 0.0138 0.5785 1.2786

-0.1 0.0132 0.5986 1.2291 0.0134 0.5905 1.2428

0 0.0133 0.5936 1.2282 0.0133 0.5937 1.2286

0.1 0.0132 0.5964 1.2329 0.0135 0.5893 1.2429

0.2 0.0130 0.6053 1.2333 0.0138 0.5792 1.2743

0.3 0.0126 0.6209 1.2398 0.0146 0.5562 1.3434

0.4 0.0118 0.6452 1.2497 0.0156 0.5304 1.4505

0.5 0.0112 0.6704 1.2562 0.0174 0.4901 1.6211

0.6 0.0105 0.6974 1.2591 0.0201 0.4370 1.8964

0.7 0.0096 0.7313 1.2694 0.0251 0.3656 2.3778

0.8 0.0087 0.7667 1.2747 0.0352 0.2774 3.3689

0.9 0.0080 0.7989 1.2692 0.0666 0.1692 6.3851

a. Variance inflation factor
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Table 5. The simulated results for XZW of three-predictor interaction model
with Bxzw = 0.25 and N = 100

Variance Power VIF?  RCMD®
N
P V(Bxzw)  wltxzw)  HG(XZW) 0

-0.9 0.0101 0.7237 2.0587 0.0152

-0.8 0.0110 0.6936 1.9699 0.0553

-0.7 0.0121 0.6593 1.8747 0.1154

—0.6 0.0130 0.6302 1.7652 0.1896

-0.5 0.0140 0.6009 1.6598 0.2735

-0.4 0.0149 0.5743 1.5712 0.3555

—0.3 0.0156 0.5588 1.4848 0.4355

0.2 0.0160 0.5457 1.4225 0.4982

-0.1 0.0163 0.5365 1.3848 0.5405

0 0.0165 0.5305 1.3702 0.5552

0.1 0.0164 0.5355 1.3894 0.5382

0.2 0.0160 0.5429 1.4195 0.5011

0.3 0.0156 0.5560 1.4829 0.4359

0.4 0.0148 0.5770 1.5698 0.3566

0.5 0.0140 0.6009 1.6671 0.2722

0.6 0.0131 0.6273 1.7653 0.1900

0.7 0.0121 0.6594 1.8730 0.1156

0.8 0.0110 0.6940 1.9731 0.0548

0.9 0.0101 0.7244 2.0586 0.0150

a. Variance inflation factor
b. Regressor correlation matrix determinant
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Table 6. The simulated results for X and W of three-predictor interaction model
with Bx = Bw = 0.10 and N = 250

Variance Power VIF* Variance Power VIF?

p v(B) (t) 00 vBw)  mtw)  o(W)

-0.9 0.0221 0.1034 5.4768 0.0062 0.2457 1.5380

—0.8 0.0117 0.1527 2.8933 0.0060 0.2544 1.4725

0.7 0.0083 0.1962 2.0471 0.0057 0.2647 1.4026

—0.6 0.0066 0.2343 1.6328 0.0054 0.2765 1.3302

-0.5 0.0056 0.2655 1.3923 0.0051 0.2895 1.2577

—0.4 0.0050 0.2914 1.2469 0.0048 0.3021 1.1923

—0.3 0.0047 0.3107 1.1515 0.0046 0.3156 1.1335

-0.2 0.0044 0.3247 1.0921 0.0044 0.3260 1.0884

-0.1 0.0043 0.3288 1.0596 0.0043 0.3327 1.0599

0 0.0042 0.3353 1.0497 0.0042 0.3356 1.0493

0.1 0.0043 0.3329 1.0600 0.0043 0.3328 1.0600

0.2 0.0044 0.3244 1.0921 0.0044 0.3259 1.0880

0.3 0.0047 0.3107 1.1523 0.0046 0.3149 1.1337

0.4 0.0050 0.2912 1.2456 0.0048 0.3027 1.1923

0.5 0.0056 0.2658 1.3936 0.0051 0.2891 1.2579

0.6 0.0066 0.2338 1.6323 0.0054 0.2761 1.3315

0.7 0.0083 0.1962 2.0484 0.0057 0.2648 1.4023

0.8 0.0117 0.1527 2.8914 0.0060 0.2544 1.4723

0.9 0.0221 0.1034 5.4838 0.0062 0.2456 1.5405

a. Variance inflation factor

32



Table 7. The simulated results for XZ and XW of three-predictor interaction model

