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中文摘要： 調節複廻歸已廣泛應用於兩連續式變數交互作用分析，而兩變

數和其交互相乘項間的共線性對檢測的影響，自然地成為重要

議題。本文試圖探索變數間相關程度對檢測調節效用的可能正

面幫助，藉以釐清普遍以為共線性對調節複廻歸分析百害而無

一利的誤解。針對簡單雙變數及三變數交互作用模式的理論解

析和數據驗證，所獲結果有助於改變學者對變數間高度相關現

象的憎惡，更提昇調節效用研究方法的實用價值。 

英文摘要： Due to extensive applicability and computational ease, 

moderated multiple regression (MMR) has been widely 

employed to analyze interaction effects between two 

continuous predictor variables. Accordingly, 

considerable attention has been drawn toward the 

supposed multicollinearity problem between predictor 

variables and their cross-product term. This article 

attempts to clarify the misconception of 

multicollinearity in MMR studies. The counter-

intuitive yet beneficial effects of multicollinearity 

on the ability to detect moderator relationships are 

explored. Comprehensive treatments and numerical 

investigations are presented for the simplest 

interaction model and more complex three-predictor 

setting. The obtained results provide critical insight 

that not only avoids misleading interpretation but 

also yields better understanding of the impact of 

intercorrelation among predictor variables on MMR 

analyses. 
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On the misconception of multicollinearity in detecting moderating effects:  
Multicollinearity is not always detrimental  

 
Abstract 

Due to its extensive applicability and computational ease, moderated multiple 

regression (MMR) has been widely employed to analyze interaction effects between two 

continuous predictor variables. Accordingly, considerable attention has been drawn toward the 

supposed multicollinearity problem between predictor variables and their cross-product term. 

This article attempts to clarify the misconception of multicollinearity in MMR studies. The 

counter-intuitive yet beneficial effects of multicollinearity on the ability to detect moderator 

relationships are explored. Comprehensive treatments and numerical investigations are 

presented for the simplest interaction model and more complex three-predictor setting. The 

results provide critical insight that both helps avoid misleading interpretations and also yields 

better understanding for the impact of intercorrelation among predictor variables in MMR 

analyses.  
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The use of moderated multiple regression (MMR) has become common across a wide 

variety of social science disciplines in the search for interaction effects. But despite its 

popularity, substantial concerns have been raised regarding the considerable difficulties of 

detecting moderation relationships that are strongly expected or theoretically supported. 

Numerous researchers have noted that the hypothesis tests of moderating effects often have 

low statistical power and yield erroneous conclusions, impeding the theoretical development 

and scientific advancement of moderation research. In response to this problem, design 

considerations and model characteristics pertaining to power issues in MMR applications 

have been examined both conceptually and empirically. Notably, Aguinis (1995) identified 

prominent factors that attenuate statistical power and proposed practical solutions to 

low-power situations, especially for models with continuous moderators. On the other hand, 

Aguinis and Stone-Romero (1997), and Stone-Romero, Alliger and Aguinis (1994) focused on 

the methodological artifacts and critical implications associated with statistical power of 

dichotomous moderators. Furthermore, the recent review by Aguinis et al. (2005) emphasized 

the importance of effect size and power in assessing moderating effects in the context of 

categorical moderators. In light of these discussions in the current literature, the responsible 

factors that stand out as being most crucial include sample size, magnitude of moderating 

effect, reliability of criterion and predictor variable scores, joint distribution of predictor 

variables, and intercorrelation of predictor variables.  

In addition to the general treatment by Aguinis (1995) mentioned above, the 

multicollinearity problem in MMR has been examined by Cronbach (1987), Dunlap and 

Kemery (1987, 1988), Ganzach (1998), Morris, Sherman and Mansfield (1986), and among 

others. It should be evident that the intercorrelation among the continuous predictor variables 

and their cross-product term is inevitably relevant to the detection of interaction in general. 

Hence, no single study of MMR with continuous variables will be adequate without 
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considering the notion of multicollinearity. Accordingly, it is important to emphasize the 

distinction between essential and nonessential multicollinearity (Marquardt, 1980). Essential 

multicollinearity exists because of actual relationships between predictor variables, whereas 

the latter occurs merely due to the scaling or nonzero mean of predictor variable, and can be 

removed by centering predictor variables. Related issues can be found in Kromrey and 

Foster-Johnson (1998), Smith and Sasaki (1979) and Tate (1984). It is generally known that 

other remedies exist for coping with multicollinearity, as discussed in linear regression 

textbooks such as Cohen et al. (2003) and Kutner, Nachtsheim and Neter (2004). However, 

for clear understanding it is essential that researchers should direct the subtle formulation and 

evaluation of moderating effects with sound theory and consider the delicate interrelationships 

and significance within the response and predictor variables.  

In line with the forgoing concerns, Dunlap and Kemery (1988) examined the effects of 

both predictor reliabilities and predictor correlations on the statistical power of MMR. Their 

Monte Carlo simulation results showed that, as anticipated, the power to detect moderating 

effects is diminished by predictor unreliability. However, the corresponding empirical 

evidence gives rise to the surprising contention that the ability to detect interaction effects 

increases with increasing correlation between predictor variables. Since their discussions were 

focused more on the major issue of measurement error, and numerical findings were obtained 

from somehow limited settings in the context of two-predictor interaction models, Dunlap and 

Kemery (1988) did not provide insight into the counterintuitive power behavior in relation to 

multicollinearity diagnostics. It seems that this particular result has been overlooked in the 

literature and a further explanation that incorporates the notion of multicollinearity does not 

exist to our knowledge. Accordingly, it is of practical importance to assess whether this 

situation persists over a broader range of model configurations without the complication of 

unreliability.  
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In order to enhance the methodological integrity and fundamental usefulness of MMR, 

this article aims to explore the implications of intercorrelations among the continuous 

predictors and to account for misconception in the detection of moderating effects. In 

particular, the distinct power performance of the interactive models involving two predictor 

variables is presented to highlight the possible misapprehension when researchers apply 

heuristics learned from regular linear regression to MMR. Moreover, similar treatment and 

in-depth discussion are extended to the three-variable interaction model. For completeness, 

the Appendix summarizes the main results from the significance test of regression coefficients 

in the context of multiple linear regression, with particular emphasis on the consideration of 

stochastic predictor variables. Informative figures and numerical results are presented to 

illustrate the essential features of MMR analyses.  

