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Abstract

Xu et al. showed that for any set of faulty edges F of an n-dimensional hypercube Qn with |F | � n − 1, each edge of Qn − F

lies on a cycle of every even length from 6 to 2n, n � 4, provided not all edges in F are incident with the same vertex. In this paper,
we find that under similar condition, the number of faulty edges can be much greater and the same result still holds. More precisely,
we show that, for up to |F | = 2n − 5 faulty edges, each edge of the faulty hypercube Qn − F lies on a cycle of every even length
from 6 to 2n with each vertex having at least two healthy edges adjacent to it, for n � 3. Moreover, this result is optimal in the
sense that there is a set F of 2n − 4 conditional faulty edges in Qn such that Qn − F contains no hamiltonian cycle.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The ring embedding problem, which deals with all
the possible lengths of the cycles in a given graph, is in-
vestigated in a lot of interconnection networks [2–4]. If
a graph contains cycles of all lengths, it is called pan-
cyclic [7]. Bipancyclicity is essentially a restriction of
the concept of pancyclicity to cycles of even lengths.
A bipartite graph is vertex-bipancyclic [6] if every ver-
tex lies on a cycle of every even length from 4 to
|V (G)|. Similarly, a bipartite graph is edge-bipancyclic
if every edge lies on a cycle of every even length from
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4 to |V (G)|. A bipartite graph is k-edge-fault-tolerant
edge-bipancyclic if G − F remains edge-bipancyclic
for any set of faulty edges F ⊂ E(G) with |F | � k.
A path P is a sequence of adjacent vertices, written
as 〈v0, v1, . . . , vm〉. The length of a path P , denoted by
l(P ), is the number of edges in P . A hamiltonian cycle
is a cycle which includes every vertex of G. In addition,
we call e a healthy edge when e is fault-free in a graph.

Chan and Lee [1] considered an injured n-dimen-
sional hypercube where each vertex is incident with at
least two healthy edges, and proved that it still contains
a hamiltonian cycle even it has (2n − 5) edge faults.
Tsai [8] proved that such injured hypercube Qn con-
tains a cycle of every even length from 4 to 2n, even if
it has up to (2n − 5) edge faults. Recently, Xu et al. [9]
showed that for any set of faulty edges F of Qn with
|F | � n − 1, each edge of Qn − F lies on a cycle of
every even length from 6 to 2n, n � 4, provided not
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all faulty edges are incident with the same vertex. We
observe that not all faulty edges are incident with the
same vertex is equivalent to stating that each vertex has
at least two healthy edges adjacent to it, if |F | � n − 1.
In this paper, we consider a set of faulty edges satisfying
the condition that each vertex of Qn −F is incident with
at least two healthy edges. Such a set of faulty edges F

is called a set of conditional faulty edges and Qn −F is
called a conditional faulty hypercube. We find that un-
der this condition, the number of faulty edges can be
much greater and the same result still holds. We show
that, for up to |F | = 2n − 5 conditional faulty edges,
each edge of a faulty hypercube Qn − F lies on a cy-
cle of every even length from 6 to 2n, for n � 3. We
observe that, if |F | < 2n − 5, we may arbitrarily delete
some more edges to make a faulty edge set F ′ ⊇ F and
|F ′| = 2n − 5. If our result holds for F ′, it holds for F .
From now on, we shall assume |F | = 2n − 5.

The above result is optimal in the sense that the result
cannot be guaranteed, if there are 2n − 4 conditional
faulty edges. For example, take a cycle of length four
in Qn, let 〈u1, u2, u3, u4〉 be the consecutive vertices on
this cycle. Suppose that all the (n − 2) edges incident
with vertex u1 (respectively, vertex u3) are faulty except
those two edges on the four cycle are healthy. There are
2(n − 2) conditional faulty edges. Then there does not
exist a hamiltonian cycle in this faulty Qn, for n � 3.