with sz = BXW =0.10and N = 250

Variance Power VIF* Variance Power VIF?
b VB mlbd X2 vBw)  mbw)  OXW)

-0.9 0.0026 0.5156 1.1045 0.0232 0.1020 5.6767

—0.8 0.0028 0.4785 1.1053 0.0123 0.1498 3.0023

0.7 0.0031 0.4437 1.1043 0.0087 0.1922 2.1172

—0.6 0.0034 0.4145 1.1029 0.0069 0.2290 1.6888

-0.5 0.0037 0.3860 1.0994 0.0059 0.2591 1.4407

—0.4 0.0039 0.3660 1.0966 0.0053 0.2829 1.2904

—0.3 0.0042 0.3479 1.0927 0.0049 0.3031 1.2920

-0.2 0.0043 0.3354 1.0889 0.0047 0.3155 1.1313

-0.1 0.0044 0.3291 1.0868 0.0046 0.3227 1.0985

0 0.0045 0.3256 1.0888 0.0045 0.3259 1.0876

0.1 0.0045 0.3277 1.0889 0.0045 0.3233 1.0988

0.2 0.0044 0.3352 1.0907 0.0047 0.3150 1.1306

0.3 0.0041 0.3495 1.0915 0.0049 0.3017 1.1936

0.4 0.0039 0.3654 1.0946 0.0053 0.2835 1.2898

0.5 0.0037 0.3874 1.0990 0.0060 0.2584 1.4416

0.6 0.0034 0.4128 1.1000 0.0070 0.2282 1.6901

0.7 0.0031 0.4444 1.1040 0.0087 0.1924 2.1185

0.8 0.0029 0.4766 1.1064 0.0123 0.1498 2.9962

0.9 0.0026 0.5149 1.1053 0.0231 0.1021 5.6860

a. Variance inflation factor
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Table 8. The simulated results for XZW of three-predictor interaction model
with Bxzw = 0.10 and N = 250

Variance ~ Power VIF*  RCMD"
p vBxaw)  mltaw)  O(XZW) 8

-0.9 0.0029 0.4856 1.6918 0.0199

—0.8 0.0032 0.4535 1.6187 0.0740

0.7 0.0035 0.4200 1.5440 0.1546

—0.6 0.0038 0.3927 1.4638 0.2551

-0.5 0.0041 0.3664 1.3817 0.3700

—0.4 0.0044 0.3476 1.3065 0.4862

—0.3 0.0046 0.3321 1.2394 0.5991

-0.2 0.0048 0.3196 1.1854 0.6935

-0.1 0.0049 0.3127 1.1522 0.7554

0 0.0050 0.3110 1.1425 0.7756

0.1 0.0050 0.3125 1.1545 0.7535

0.2 0.0048 0.3195 1.1864 0.6931

0.3 0.0046 0.3336 1.2382 0.5991

0.4 0.0044 0.3472 1.3040 0.4883

0.5 0.0041 0.3669 1.3806 0.3701

0.6 0.0038 0.3907 1.4602 0.2557

0.7 0.0035 0.4222 1.5425 0.1545

0.8 0.0032 0.4504 1.6206 0.0740

0.9 0.0029 0.4866 1.6914 0.0198

a. Variance inflation factor
b. Regressor correlation matrix determinant
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Table 9. Hypothetical data sets