 

Two-predictor interaction model 

Most MMR research has focused on the occurrence of interactive effects between two 

continuous predictor variables that are usually conceptualized in terms of the model  

 Yi = I + XiX + ZiZ + XiZiXZ + i,  (1) 

where Yi is the value of the response variable Y; Xi and Zi are the known constants of the 

predictors X and Z; i are iid N(0, 2) random errors for i = 1, ..., N; and I, X, Z, and XZ are 

unknown parameters. The existence of the regression coefficient XZ associated with the 

cross-product term in Equation (1) indicates that the linear relationship between the criterion 

variable and predictor variable is dependent on the level of the other predictor variable. In 

contrast, the simple additive model without the multiplicative term  

 Yi = I + XiX + ZiZ + i  

reveals that the association or strength between the response variable and each of the predictor 

variable is unaffected by or immaterial to the value of other predictor variable. The objective 
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of MMR is to determine whether the underlying data structure can best be approximated by an 

additive or an interactive formulation. In practice, the detection of moderating effects is 

conducted with the partial F or partial t test for the hypothesis H0: XZ = 0 versus H1: XZ  0 

in the multiple linear regression framework.  

It is generally known that the parameter estimation and hypothesis testing of multiple 

regression analysis can be plagued by the effects of multicollinearity. According to the 

fundamental properties of standard linear regression analysis presented in Appendix A, the 

estimated variances of the least squares coefficient estimators given in Equation (A5) are 

linked to the formal measure of variance inflation factor (VIF) for identifying the degree of 

multicollinearity. When a predictor variable has a strong linear association with other 

predictor variables, the associated VIF and variance estimate of regression coefficient 

estimator are excessively large. A commonly used rule of thumb is that a VIF of 10 or more is 

evidence of severe multicollinearity. Hence, the hypothesis testing of interaction effects is 

hampered and the power for detecting the moderation relationship is reduced because of the 

intercorrelation among the predictor variables.  

Moreover, the adverse effects of multicollinearity on the linear regression analysis with 

the additive model are clearly apparent. Let ̂X denote the least squares estimator of 

regression coefficient X, then the simple additive structure gives the following VIF of 

predictor variable X and estimated variance of ̂X:  

VIF(X) = 
 1 

 1 – r2  and V̂(̂X) = 
 ̂2·VIF(X) 

 S
2
X 

, 

where r = r(X, Z) is the Pearson product-moment correlation coefficient between the two 

predictor variables X and Z, ̂2 is the usual unbiased estimator of 2, and S
2
X = 

i = 1

N
 (Xi  X


)2 is 

the corrected sum of squares with X


 = 
i = 1

N
 Xi/N. Similar results can be readily obtained for the 
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second predictor variable Z. It is evident from the expressions just described that the degree of 

linear dependence between the two predictor variables measured by the simple correlation r 

has a significant influence on the multicollinearity index of VIF and the variance estimate   

V̂(̂X). The great simplicity of the additive model both makes it possible to convey the notion 

of multicollinearity without the burden of complex formulas and also permits computational 

ease in empirical examination. For example, related implication and numerical illustration are 

well demonstrated in the acclaimed texts of Cohen et al. (2003, Section 10.5) and Kutner, 

Nachtsheim and Neter (2004, Section 7.6). This reinforces the general perception and 

common practice that researchers should fully understand the intercorrelations among the 

predictor variables and carefully attend to the potential multicollinearity problem in a multiple 

regression analysis.  

In view of the continuous characteristics of measurements X and Z, it is clear that the 

sample values and data characteristics in a study vary from one application to another. 

Accordingly, the value of simple correlation coefficient r represents only a realization of r 

over the whole range of [1, 1]. Hence, it is of theoretical importance to investigate the 

overall impact of any underlying correlation between the two predictor variables on the 

various properties of MMR. In fact, the intercorrelation structure among the predictor 

variables is one of the inherent characteristics determined by the joint distribution of predictor 

variables, which in turn represents an indispensable artifact for detecting moderating effects. 

To extend the concept and applicability of MMR, it is more appropriate to employ the random 

regression or unconditional setup in which not only are values of the response variable for 

each subject available after the observations are made, but the levels of predictor variables are 

also outcomes of the study. Thus the continuous predictor and moderator variables {(Xi, Zi), i 

= 1, ..., N} in Equation (1) are random variables with a joint probability distribution. This 

assumption is closely related to the consideration of stochastic regressors arises with 
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considerable frequency in econometrics. The impacts of the intercorrelation relationship on 

multicollinearity diagnostics and statistical features for identifying interaction effects are 

presented in the following analytical and numerical investigation.  

Because of the complex nature of the random formulation under study, a complete 

theoretical solution is not feasible and the investigation is conducted in two stages. In the first 

stage, statistical derivations are carried out to gain an understanding of some specific 

phenomena for random regression models, subsuming the prescribed additive and interactive 

models and other MMR as special cases. The second stage is a large-scale simulation study, in 

which pseudo-random data were generated with desired structural equations, and then 

analyzed to determine the overall power behavior for discovering the main and interaction 

effects and unconditional performance of commonly used multicollinearity measures.  

First, the corresponding important statistical features for identifying interaction effects 

and multicollinearity diagnostics with the extra complication of stochastic predictor variables 

are described in Equations (A7)-(A9) of Appendix A. The resulting formulas are difficult to 

comprehend in generic expressions; however, they allow various distributions for regressor 

variables to be treated as variations on a common theme and they serve to tie together the 

notions of moderation and correlation. Nevertheless, they contain essential information as to 

whether a given correlation structure reduces the power for detecting moderation relation 

whenever the distribution of predictor variables is available. Regarding the distributional 

assumptions of the associated predictor variables, it is common to assume that the two 

continuous predictor variables have a joint bivariate normal distribution in illustrative and 

theoretical treatments of MMR such as McClelland and Judd (1993), O’Connor (2006), and 

Shieh (2009). The bivariate normality assumption not only provides a useful situation in its 

own right, but also has the advantage of naturally including the correlation between the two 

variables as a single free parameter. It is important to note that, although both X and Z are 
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normally distributed, the interaction term XZ is obviously not a normal random variable. As 

mentioned earlier, joint distribution of the predictor variables is one of the deterministic 

factors of detecting moderating effects, and so it may distort statistical power analysis and 

lead to invalid conclusions if one mistakenly applies a multinormal setup to the regressors of 

MMR.  

In the second stage of numerical examination, the prescribed interactive models with 

bivariate normal predictor variables are used as the base for Monte Carlo assessment. Without 

loss of generality, the two predictors (X, Z) are assumed to have a bivariate normal 

distribution with mean (0, 0), variance (1, 1) and correlation  ranging from 0.9 to 0.9 in 

increments of 0.1. Moreover, the parameters are chosen as I = X = Z = XZ = 0.25 and 2 = 

1. With sample size N = 100 and selected model configurations, the estimates of unconditional 

magnitudes are then computed through simulation of 10,000 replicate data sets. For each 

replicate, N sets of predictor variables are generated from the selected bivariate normal 

distribution. These values in turn determine the mean responses for generating N normal 

outcomes with the underlying linear regression model. Then the sample variance, test statistic, 

VIF, and regressor correlation matrix determinant (RCMD) are calculated. The simulated 

power is the proportion of the 10,000 replicates whose test statistic |t| values exceed the 

critical value with significance level  = 0.05. In addition, the overall estimates of variance, 

VIF, and RCMD are the arithmetic means of the corresponding 10,000 replicated values. All 

calculations were performed using programs written with SAS/IML (SAS Institute, 2008). 