We now give a formal definition of a hypercube. An
n-dimensional hypercube is denoted by Qn with the ver-
tex set V (Qn) and the edge set E(Qn). Each vertex u

of Qn can be distinctly labeled by a n-bit binary strings,
u = un−1un−2 . . . u1u0. There is an edge between two
vertices if and only if their binary labels differ in exactly
one bit position. Let u and v be two adjacent vertices. If
the binary labels of u and v differ in ith position, then
the edge between them is said to be in ith dimension
and the edge (u, v) is called an ith dimension edge.
Let i be a fixed position, we use Q0

n−1 to denote the
subgraph of Qn induced by {u ∈ V (Qn) | ui = 0} and
Q1

n−1 to denote the subgraph of Qn induced by {u ∈
V (Qn) | ui = 1}. We say that Qn is decomposed into
Q0

n−1 and Q1
n−1 by dimension i, and Q0

n−1 and Q1
n−1

are (n − 1)-dimensional subcube of Qn induced by the
vertices with the ith bit position being 0 and 1, respec-
tively. Q0

n−1 and Q1
n−1 are all isomorphic to Qn−1. For

each vertex u ∈ V (Q0
n−1), there is exactly one vertex

in Q1
n−1, denoted by u(1), such that (u,u(1)) ∈ E(Qn).

Conversely, for each u ∈ V (Q1
n−1), there is one vertex

in Q0
n−1, denoted by u(0), such that (u,u(0)) ∈ E(Qn).

Let Di be the set of all edges with one end in Q0
n−1

and the other in Q1 . These edges are called crossing
n−1
edges in the ith dimension between Q0
n−1 and Q1

n−1.
We also call Di the set of all ith dimension edges. Con-
sequently, |Di | = 2n−1 for all 0 � i � n − 1.

2. Some preliminaries

To prove our main theorem, we need some prelimi-
nary results.

Lemma 1. (See [5].) Qn is edge-bipancyclic, and is
(n− 2)-edge-fault-tolerant edge-bipancyclic, for n � 3.

Lemma 2. (See [9].) Each edge of Q4 − F lies on a
cycle of every even length from 6 to 2n = 16 for any
F ⊂ E(Q4) with |F | = 3, provided not all the faulty
edges in F are incident with the same vertex.

Lemma 3. (See [9].) Any two edges in Qn are included
in a hamiltonian cycle, for n � 2.

The above lemma can be improved; In addition, we
have the following lemmas to simplify our proof.

Lemma 4. Let C0 = 〈u,P0, v, u〉 be a cycle in Q0
n−1

with its even length from l0 to 2n−1, and C1 = 〈u(1),P1,

v(1), u(1)〉 be a cycle in Q1
n−1 with its even length from l1

to 2n−1. Then C = 〈u,P0, v, v(1),P1, u
(1), u〉 is a cycle

in Qn with its even length from l0 + l1 to 2n.

Proof. The proof of this lemma is omitted. �
Lemma 5. Let Qn be an n-dimensional hypercube, n �
2, and let e1 and e2 be two edges in the same dimen-
sion i. Then there exists another dimension j 	= i such
that decomposing Qn into Q0

n−1 and Q1
n−1 by dimen-

sion j , we have (1) neither e1 nor e2 is a crossing edge,
(2) not e1 and e2 are in the same subcube.

Proof. Let e1 = (a, b) and e2 = (s, t) be two edges
in the same dimension i. Let a = an . . . ai . . . a1 and
s = sn . . . si . . . s1. Then b = an . . . ai . . . a1 and t =
sn . . . si . . . s1. Since e1 	= e2 and n � 2, there exists
another dimension j 	= i, such that aj 	= sj . We decom-
pose Qn into Q0

n−1 and Q1
n−1 by dimension j . Then,

e1 and e2 are not crossing edges and are in the different
subcubes. �
Lemma 6. Consider an n-dimensional hypercube Qn,
for n � 4. Let e0, e1 and e2 be any three edges in Qn,
there is a cycle C containing e1 and e2 in Qn − {e0}
with the length l(C) = 2n, 2n − 2 and 2n − 4.
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Proof. To prove this lemma, we consider the following
two cases:

Case 1: Both e1 and e2 are in the same dimension,
say dimension i. By Lemma 5, we can choose a dimen-
sion j such that e1 and e2 are in different subcubes.
Without loss of generality, we assume that e1 is in Q0

n−1
and e2 is in Q1

n−1. We then consider two cases:
1.1: e0 is not a crossing edge. We assume, without

loss of generality, that e0 is in Q0
n−1. By Lemma 1, in

Q0
n−1 −{e0}, there exists a cycle C0 of every even length

4 � l(C0) � 2n−1 going through e1. Since n � 4, we can
choose an edge (u, v) on cycle C0 such that (u, v) 	=
e1, and (u(1), v(1)) 	= e2. By Lemma 3, in Q1

n−1, there
exists a cycle C1 of length 2n−1 going through e2 and
(u(1), v(1)). Thus, the conclusion follows according to
Lemma 4.