Y X Z w Y X Z W Y X Z W
Data 1 (N = 30)
202 32 21 26 319 26 21 16 393 37 28 47
332 35 32 31 376 28 19 17 19% 40 29 36
263 36 33 13 464 38 33 24 378 33 24 03
143 43 41 53 221 36 16 23 169 21 29 17
340 29 25 35 507 36 41 30 547 39 27 38
224 40 25 38 187 38 31 32 303 26 34 28
165 14 06 29 424 43 28 27 254 29 21 32
339 46 51 49 38 28 29 39 369 36 35 17
198 22 40 26 320 27 27 33 472 42 34 23
302 33 25 59 321 08 26 18 101 24 13 26
Data 2 (N = 20)

362 42 36 23 399 25 14 11 376 21 17 37
135 29 12 09 534 46 41 21 368 29 32 44
408 38 31 17 352 22 29 19 099 30 17 34
157 22 25 15 224 21 24 29 28 25 29 39
339 37 26 36 29 27 20 35 330 24 31 26
512 52 39 23 342 27 40 34 213 26 25 30
331 25 37 19 266 40 24 47

35



RAL gt pmd g SR T4

p#:2011/11/05

B €At

PE LA SRR R §onr P

i SR L

7 E %5 99-2410-H-009-004-

REE SRR T

25




PeEREHFF LTS REL

N

o ER RN v

33 %5 0 99-2410-H-009-004-

Ph LA R R RI ok R

g X
Y ek P &
5% p R LS s FERE | g SRR
B (s |Ik(z 75 AL - | B S
fegg) | EHE) #H oo o= ¥ ...
%)
R 0 0 100%
e PiELBREL |0 0 100%
¥ E T
it g 0 0 100%
P 0 0 100%
o : i—v‘ g 0 0 100% .
S 9 0 0 100%
B e 0 0 100% n
R I
B4 & 0 0 100% + =
L4 0 0 100%
fgrsih A4 [E A4 0 0 100% o
=X
(2R [BLumih 0 0 100%
LiEen 0 0 100%
L 1 1 100%
o e PAARRBTED |0 0 100% F
gﬁ‘nQ E T
it g 0 0 100%
L1 0 0 100% Y
%11 v ‘;i—ﬂ % ¥ 0 0 100% "
O 0 0 100%
1 ?P
" i 0 0 100% 2
A I
#1142 0 0 100% + A
L4 0 0 100%
P e 0 0 100%
A =
(hEE) LR 0 0 100% '
LiEmm 0 0 100%




H A%
(i Bt iigz &
5 hoyE B s d S
WEn L ER%EE
AT A R R
SRR N S R £
B2 E M E R
EE G F A

}ljo)

g

’i X538 P

freks

—

R E(FFHEEEN)

i/ e

Re|grga g A1 8

21

Fi

Byr A0 iR

T e

3
1
4e
g |FiHE/ iy
i
p

PEASHAEZ S (BR) Ak

OO O OO O o (o




R R ERFI VRS FFL p T4

Wﬂ;gp PR RTEAp AR E AT PR
(1 Q#z%i%%ﬁixwﬁﬁw%m‘%?
R IF LS FEA AR FRAH

%

ap %\L

B~y 2 %2 Al

- HBFEZFT ) {@i
l,ﬁF/%./E

™

= h,(\_

L gm g r 38 R 540 FARR - S350 P RHERIF
M= P ik
(Jx 2 p % Gep > 2100 3 5°2)

(15 % % Iz

[P & %@ %

[JH & R 7]

o

2. L F A % wF A A A Y R IR
i

e B4 JA#gd2 >4 ERY a
B4 g® O 507 e

Fgg o[ g (s’ H&

Hw@ (2100 F 5 2)

b R R R R s S
f_‘g’i(%.ﬁ#ﬁ(}iﬁ\'%b"rp‘%\ii%"%'E“ngggéé#ﬁ%?}%i? Ei)(”
500 % % *2)