Detailed numerical results of the simulation studies are reported in Table 1. Specifically, the 

simulated values of unconditional variance, power, and VIF associated with predictor X are 

denoted by (̂X), (tX) and (X), respectively, while the corresponding values for product 

term XZ are presented by (̂XZ), (tXZ) and (XZ). The overall RCMD is denoted by  in 

Table 1 as well. Since predictors X and Z are interchangeable under bivariate normal 



  

9 

distribution, the symmetric situations of predictor Z are omitted. For a concise visualization of 

the overall multicollinearity diagnostics with respect to the change of correlation , Figure 1 

depicts the relationship of simulated VIF for regressors X and XZ, and RCMD with . In 

addition, Figure 2 presents the plot of simulated power of tX and tXZ against  for the tests of 

main and interaction effects, respectively.  

It is clear from Table 1 that the effect of positive and negative correlation  is symmetric 

on all seven measurements of variance, power, VIF and determinant. In particular, Figure 1 

reveals that the graphs of VIF measure (X) and determinant  are symmetric with respect to 

 = 0 and the degrees of multicollinearity are increasing monotonous with increasing ||. 

However, the VIF measure (XZ) remains almost constant. It should be noted that the 

unconditional variances have opposite patterns with respect to the correlation between X and 

Z. The overall (̂X) is an increasing function of ||, whereas (̂XZ) is decreasing with 

increasing magnitude of ||. Moreover, the unconditional variance (̂X) is larger than (̂XZ) 

for || > 0.2, and this situation is reversed for || < 0.2. The distinct behaviors of variances 

lead to power performance that is completely unexpected. As shown in Figure 2, the power 

function (tX) decreases as the correlation becomes stronger, while the power of detecting 

interaction effects (tXZ) is essentially amplified for larger value of ||. Hence, this particular 

exposition provides an obvious contradiction to the common impression that intercorrelation 

or multicollinearity between predictor variables is always detrimental to the power for 

detecting parameter effects. Consequently, researchers can make understandable but serious 

mistakes when they apply heuristics learned from simple additive models to MMR. Since the 

actual effect sizes of interaction terms in MMR applications are generally quite small, we also 

performed similar numerical computations for regression coefficients I = X = Z = XZ = 

0.10 and sample size N = 250, while all other factors remained constant. The corresponding 
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results are presented in Table 2. Comparatively, the unconditional variances (̂X) and (̂XZ), 

and power levels (tX) and (tXZ) are much smaller than those in Table 1. However, the 

prescribed phenomena regarding their behavior relative to correlation  continue to exist in 

this case. In short, the advocated contention regarding the adverse relationship between 

multicollinearity and power in the literature for linear regression models does not generalize 

to MMR in a straightforward manner. The complex and yet important consequences of 

multiplicative components in MMR analyses will further be exemplified for three-predictor 

interaction models in the next section.  

 
Three-predictor interaction model 

In view of the counter-intuitive behavior in the most common procedure for detecting 

two-way interaction effects, it is prudent to extend the investigations to other widely useful 

MMR models. Particularly, the natural extension with three predictor variables represents 

another important application of MMR, in which the relation between the response variable Y 

and predictor variable X varies across levels of the other two predictor variables, Z and W, and 

their combinations. This results in the following three-predictor interaction model: 

 Yi = I + XiX + ZiZ + WiW +XiZiXZ + XiWiXW + ZiWiZW + XiZiWiXZW + i,  (2) 

where Yi is the value of the response variable Y, Xi, Zi and Wi are the known constants of the 

predictors X, Z and W; i are iid N(0, 2) random errors for i = 1, ..., N; and I, X, Z, W, XZ, 

XW, ZW, and XZW are unknown parameters. With the hierarchical or step-down approach, the 

regression coefficient XZW associated with the highest order product term of all three 

predictors XZW indicates the strength of the most essential moderating effect. On the other 

hand, the two-way interactions (XZ, XW, and ZW) and first-order effects (X, Z and W) 

represent conditional effects that can be examined to facilitate the interpretation of the 

underlying complex interaction structure. Readers can refer to Aiken and West (1991), 



  

11 

Dawson and Richter (2006), and Jaccard and Turrisi (2003) for further details. To provide an 

insight into MMR research, the focus here is on the potential misunderstanding of the 

influence of multicollinearity within the context of three-predictor interaction model. Similar 

to the two-predictor case, Monte Carlo simulation study was conducted to evaluate the 

influence of intercorrelations between predictor variables on the analysis of all first-, second- 

and third-order effects.  

The empirical study involves multivariate normal predictor variables X, Z and W with 

null means X = Z = W = 0, unit variance 2
X = 2

Z = 2
W = 1, correlation Cor(X, Z) =  

ranging from 0.9 to 0.9 in increments of 0.1, and Cor(X, W) = Cor(Z, W) = 0. It should be 

clear from a theoretical standpoint that there are many situations with practical usefulness 

among sets of correlations. The designated correlation matrix of the three predictors 

represents merely a single possibility and serves the purpose well for demonstrating the 

concealed feature of MMR. Moreover, the model parameters in Equation (2) are chosen as I 

= X = Z = W = XZ = XW = ZW = XZW = 0.25, 2 = 1, and sample size N = 100. The 

simulation follows closely the previous numerical investigation, in which the Monte Carlo 

integration procedure was implemented to determine the unconditional measurements through 

10,000 replicate data sets.  

The corresponding simulated results for main effects, two-way interactions and 

three-way interaction are summarized in Tables 3-5, respectively. Due to the model’s 

complexity, the resultant phenomenon can be made more comprehensible with the help of 

diagrams. The multicollinearity VIF measurements of regressors X, W, XZ, XW and XZW, 

denoted by (X), (W), (XZ), (XW), and (XZW), respectively, and RCMD  are depicted in 

Figure 3. Alternatively, the respective simulated power levels (tX), (tW), (tXZ), (tZW) and 

(tXZW) of t tests tX, tW, tXZ, tZW and tXZW are plotted in Figure 4. Because of the 

interchangeability between X and Z, and XW and ZW, the results associated with regressors Z 
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and ZW are not presented here. According to the visual information of Figure 3, all the 

diagrams of VIF values are concave while the RCMD curve is convex, but all are symmetric 

about  = 0. It follows from simple guideline that multicollinearity is declared to exist 

whenever any VIF value is at least equal to 10. Thus, the resultant degrees of multicollinearity 

are not severe according to the reported magnitudes of VIF values. In contrast, the small  

values for || > 0.5 indicate that the degree of multicollinearity is considered to be problematic. 