1.2: e0 is a crossing edge. By Lemma 1, there ex-
ists a C0 of every even length 4 � l(C0) � 2n−1 go-
ing through e1 in Q0

n−1. We can choose an edge (u, v)

on cycle C0 such that (u, v) is not adjacent to e0 and
(u, v) 	= e1 and (u(1), v(1)) 	= e2, since n � 4. By def-
inition, (u(1), v(1)) is an edge in Q1

n−1. By Lemma 3,
there exists a hamiltonian cycle C1 going through e2 and
(u(1), v(1)) in Q1

n−1. So the conclusion follows accord-
ing to Lemma 4.

Case 2: e1 and e2 are in different dimensions. Sup-
pose that e0 is in the ith dimension. We decompose
Qn into Q0

n−1 and Q1
n−1 by dimension i. Then, e0 is

a crossing edge. Next, we consider two further cases:
2.1: Either e1 or e2 is a crossing edge. Without loss

of generality, we assume that e1 is a crossing edge, and
e2 is in Q0

n−1. Let e1 = (u,u(1)), where u ∈ V (Q0
n−1)

and u(1) ∈ V (Q1
n−1). Since n � 4, there is a neighbor of

u, say v, such that (u, v) 	= e2 and (u, v) is not adjacent
to e0. By Lemma 3, there exists a hamiltonian cycle C0
going through (u, v) and e2 in Q0

n−1. By Lemma 1, in
Q1

n−1, there exists a cycle C1 of every even length 4 �
l(C1) � 2n−1 going through (u(1), v(1)). By Lemma 4,
the conclusion follows.

2.2: Both e1 and e2 are not crossing edge. If e1 and e2
are in different subcubes, this subcase is similar to case
1.2, and the proof is omitted. Otherwise, both e1 and
e2 are in the same subcube. We assume, without loss
of generality, that e1 and e2 are in Q0

n−1. By Lemma 3,
there exists a hamiltonian cycle C0 going through e1 and
e2 in Q0

n−1, and l(C0) = 2n−1. Since n � 4, there is a
third edge (u, v) other than e1 and e2 on cycle C0, and
(u, v) is not adjacent to e0. By Lemma 1, there exists a
cycle C1 of every even length 4 � l(C1) � 2n−1 going
through (u(1), v(1)) in Q1

n−1. By Lemma 4, the conclu-
sion follows. �
Let F be a set of faulty edges of Qn. Suppose that we
decompose Qn into Q0

n−1 and Q1
n−1 by dimension j ,

and let FL = F ∩ E(Q0
n−1), FR = F ∩ E(Q1

n−1). Sup-
pose that F is a set of conditional faulty edges of Qn. If
we arbitrarily decompose Qn into Q0

n−1 and Q1
n−1 by a

dimension, FL and FR may not be conditional faulty
edges in Q0

n−1 and Q1
n−1, respectively. However, we

will show that it is always possible to find some suitable
dimension such that decomposing by this dimension,
both FL and FR are conditional faulty sets in Q0

n−1 and
Q1

n−1, respectively.

Lemma 7. Consider an n-dimensional hypercube Qn,
for n � 4. Let F be a set of conditional faulty edges
with |F | = 2n− 5. There are at most two vertices in Qn

incident with (n − 2) faulty edges.

Proof. If there are three vertices in Qn incident with
(n − 2) faulty edges, the number of faulty edge F is at
least 3n−8. However, (3n−8) > (2n−5) for all n � 4
which is a contradiction. �
Lemma 8. Consider an n-dimensional hypercube Qn,
n � 4. Let F be a set of conditional faulty edges with
|F | = 2n − 5. If there are two vertices x and y both
incident with n − 2 faulty edges, then x and y are adja-
cent in Qn and the edge (x, y) is a faulty edge. Suppose
that (x, y) is in dimension j. Then decomposing Qn into
Q0

n−1 and Q1
n−1 by dimension j , both FL and FR are

sets of conditional faulty edges in Q0
n−1 and Q1

n−1, re-
spectively. Moreover, |FL| � 2n − 6 and |FR| � 2n − 6.

Proof. If there are two vertices x and y in Qn inci-
dent with (n − 2) faulty edges, then these two ver-
tices are connected by a faulty edge. Otherwise, |F | =
2(n − 2) = 2n − 4 > 2n − 5 which is a contradiction.
Suppose the edge (x, y) is in dimension j , we decom-
pose Qn into two subcubes. It is clearly that each ver-
tex in Q0

n−1 and Q1
n−1 is still incident with at least

two healthy edges, and both FL and FR are conditional
faulty edges in Q0

n−1 and Q1
n−1, respectively. Then,

|FL| = |FR| = n − 3 � 2n − 6, for n � 4. �
Lemma 9. Consider an n-dimensional hypercube Qn,
for n � 4. Let F be a set of conditional faulty edges
with |F | = 2n − 5. Suppose that there exists exactly one
vertex x having (n − 2) faulty edges incident with it.
Since n − 2 � 2, let e1 and e2 be two faulty edges inci-
dent with x, and let e1 and e2 be j th and kth dimension
edges, respectively. Then decomposing Qn into Q0

n−1
and Q1 by either one of these two dimensions j and
n−1
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k, FL and FR are still sets of conditional faulty edges in
Q0

n−1 and Q1
n−1, respectively. Moreover, |FL| � 2n − 6

and |FR| � 2n − 6.

Proof. If there exists only one vertex x having (n − 2)

faulty edges incident with it, there are at least two faulty
edges e1 and e2 incident with it, since n � 4. Obviously,
these two faulty edges are in different dimensions. With-
out loss of generality, we may assume that e1 is in di-
mension j and e2 is in dimension k, for j 	= k. We can
decompose Qn into Q0

n−1 and Q1
n−1 by either j th or

kth dimension, and either e1 or e2 is a crossing edge.
Therefore, each vertex in these two subcubes is incident
with at least two healthy edges and |FL| � 2n − 6 and
|FR| � 2n − 6. �
Lemma 10. Let Qn be an n-dimensional hypercube, F

be a set of faulty edges with |F | � 2, and e be a healthy
edge, n � 2. Then there exists a dimension j , decom-
posing Qn into Q0

n−1 and Q1
n−1 by this dimension, such

that e is not a crossing edge and not all the faulty edges
are in the same subcube.

Proof. Suppose that e = (u, v) is in dimension i. If
there is a faulty edge f not in dimension i, say in di-
mension j . We decompose Qn into Q0

n−1 and Q1
n−1 by

dimension j . Then f is a crossing edge but e is not, and
all the faulty edges are not in the same subcube. Other-
wise, all the faulty edges are in the same dimension i as
e is in. We now choose any two faulty edges f1 and f2

in F . By Lemma 5, Qn can be decomposed into Q0
n−1

and Q1
n−1 by some dimension j 	= i such that edges f1

and f2 are not in the same subcube, and e is not a cross-
ing edge. �
3. Main theorem

We now prove our main result.

Theorem 1. Let Qn be an n-dimensional hypercube,
and F be a set of conditional faulty edges with |F | �
2n − 5. Then each edge of the conditional faulty hyper-
cube Qn −F lies on a cycle of every even length from 6
to 2n, for n � 3.

Proof. We prove this theorem by induction on n. For
n = 3, since 2n − 5 = n − 2, by Lemma 1, the result is
true. For n = 4, 2n − 5 = n − 1, by Lemma 2, the result
holds. Assume the theorem holds for n − 1, for some
n � 5, we shall show that it is true for n.