The patterns of the VIF and RCMD diagnostics are unquestionably clear that the levels of 

intercorrelation among the regressors increase with the strength of correlation between the 

two predictors X and Z. Consequently, the heuristic about the adverse effects of 

multicollinearity would suggest that the corresponding estimated variance of regression 

coefficients should be inflated and power of the resulting test of main effects, two-way 

interactions or three-way interaction will decline as the only present pairwise correlation  of 

X and Z increases in absolute size. The results show that the general notion is applicable only 

to the cases associated with regressors X, W and cross-product XW. In other words, the 

unconditional estimated variances (̂X), (̂W) and (̂XW) are convex functions of correlation 

, and conversely, power levels (tX), (tW) and (tZW) are concave with respect to correlation 

. Nonetheless, the conventional account does not apply to the other two regressors in terms 

of product terms XZ and XZW. Surprisingly, the two variance estimates (̂XZ) and (̂XZW) are 

concave with respect to , and in turn, the respective power functions (tXZ) and (tXZW) are 

convex, as shown in Figure 4. Thus, the established guidance about the detrimental impact of 

multicollinearity in the context additive multiple regression is not completely applicable to 

interaction models. As in the previous case of a two-predictor interaction model, the empirical 

investigation was extended to the setting with I = X = Z = W = XZ = XW = ZW = XZW = 

0.10, and sample size N = 250. According the results summarized in Tables 6-8, it is clear that 
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the general contention described above can still apply in this situation with smaller effect size. 

Although these empirical examinations depend exclusively on simulation results, the 

assessments of the three-predictor interaction formulation illustrate the advocated caution and 

unfavorable perception of intercorrelations among predictor variables should not be applied 

indiscriminately. More importantly, the positive influence of correlation  on the detection of 

a three-way moderating effect raises a practical concern for MMR researchers to reevaluate 

the underlying predictor interrelationships and their impact on model selection and inference.  

 

Numerical Example 

In addition to the detailed empirical investigations employing Monte Carlo simulation 

study, it is instructive to exemplify the impact of multicollinearity on the detection of 

three-way interactions that might be encountered in applied work. The study of the 

importance of relationship in Kwong and Leung (2002) is used as an illustrative context. In 

that study they examined the compensatory effect between procedural justice and outcome 

favorability in determining people’s reaction to a decision. Given the compensatory effect, 

procedural fairness has a particularly strong and positive impact on people’s response to low 

outcomes. However, they argued that the compensatory effect is conditional upon other 

contextual variables and studied the three-way interaction in which the perceived importance 

of the relationship between people moderates the compensatory effect of procedural justice. 

They tested the hypothesis that the tendency for procedural justice to have a stronger and 

more positive impact on people’s response when outcome is low versus high should be more 

pronounced for an important relationship than for an unimportant relationship. The study 

concluded that the interaction effect is operative only when the relationship with the other 

party is important to that person.  

For the purpose of demonstration, the summary statistics and analysis results presented 
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in Tables 1 and 2 of Kwong and Leung (2002) were utilized to generate the two hypothetical 

data sets reported in Table 9. According to the formulation of Kwong and Leung (2002), the 

criterion variable (Y) represents the measurement of feeling or happiness, and the three 

predictor variables are interactional justice (X), outcome favorability (Z), and prior closeness 

(W). As noted in Aiken and West (1991, p. 36), the so-called nonessential multicollinearity 

can be removed by centering variables. Hence, the observed values of the three predictors in 

Table 9 were mean-centered in the following MMR analyses. With the 30 observations in 

Data 1, the simple correlations are r(X, Z) = 0.4883, r(X, W) = 0.3541, and r(Z, W) = 0.2605. 

The sample data was analyzed with a three-way interaction regression model. We are 

particularly concerned with the interaction term XZW, and the resulting test statistic is tXZW = 

2.1873 with p-value = 0.0396. Hence, the test of three-way interaction H0: XZW = 0 can be 

rejected at the significance level  = 0.05. However, close examination of the variance 

inflation factor associated with the cross-product term XZW shows that VIF(XZW) = 11.94 

and regressor correlation matrix determinant RCMD = 0.0098. In practice, the VIF values in 

excess of 10 or the quantities RCMD close to 0 are considered to be problematic. In these 

circumstances, the common procedure is to consider approaches to solving problem of 

multicollinearity before concluding that there is sufficient evidence to indicate an interaction. 

Accordingly, the collection of additional data provides a feasible solution and is commonly 

recommended. With the additional 20 observations presented in Data 2 of Table 9, the 

detection of three-way interaction was reanalyzed with a total of sample size N = 50. In this 

case, the three pairwise correlations are r(X, Z) = 0.4799, r(X, W) = 0.2308, and r(Z, W) = 

0.1868. The magnitudes of these correlations are less than those calculated with Data 1. 

Moreover, the multicollinearity index VIF reduced to VIF(XZW) = 2.99, while regressor 

correlation matrix determinant changed into RCMD = 0.1083. Thus, the severity of 

multicollinearity is alleviated to some extent as intended by the inclusion of extra samples. 
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However, the resulting test statistic for the interaction effect is tXZW = 1.9104 and the 

corresponding p-value = 0.0629. Unfortunately, we are unable to claim there is a significant 

moderation effect at a 0.05 level of significance for the expanded data.  

Unlike the typical results of regression analyses, this numerical example reveals a 

contrasting and positive impact of predictor intercorrelations on the detection of moderating 

effects. Researchers using MMR should be aware of this tendency of power for the detection 

of moderator effects to be lost, at the expense of overemphasis on mitigation of 

multicollinearity between predictor variables. From the methodological standpoint, the 

techniques of multiple regression and other multivariate methods were developed to 

synthesize the complex information of correlated data in the first place. It seems paradoxical 

that the common practice has been overwhelmingly prone to remove or diminish 

intercorrelation and multicollinearity among variables, while the advanced methodologies are 

supposed to fully account for their intertwined structure in order to help advance social 

science theory.  