As we mentioned before, we may assume |F | = 2n−
5. Let e = (u, v) be an edge in Qn − F . We shall find a
cycle of every even length from 6 to 2n passing through
e in Qn − F . Assume that e is an ith dimension edge,
e ∈ Di , for some i ∈ {1,2, . . . , n}. The proof is divided
into three major cases:

Case 1: There are two vertices x and y in Qn inci-
dent with (n − 2) faulty edges. By Lemma 8, (x, y) is
an edge in Qn and is a faulty edge. We denote this edge
by ef . Suppose that ef is a j th dimension edge. We de-
compose Qn into Q0

n−1 and Q1
n−1 by dimension j . We

then consider two further cases:
1.1: ef = (x, y) and e = (u, v) are in the same di-

mension. Thus, j = i and ef ∈ Di (Fig. 1(a)). In this
case, e is an edge crossing Q0

n−1 and Q1
n−1. With-

out loss of generality, assume that u ∈ V (Q0
n−1) and

v ∈ V (Q1
n−1). Since n � 5, u has a neighboring ver-

tex w ∈ V (Q0
n−1), by the definition of hypercube, w(1)

is a neighbor of v such that the edge (w,w(1)) is a
healthy edge and (w,w(1)) is a crossing edge between
Fig. 1. Illustration for theorem.
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Q0
n−1 and Q1

n−1. By Lemma 1, there exists a cycle C0

in Q0
n−1 − FL passing through (u,w) of every even

length 4 � l(C0) � 2n−1 and a cycle C1 in Q1
n−1 −

FR going through (v,w(1)) of every even length 4 �
l(C1) � 2n−1. We write C0 as 〈u,P0,w,u〉, and C1 as
〈v,P1,w

(1), v〉. Thus, 〈u,P0,w,w(1), v, u〉 is a cycle of
length 6 with l(P0) = 3. By Lemma 4, 〈u,P0,w,w(1),

P1, v, u〉 can form a cycle of every even length from 8
to 2n through e in Qn − F .

1.2: ef and e are in different dimensions. Thus, j 	= i

and ef /∈ Di (Fig. 1(b)). In this case, e is in Q0
n−1 or

Q1
n−1. Without loss of generality, we may assume that

e ∈ E(Q0
n−1). By Lemma 1, there exists a cycle C in

Q0
n−1 − FL going through the edge e of every even

length l, 6 � l � 2n−1. Let C0 be a cycle of length
2n−1 − 2 or 2n−1 passing through e in Q0

n−1 − FL.
Since n � 5, there exists an edge (s, t) on C0 such that
neither s nor t is adjacent to ef and (s, t) 	= e. By defini-
tion, (s(1), t (1)) is an edge in Q1

n−1, and (s, s(1)), (t, t (1))

are healthy edges. By Lemma 1, there exists a cycle C1

in Q1
n−1 − FR through (s(1), t (1)) of every even length

4 � l(C1) � 2n−1. Thus, the conclusion follows accord-
ing to Lemma 4.

Case 2: There is exactly one vertex in Qn incident
with (n − 2) faulty edges. Let x be the vertex having
(n − 2) faulty edges incident with it. Let f1 and f2 be
two faulty edges incident with x, so f1 and f2 are in dif-
ferent dimensions j and k. By Lemma 9, decomposing
Qn into Q0

n−1 and Q1
n−1 by either j th or kth dimension,

both FL = F ∩ E(Q0
n−1) and FR = F ∩ E(Q1

n−1) are
sets of conditional faulty edges in Q0

n−1 and Q1
n−1, re-

spectively. Between dimension j and k, we choose one
to decompose Qn into Q0

n−1 and Q1
n−1, say dimension

j , such that the required edge e is not a crossing edge.
Therefore, there is an faulty edge crossing Q0

n−1 and
Q1

n−1, we denote this edge by ef , and ef ∈ F ∩ Dj is
incident with x. Without loss of generality, we may as-
sume that x ∈ V (Q0

n−1).
2.1: Suppose |FL| � 2n − 7 and |FR| � 2n − 7

(Fig. 1(c)). Without loss of generality, we further as-
sume that e ∈ E(Q0

n−1). By induction hypothesis, there
exists a cycle C in Q0

n−1 − FL of every even length
6 � l(C) � 2n−1 passing through e. Let C0 be a cy-
cle of length 2n−1 − 4 � l(C0) � 2n−1 through e in
Q0

n−1 −FL. Since |C0 − e| � 2n−1 − 4 − 1 > 2(2n− 5)

� 2|F ∩Dj |, for all n � 5. There exists an edge (s, t) on
C0 such that (s, t) is not e, and both (s, s(1)) and (t, t (1))

are healthy edges. By induction hypothesis, there ex-
ists a cycle C1 in Q1 − FR of every even length 6 �
n−1
l(C1) � 2n−1 passing through (s(1), t (1)). By Lemma 4,
the conclusion follows.