 

Conclusion 

It is well known that multicollinearity is closely related to the popular statistical tool of 

multiple linear regression. Hence, practitioners in applied research must become conversant 

with various diagnostic procedures for identifying, reducing or removing the cause and threat 

of multicollinearity. The simplest MMR is essentially a special case of multiple linear 

regression that allows particularly the relation between the response variable and a predictor 

variable to depend on the level of another predictor variable. The basic rationale of 

moderation can be readily extended to three-way interactions and more complex situations. In 

view of the apparent intercorrelated structure between the predictor variables and their 

combined higher order or cross-product terms in interaction models, the supposed adverse 



  

16 

effects associated with high or extreme multicollinearity are often encountered in many MMR 

applications. Unfortunately, it is subject to serious misunderstanding that predictor 

intercorrelations incur nothing but harm to the detection of moderation or interaction effects 

in MMR study.  

This article focuses on the two most fundamental MMR models with two- and 

three-predictor interaction effects and explores the impact of intercorrelations on the 

multicollinearity diagnostics and power in testing for main and interaction effects under the 

convenient distributional assumption of bivariate or multivariate normal predictors. The 

extensive empirical results of Monte Carlo simulation studies showed that the power of 

detecting interaction effects may increase with greater correlation between predictor variables 

when all other factors are fixed. Hence, the detrimental effects of multicollinearity associated 

with additive multiple linear regression are not necessarily present with MMR analysis. 

Regarding the distributional configuration of predictor variables, normality is of course not 

the only situation of practical interest. There are also many useful assumptions to consider for 

the continuous predictor variables. More importantly, additional Monte Carlo simulations 

confirmed that the emphasized counter-intuitive phenomenon is not unique to the normality 

assumption of the predictor variables. In view of the indispensable role of the joint 

distribution of predictors, researchers should make a comprehensive appraisal of the 

underlying data characteristics and their impact on statistical power for the detection of 

moderating effects. Given the complex interrelationships that exist among predictor variables 

and cross-product terms in MMR studies, it is important to reorient the general idea about the 

presence of multicollinearity because the detection of interaction effects need not be hindered 

by increased correlation between predictor variables.  
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Appendix A 
Fundamental results of random regression models  

 
Consider the standard multiple linear regression model with dependent variable Y and 

all the levels of p independent variables X1, ..., Xp fixed a priori:  

 Y = X + ,  (A1) 

where Y = (Y1, ..., YN)T, Yi is the value of the dependent variable Y; X = (1N, XD) with 1N is the 

N  1 vector of all 1s, XD = (X1, ..., XN)T is often called the design matrix, Xi = (Xi1, ..., Xip)
T, 

Xi1, ..., Xip are the known constants of the p independent variables for i = 1, ..., N;  = (0, 

1, ..., p)
T with 0, 1, ..., p are unknown parameters; and  = (1, ..., N)T with i are iid  

N(0, 2) random variables.  

Frequently, the inferences are concerned mainly with the regression coefficients  = 

(1, ..., p)
T in Equation (A1) and the corresponding ordinary least squares estimator is ̂1 = 

(X
T
CXC)1X

T
CY, where XC = (IN  J/N)XD is the centered form of XD, IN is the identity matrix 

of dimension N and J is the N  N square matrix of 1s. With this formulation, it is easily seen 

that  

 ̂1 | XD ~ Np(, 2S
1
X ), 

where SX = X
T
CXC. Note that ̂2 = SSE/(N  p  1) is the usual unbiased estimator of 2 and 

SSE/2 is distributed as 2(N  p  1), a chi-square distribution with N  p  1 degrees of 

freedom and is independent of ̂.  

For convenience of illustration, it can be shown that  

 ̂k | XD ~ N(k, V(̂k))  

where 

 V(̂k) = 
 2 

 (1 – R
2
k)S

2
k 

, 
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R
2
k is the coefficient of determination or R2 in the regression of Xk on all other variables  

(X1, ..., Xk  1, Xk + 1, …, Xp), and S
2
k = 

i = 1

N
 (Xik  X


k)

2 is the corrected sum of squares with X


k = 


i = 1

N
 Xik/N for k = 1, …, p. The corresponding test for the hypothesis H0: k = 0 versus H1: k  0 

is based on  

 tk = 
 ̂k 

 {V̂(̂k)}
1/2 

, (A2) 

where 

 V̂(̂k) = 
 ̂2 

 (1 – R
2
k)S

2
k 

. (A3) 

If the null hypothesis H0: k = 0 is true, the statistic tk is distributed as t(N  p  1), a central t 

distribution with N  p  1 degrees of freedom, and H0 is rejected at the significance level  if 

|tXZ| > tN  p  1, /2, where tN  p  1, /2 is the upper 100(/2)th percentile of the t distribution 

t(N  p  1).  

Note that variance inflation factor (VIF) is a formal measure for identifying the extent 

of multicollinearity. In this case, the VIF of Xk is  

 VIF(Xk) = 
 1 

 1 – R
2
k 

. (A4) 

For example, see Kutner, Nachtsheim and Neter (2004, Section 10.5). With the definition in 

Equation (A4), the variance of ̂k is directly linked to the widely used multicollinearity 

diagnostic of VIF through  

V(̂k) = 
 2·VIF(Xk) 

 S
2
k 

. 

Also, the corresponding estimated variance in Equation (A3) can be rewritten as  

 V̂(̂k) = 
 ̂2·VIF(Xk) 

 S
2
k 

.  (A5) 
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When Xk has a substantial multicollinearity with the other predictor variables so that R
2
k is 

substantially larger than 0, then VIF(Xk) and V̂ ( ̂ k) in Equations (A4) and (A5) are 

considerably inflated and even unbounded. The immediate and adverse consequence of large  

V̂(̂k) is the tk test in Equation (A2) may lead to false null hypotheses of no effect that disagree 

with prior knowledge and theoretical grounding. Another widely used multicollinearity 

diagnostic is the regressor correlation matrix determinant |R|, where R = D1/2(X
T
CXC)D1/2 is 

the regressor correlation matrix with diagonal matrix D = diag(S
2
1, S

2
2, …, S

2
p). The diagnostic 

of regressor correlation matrix determinant ranges from 0 when there is perfect 

multicollinearity, to 1 when there is no multicollinearity.  

Moreover, the resulting power function for the test H0: k = 0 versus H1: k  0 is  

 P{|tk| > tN  p  1, /2 | XD} = P{|t(N  p  1, )| > tN  p  1, /2 | XD}, (A6) 

where t(N  p  1, ) is the noncentral t distribution with N  p  1 degrees of freedom and 

noncentrality parameter  

  = 
 k 

 {V(̂k)}
1/2 

.  

Traditionally, the multiple regression model defined above is referred to as a fixed 

(conditional) model. The corresponding results would be specific to the particular values of 

the predictor variables that are observed or preset by the researcher. Under the random 

regression setup, the predictor variables Xi, i = 1, ..., N, are assumed to have a joint 

probability density function f(Xi1, ..., Xip) and the form of f(Xi1, ..., Xip) does not depend on any 

of the unknown parameters (0, 1, ..., p) and 2. It is conceivable that the extended 

consideration of random feature associated with predictors complicates the fundamental 

statistical properties of the inferential procedures. However, the estimates of parameters and 

tests of hypotheses are the same under both fixed and random formulations. Nonetheless, the 
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distinction between the two modeling approaches becomes important when unconditional or 

overall properties are to be evaluated.  