2.2: |FL| = 2n − 6. In this case, |F ∩ Dj | = 1 and
|F ∩ E(Q1

n−1)| = |FR| = 0.
2.2.1: e is in subcube Q0

n−1. To find a cycle of
length 6 passing through e = (u, v), we discuss the
case that whether e is incident with x or not. If e

is incident with x, without loss of generality, we as-
sume that u = x (Fig. 1(d)). Thus, (v, v(1)) is a healthy
edge. Since FL is a set of conditional faulty edges
in Q0

n−1, vertex u = x has two healthy edges inci-
dent with it. Let w be a neighbor of u in Q0

n−1 such
that (w,u) and (w,w(1)) are healthy edges and w 	= v.
Thus, 〈u,v, v(1), u(1),w(1),w,u〉 is a cycle of length 6
in Qn − F . Otherwise, e is not incident with x, then
(u,u(1)) and (v, v(1)) are healthy edges (Fig. 1(e)). By
Lemma 1, there exists a cycle C1 = 〈u(1),P1, v

(1), u(1)〉
of length four in Q1

n−1 through the edge (u(1), v(1)).
Thus, 〈u,u(1),P1, v

(1), v, u〉 is a cycle of length 6 in
Qn − F , where l(P1) = 3.

Let e1 be a faulty edge in Q0
n−1 that is not adja-

cent to ef . Though e1 is a faulty edge, we treat it as
a healthy edge temporarily, then the total number of
faulty edge in Q0

n−1 is 2n − 7. By induction hypoth-
esis, there exists a cycle C0 of every even length 6 �
l(C0) � 2n−1 going through e in Q0

n−1 − {FL − {e1}}.
If C0 passes e1, we choose e1, or else, we choose
any one edge other then e on C0 which is not adja-
cent to ef . Let the chosen edge be denoted by (s, t).
We write cycle C0 as 〈s,P0, t, s〉. Since |F ∩ Dj | = 1
and |FR| = 0, (s, s(1)), (t, t (1)) and (s(1), t (1)) are all
healthy edges. Thus, 〈s,P0, t, t

(1), s(1), s〉 is a cycle of
length 8 in Qn − F if l(P0) = 5. Suppose that 10 �
l � 2n and l is even. By Lemma 1, in Q1

n−1, there
exists a cycle C3 of length 4 � l(C3) � 2n−1 passing
through (s(1), t (1)). We write C3 as 〈s(1),P3, t

(1), s(1)〉.
By Lemma 4, 〈s,P0, t, t

(1),P3, s
(1), s, t〉 is a cycle of

length l through e in Qn − F .
2.2.2: e is in subcube Q1

n−1 (Fig. 1(f)). By Lemma 1,
there exists a cycle C of every even length 4 � l � 2n−1

passing through e in Q1
n−1. Suppose that 2n−1 +2 � l �

2n and l is even. Since FL is a set of conditional faulty
edges, there are at most (n − 3) faulty edges adjacent
to ef in Q0

n−1. For n � 5, n − 3 � 2, we can choose a
faulty edge e2 = (s, t) in Q0

n−1 such that e2 is not adja-
cent to ef and (s(1), t (1)) is not e. Treating the edge e2

as a healthy edge, by induction hypothesis, there exists
a cycle C0 of length 6 � l(C0) � 2n−1 going through
e2 in Q0

n−1 − {FL − {e2}}. We observe that (s, s(1)) and
(t, t (1)) are healthy edges. By Lemma 6, there exists a
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cycle C1 of every length 2n−1 − 4, 2n−1 − 2, or 2n−1

through (s(1), t (1)) and e in Q1
n−1. By Lemma 4, the

conclusion follows.
Case 3: Every vertex in Qn is incident with at most

(n−3) faulty edges. In this case, suppose that e = (u, v)

is in dimension i. By Lemma 10, Qn can be decom-
posed into Q0

n−1 and Q1
n−1 by a dimension j different

from i such that e is not a crossing edge and not all
the faulty edges are in the same subcube. Then |FL| �
2n−6 and |FR| � 2n−6. Next, we consider two further
cases:

3.1: At least one faulty edge is a j th dimension edge.
Thus, |F ∩ Dj | 	= 0.

We then consider two cases: (a) |FL| � 2n − 7 and
|FR| � 2n − 7, and (b) |FL| = 2n − 6 or |FR| = 2n − 6.
The proof of this subcase is exactly the same as that of
case 2.

3.2: None of the faulty edges is a j th dimension edge.
Thus, |F ∩ Dj | = 0.

3.2.1: |FL| � 2n−7 and |FR| � 2n−7. Without loss
of generality, we may assume that e ∈ E(Q0

n−1). By in-
duction hypothesis, there exists a cycle C of every even
length 6 � l(C) � 2n−1 in Q0

n−1 − FL passing through
e. Let C0 be a cycle of every even length 2n−1 − 4 �
l(C0) � 2n−1 going through e in Q0

n−1 − FL. There ex-
ists an edge (s, t) other than e in C0. Since |F ∩Dj | = 0,
(s, s(1)) and (t, t (1)) are healthy edges. We write C0
as 〈s,P0, t, s〉. By induction hypothesis, there exists a
cycle C1 of every even length 6 � l(C1) � 2n−1 in
Q1

n−1 −{FR − (s(1), t (1))} through (s(1), t (1)). Thus, the
conclusion follows according to Lemma 4.

3.2.2: Suppose |FL| = 2n − 6 or |FR| = 2n − 6, say
the former case. In this case, |FR| = 1. We then con-
sider two cases: (a) e is in subcube Q0

n−1, and (b) e is in
subcube Q1

n−1.
(a) e = (u, v) is in subcube Q0

n−1. Since |F ∩ Dj | =
0, both (u,u(1)) and (v, v(1)) are healthy edges. Let l

be an even number with 6 � l � 2n−1. By Lemma 1,
there exists a cycle C1 of every even length from 4 to
2n−1 passing through (u(1), v(1)) in Q1

n−1 −{FR −(u(1),

v(1))}. We write C1 as 〈u(1),P1, v
(1), u(1)〉. No mat-

ter (u(1), v(1)) is healthy or not, 〈u,u(1),P1, v
(1), v, u〉

forms a cycle of length l through e in Qn − F . Suppose
that 2n−1 + 2 � l � 2n. Let e1 be a faulty edge in Q0

n−1.
We may treat e1 as a healthy edges temporarily. By in-
duction hypothesis, there exists a cycle C0 of length 6 �
l(C0) � 2n−1 going through e in Q0

n−1 − {FL − {e1}}.
If C0 passes the edge e1, we choose e1 to be deleted.
Otherwise, we choose another edge other than e on cy-
cle C0. Let the chosen edge be denoted by (s, t). We
write the cycle C0 as 〈s,P0, t, s〉. Treating (s(1), t (1))

as a healthy edge, by Lemma 1, there exists a cycle C3
of every even length from 4 to 2n−1 passing through
(s(1), t (1)) in Q1

n−1 − {FR − (s(1), t (1))}. By Lemma 4,
the conclusion follows.

(b) e is in subcube Q1
n−1. Let e1 be the only faulty

edge in Q1
n−1. By Lemma 1, there exists a cycle C

of every even length from 6 to 2n−1 through e in
Q1

n−1 − {e1}. Suppose that 2n−1 + 2 � l � 2n, and
l is even. Let e0 = (s, t) be a faulty edge in Q0

n−1
such that (s(1), t (1)) 	= e and (s(1), t (1)) 	= e1. By induc-
tion hypothesis, there exists a cycle C0 of length 6 �
l(C0) � 2n−1 in Q0

n−1 − {FL − {e0}} going through e0.
If (s(1), t (1)) = e1, treat e1 as a healthy edge temporarily,
by Lemma 6, there exists a cycle C1 of length 2n−1 − 4,
2n−1 − 2, or 2n−1, respectively, going through both
(s(1), t (1)) and e in Q1

n−1. By Lemma 4, the conclusion
follows. Otherwise, if (s(1), t (1)) 	= e1, by Lemma 6,
there exists a cycle C3 of length 2n−1, 2n−1 − 2,
or 2n−1 − 4, respectively, going through both e and
(s(1), t (1)) in Q1

n−1 −{e1}. Thus, the conclusion follows
according to Lemma 4.

This completes the proof. �
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