Note that the observed values of Xi, i = 1, ..., N, only represent one realization over the 

whole domain of (X1, ..., Xp). Interestingly, the unconditional mean E[̂k] of ̂k remains 

unbiased because  

E[̂k] = EX[EY{̂k}] = EX[k] = k, 

where the expectations EY[·] and EX[·] are taken with respect to the iid probability 

distributions f(Yi) and f(Xi1, ..., Xip) of Yi and Xi = (Xi1, ..., Xip)
T, respectively, i = 1, …, N. Also, 

the unconditional variance (̂k) of ̂k is given by  

 (̂k) = E[(̂k  k)
2] = EX[EY{(̂k  k)

2}] = 2EX 







 VIF(Xk) 

 S
2
k 

. (A7) 

The power function in the context of random regression is defined as the expected value of 

the conditional power function given in Equation (A6) as follows  

 (tk) = P{|tk| > tN  p  1, /2} = EX[P{|t(N  p  1, )| > tN  p  1, /2}].  (A8) 

Likewise, the unconditional multicollinearity diagnostics of VIF and determinant of regressor 

correlation matrix are expressed as (Xk) and , respectively, where  

 (Xk) = EX[VIF(Xk)] for k = 1, …, p, and  = EX[|R|].  (A9) 

In general, there is no simple closed-form expression for the preceding quantities given in 

Equations (A7)-(A9) except in some special cases. Therefore, it is extremely cumbersome to 

evaluate the multi-dimensional integration with respect to the joint probability density 

distribution of (X1, ..., Xp). Instead, Monte Carlo integration provides a computationally 

feasible and practically accurate solution. Finally, the corresponding hypothesis testing 

procedures and power functions for the two one-sided tests of H0: k  0 versus H1: k > 0, 

and H0: k  0 versus H1: k < 0 and even nonzero minimum effect can be readily established 

but the details are not given here. 
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Figure 1. The simulated multicollinearity measures of two-predictor interaction model
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Figure 3. The simulated multicollinearity measures of three-predictor interaction model
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Table 1. The simulated results of two-predictor interaction model  

with X = XZ = 0.25 and N = 100  

          

  Variance Power VIFa Variance Power VIFa RCMDb  

  (̂X) (tX) (X) (̂XZ) (tXZ) (XZ)  
          

 0.9  0.0555  0.1858  5.4778  0.0067  0.8546  1.0641  0.1802 

 0.8  0.0294  0.3078  2.8882  0.0074  0.8236  1.0641  0.3404 

 0.7  0.0208  0.4094  2.0351  0.0082  0.7906  1.0633  0.4816 

 0.6  0.0167  0.4898  1.6220  0.0089  0.7602  1.0634  0.6031 

 0.5  0.0142  0.5532  1.3870  0.0095  0.7333  1.0630  0.7039 

 0.4  0.0127  0.5978  1.2396  0.0102  0.7031  1.0642  0.7860 

 0.3  0.0118  0.6317  1.1423  0.0108  0.6802  1.0625  0.8525 

 0.2  0.0112  0.6541  1.0858  0.0112  0.6653  1.0628  0.8970 

 0.1  0.0109  0.6651  1.0531  0.0116  0.6507  1.0643  0.9239 

 0  0.0107  0.6702  1.0423  0.0116  0.6500  1.0639  0.9337 

 0.1  0.0108  0.6661  1.0530  0.0115  0.6547  1.0630  0.9248 

 0.2  0.0112  0.6535  1.0845  0.0112  0.6632  1.0630  0.8978 

 0.3  0.0117  0.6324  1.1434  0.0107  0.6831  1.0629  0.8517 

 0.4  0.0127  0.5983  1.2361  0.0102  0.7038  1.0642  0.7877 

 0.5  0.0142  0.5524  1.3852  0.0096  0.7315  1.0623  0.7051 

 0.6  0.0166  0.4899  1.6232  0.0088  0.7609  1.0616  0.6030 

 0.7  0.0208  0.4094  2.0363  0.0082  0.7899  1.0640  0.4813 

 0.8  0.0294  0.3082  2.8870  0.0074  0.8253  1.0626  0.3408 

 0.9  0.0556  0.1855  5.4697  0.0068  0.8509  1.0643  0.1807 
          

a. Variance inflation factor 
b. Regressor correlation matrix determinant  
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Table 2. The simulated results of two-predictor interaction model  

with X = XZ = 0.10 and N = 250  

          

  Variance Power VIFa Variance Power VIFa RCMDb  

  (̂X) (tX) (X) (̂XZ) (tXZ) (XZ)  
          

 0.9 0.0215 0.1048 5.3410 0.0024 0.5441 1.0247 0.1861 

 0.8 0.0114 0.1553 2.8232 0.0026 0.5063 1.0246 0.3516 

 0.7 0.0080 0.2004 1.9929 0.0029 0.4700 1.0247 0.4974 

 0.6 0.0064 0.2393 1.5862 0.0032 0.4364 1.0240 0.6245 

 0.5 0.0055 0.2723 1.3532 0.0034 0.4101 1.0245 0.7312 

 0.4 0.0049 0.2985 1.2089 0.0037 0.3856 1.0241 0.8183 

 0.3 0.0045 0.3185 1.1165 0.0039 0.3650 1.0248 0.8857 

 0.2 0.0043 0.3325 1.0584 0.0041 0.3515 1.0249 0.9338 

 0.1 0.0041 0.3422 1.0264 0.0042 0.3454 1.0242 0.9632 

 0 0.0041 0.3446 1.0162 0.0042 0.3416 1.0245 0.9727 

 0.1 0.0042 0.3416 1.0263 0.0042 0.3443 1.0244 0.9632 

 0.2 0.0043 0.3333 1.0584 0.0041 0.3529 1.0246 0.9341 

 0.3 0.0045 0.3188 1.1173 0.0039 0.3671 1.0244 0.8852 

 0.4 0.0049 0.2987 1.2093 0.0037 0.3861 1.0247 0.8178 

 0.5 0.0055 0.2721 1.3539 0.0034 0.4091 1.0248 0.7308 

 0.6 0.0064 0.2395 1.5865 0.0032 0.4376 1.0248 0.6240 

 0.7 0.0080 0.2005 1.9896 0.0029 0.4706 1.0242 0.4984 

 0.8 0.0113 0.1555 2.8185 0.0026 0.5057 1.0247 0.3522 

 0.9 0.0215 0.1047 5.3535 0.0024 0.5446 1.0244 0.1857 
          

a. Variance inflation factor 
b. Regressor correlation matrix determinant  



  

29 

Table 3. The simulated results for X and W of three-predictor interaction model  

with X = W = 0.25 and N = 100  

         

  Variance Power VIFa Variance Power VIFa 

  (̂X) (tX) (X) (̂W) (tW) (W) 
         

 0.9  0.0593  0.1772  5.8344  0.0172  0.4809  1.6646 

 0.8  0.0315  0.2914  3.0941  0.0164  0.4986  1.5907 

 0.7  0.0224  0.3866  2.1862  0.0156  0.5188  1.5103 

 0.6  0.0178  0.4641  1.7464  0.0148  0.5397  1.4297 

 0.5  0.0154  0.5218  1.4945  0.0139  0.5638  1.3489 

 0.4  0.0138  0.5646  1.3411  0.0132  0.5853  1.2794 

 0.3  0.0127  0.5989  1.2387  0.0125  0.6062  1.2171 

 0.2  0.0122  0.6184  1.1777  0.0121  0.6216  1.1718 

 0.1  0.0118  0.6323  1.1430  0.0118  0.6319  1.1427 

 0  0.0117  0.6358  1.1333  0.0117  0.6354  1.1323 

 0.1  0.0118  0.6304  1.1439  0.0118  0.6310  1.1420 

 0.2  0.0121  0.6189  1.1760  0.0120  0.6231  1.1696 

 0.3  0.0128  0.5970  1.2396  0.0126  0.6046  1.2181 

 0.4  0.0138  0.5664  1.3409  0.0132  0.5858  1.2782 

 0.5  0.0153  0.5237  1.4920  0.0139  0.5631  1.3518 

 0.6  0.0179  0.4635  1.7449  0.0147  0.5401  1.4323 

 0.7  0.0223  0.3871  2.1868  0.0156  0.5192  1.5109 

 0.8  0.0315  0.2912  3.0974  0.0164  0.4997  1.5915 

 0.9  0.0594  0.1770  5.8503  0.0172  0.4802  1.6667 
         

a. Variance inflation factor  



  

30 

Table 4. The simulated results for XZ and XW of three-predictor interaction model  

with XZ = XW = 0.25 and N = 100  

         

  Variance Power VIFa Variance Power VIFa 

  (̂XZ) (tXZ) (XZ) (̂XW) (tXW) (XW) 
         

 0.9  0.0080  0.7994  1.2692  0.0663  0.1696  6.3426 

 0.8  0.0087  0.7666  1.2701  0.0354  0.2762  3.3766 

 0.7  0.0096  0.7323  1.2693  0.0251  0.3654  2.3758 

 0.6  0.0103  0.7026  1.2588  0.0202  0.4353  1.8955 

 0.5  0.0112  0.6685  1.2550  0.0174  0.4882  1.6215 

 0.4  0.0120  0.6419  1.2493  0.0157  0.5285  1.4525 

 0.3  0.0125  0.6232  1.2407  0.0145  0.5596  1.3417 

 0.2  0.0129  0.6076  1.2350  0.0138  0.5785  1.2786 

 0.1  0.0132  0.5986  1.2291  0.0134  0.5905  1.2428 

 0  0.0133  0.5936  1.2282  0.0133  0.5937  1.2286 

 0.1  0.0132  0.5964  1.2329  0.0135  0.5893  1.2429 

 0.2  0.0130  0.6053  1.2333  0.0138  0.5792  1.2743 

 0.3  0.0126  0.6209  1.2398  0.0146  0.5562  1.3434 

 0.4  0.0118  0.6452  1.2497  0.0156  0.5304  1.4505 

 0.5  0.0112  0.6704  1.2562  0.0174  0.4901  1.6211 

 0.6  0.0105  0.6974  1.2591  0.0201  0.4370  1.8964 

 0.7  0.0096  0.7313  1.2694  0.0251  0.3656  2.3778 

 0.8  0.0087  0.7667  1.2747  0.0352  0.2774  3.3689 

 0.9  0.0080  0.7989  1.2692  0.0666  0.1692  6.3851 
         

a. Variance inflation factor  
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Table 5. The simulated results for XZW of three-predictor interaction model  

with XZW = 0.25 and N = 100  

       

  Variance Power VIFa RCMDb 

  (̂XZW) (tXZW) (XZW)  
       

 0.9  0.0101  0.7237  2.0587  0.0152 

 0.8  0.0110  0.6936  1.9699  0.0553 

 0.7  0.0121  0.6593  1.8747  0.1154 

 0.6  0.0130  0.6302  1.7652  0.1896 

 0.5  0.0140  0.6009  1.6598  0.2735 

 0.4  0.0149  0.5743  1.5712  0.3555 

 0.3  0.0156  0.5588  1.4848  0.4355 

 0.2  0.0160  0.5457  1.4225  0.4982 

 0.1  0.0163  0.5365  1.3848  0.5405 

 0  0.0165  0.5305  1.3702  0.5552 

 0.1  0.0164  0.5355  1.3894  0.5382 

 0.2  0.0160  0.5429  1.4195  0.5011 

 0.3  0.0156  0.5560  1.4829  0.4359 

 0.4  0.0148  0.5770  1.5698  0.3566 

 0.5  0.0140  0.6009  1.6671  0.2722 

 0.6  0.0131  0.6273  1.7653  0.1900 

 0.7  0.0121  0.6594  1.8730  0.1156 

 0.8  0.0110  0.6940  1.9731  0.0548 

 0.9  0.0101  0.7244  2.0586  0.0150 
       

a. Variance inflation factor 
b. Regressor correlation matrix determinant   
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Table 6. The simulated results for X and W of three-predictor interaction model  

with X = W = 0.10 and N = 250  

         

  Variance Power VIFa Variance Power VIFa 

  (̂X) (tX) (X) (̂W) (tW) (W) 
         

 0.9 0.0221 0.1034 5.4768 0.0062 0.2457 1.5380 

 0.8 0.0117 0.1527 2.8933 0.0060 0.2544 1.4725 

 0.7 0.0083 0.1962 2.0471 0.0057 0.2647 1.4026 

 0.6 0.0066 0.2343 1.6328 0.0054 0.2765 1.3302 

 0.5 0.0056 0.2655 1.3923 0.0051 0.2895 1.2577 

 0.4 0.0050 0.2914 1.2469 0.0048 0.3021 1.1923 

 0.3 0.0047 0.3107 1.1515 0.0046 0.3156 1.1335 

 0.2 0.0044 0.3247 1.0921 0.0044 0.3260 1.0884 

 0.1 0.0043 0.3288 1.0596 0.0043 0.3327 1.0599 

 0 0.0042 0.3353 1.0497 0.0042 0.3356 1.0493 

 0.1 0.0043 0.3329 1.0600 0.0043 0.3328 1.0600 

 0.2 0.0044 0.3244 1.0921 0.0044 0.3259 1.0880 

 0.3 0.0047 0.3107 1.1523 0.0046 0.3149 1.1337 

 0.4 0.0050 0.2912 1.2456 0.0048 0.3027 1.1923 

 0.5 0.0056 0.2658 1.3936 0.0051 0.2891 1.2579 

 0.6 0.0066 0.2338 1.6323 0.0054 0.2761 1.3315 

 0.7 0.0083 0.1962 2.0484 0.0057 0.2648 1.4023 

 0.8 0.0117 0.1527 2.8914 0.0060 0.2544 1.4723 

 0.9 0.0221 0.1034 5.4838 0.0062 0.2456 1.5405 
         

a. Variance inflation factor  
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Table 7. The simulated results for XZ and XW of three-predictor interaction model  

with XZ = XW = 0.10 and N = 250  

         

  Variance Power VIFa Variance Power VIFa 

  (̂XZ) (tXZ) (XZ) (̂XW) (tXW) (XW) 
         

 0.9 0.0026 0.5156 1.1045 0.0232 0.1020 5.6767 

 0.8 0.0028 0.4785 1.1053 0.0123 0.1498 3.0023 

 0.7 0.0031 0.4437 1.1043 0.0087 0.1922 2.1172 

 0.6 0.0034 0.4145 1.1029 0.0069 0.2290 1.6888 

 0.5 0.0037 0.3860 1.0994 0.0059 0.2591 1.4407 

 0.4 0.0039 0.3660 1.0966 0.0053 0.2829 1.2904 

 0.3 0.0042 0.3479 1.0927 0.0049 0.3031 1.2920 

 0.2 0.0043 0.3354 1.0889 0.0047 0.3155 1.1313 

 0.1 0.0044 0.3291 1.0868 0.0046 0.3227 1.0985 

 0 0.0045 0.3256 1.0888 0.0045 0.3259 1.0876 

 0.1 0.0045 0.3277 1.0889 0.0045 0.3233 1.0988 

 0.2 0.0044 0.3352 1.0907 0.0047 0.3150 1.1306 

 0.3 0.0041 0.3495 1.0915 0.0049 0.3017 1.1936 

 0.4 0.0039 0.3654 1.0946 0.0053 0.2835 1.2898 

 0.5 0.0037 0.3874 1.0990 0.0060 0.2584 1.4416 

 0.6 0.0034 0.4128 1.1000 0.0070 0.2282 1.6901 

 0.7 0.0031 0.4444 1.1040 0.0087 0.1924 2.1185 

 0.8 0.0029 0.4766 1.1064 0.0123 0.1498 2.9962 

 0.9 0.0026 0.5149 1.1053 0.0231 0.1021 5.6860 
         

a. Variance inflation factor  
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Table 8. The simulated results for XZW of three-predictor interaction model  

with XZW = 0.10 and N = 250  

       

  Variance Power VIFa RCMDb 

  (̂XZW) (tXZW) (XZW)  
       

 0.9 0.0029 0.4856 1.6918 0.0199 

 0.8 0.0032 0.4535 1.6187 0.0740 

 0.7 0.0035 0.4200 1.5440 0.1546 

 0.6 0.0038 0.3927 1.4638 0.2551 

 0.5 0.0041 0.3664 1.3817 0.3700 

 0.4 0.0044 0.3476 1.3065 0.4862 

 0.3 0.0046 0.3321 1.2394 0.5991 

 0.2 0.0048 0.3196 1.1854 0.6935 

 0.1 0.0049 0.3127 1.1522 0.7554 

 0 0.0050 0.3110 1.1425 0.7756 

 0.1 0.0050 0.3125 1.1545 0.7535 

 0.2 0.0048 0.3195 1.1864 0.6931 

 0.3 0.0046 0.3336 1.2382 0.5991 

 0.4 0.0044 0.3472 1.3040 0.4883 

 0.5 0.0041 0.3669 1.3806 0.3701 

 0.6 0.0038 0.3907 1.4602 0.2557 

 0.7 0.0035 0.4222 1.5425 0.1545 

 0.8 0.0032 0.4504 1.6206 0.0740 

 0.9 0.0029 0.4866 1.6914 0.0198 
       

a. Variance inflation factor 
b. Regressor correlation matrix determinant  
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Table 9. Hypothetical data sets 

              

 Y X Z W Y X Z W Y X Z W 
              

Data 1 (N = 30)  

 2.02 3.2 2.1 2.6 3.19 2.6 2.1 1.6 3.93 3.7 2.8 4.7 

 3.32 3.5 3.2 3.1 3.76 2.8 1.9 1.7 1.96 4.0 2.9 3.6 

 2.63 3.6 3.3 1.3 4.64 3.8 3.3 2.4 3.78 3.3 2.4 0.3 

 1.43 4.3 4.1 5.3 2.21 3.6 1.6 2.3 1.69 2.1 2.9 1.7 

 3.40 2.9 2.5 3.5 5.07 3.6 4.1 3.0 5.47 3.9 2.7 3.8 

 2.24 4.0 2.5 3.8 1.87 3.8 3.1 3.2 3.03 2.6 3.4 2.8 

 1.65 1.4 0.6 2.9 4.24 4.3 2.8 2.7 2.54 2.9 2.1 3.2 

 3.39 4.6 5.1 4.9 3.88 2.8 2.9 3.9 3.69 3.6 3.5 1.7 

 1.98 2.2 4.0 2.6 3.20 2.7 2.7 3.3 4.72 4.2 3.4 2.3 

 3.02 3.3 2.5 5.9 3.21 0.8 2.6 1.8 1.01 2.4 1.3 2.6 

 

Data 2 (N = 20)  

 3.62 4.2 3.6 2.3 3.99 2.5 1.4 1.1 3.76 2.1 1.7 3.7 

 1.35 2.9 1.2 0.9 5.34 4.6 4.1 2.1 3.68 2.9 3.2 4.4 

 4.08 3.8 3.1 1.7 3.52 2.2 2.9 1.9 0.99 3.0 1.7 3.4 

 1.57 2.2 2.5 1.5 2.24 2.1 2.4 2.9 2.86 2.5 2.9 3.9 

 3.39 3.7 2.6 3.6 2.95 2.7 2.0 3.5 3.30 2.4 3.1 2.6 

 5.12 5.2 3.9 2.3 3.42 2.7 4.0 3.4 2.13 2.6 2.5 3.0 

 3.31 2.5 3.7 1.9 2.66 4.0 2.4 4.7 
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