
行政院國家科學委員會專題研究計畫 成果報告 

 

嵌入式網路通訊裝置評比技術與工具之研發--子計畫四:嵌
入式網路通訊裝置儲存裝置效能評比基準與工具之研發(中

心分項)(2/2) 

研究成果報告(完整版) 

 
 
 
計 畫 類 別 ：整合型 

計 畫 編 號 ： NSC 99-2220-E-009-047- 

執 行 期 間 ： 99 年 08 月 01 日至 100 年 07 月 31 日 

執 行 單 位 ：國立交通大學資訊工程學系（所） 

  

計 畫 主 持 人 ：張立平 

  

計畫參與人員：碩士班研究生-兼任助理人員：李盈節 

碩士班研究生-兼任助理人員：吳翊誠 

碩士班研究生-兼任助理人員：林玟蕙 

碩士班研究生-兼任助理人員：王薇涵 

 

  

  

報 告 附 件 ：出席國際會議研究心得報告及發表論文 

 

  

處 理 方 式 ：本計畫可公開查詢 

 
 
 

中 華 民 國   100 年 10 月 31 日 
 



 
 

1

 

行政院國家科學委員會補助專題研究計畫行政院國家科學委員會補助專題研究計畫行政院國家科學委員會補助專題研究計畫行政院國家科學委員會補助專題研究計畫 
■■■■成果報告成果報告成果報告成果報告   
□□□□期中進度報告期中進度報告期中進度報告期中進度報告 

 

嵌入式網路通訊裝置評比技術與工具之研發-子計畫四:嵌

入式網路通訊裝置儲存裝置效能評比基準與工具之研發(中心分

項)(2/2) 

計畫類別：□個別型計畫   ■整合型計畫 

計畫編號：NSC 99-2220-E-009-047- 

執行期間：2010.08.01 至 2011.07.31 

 

執行機構及系所：交通大學資工系 

 

計畫主持人：張立平 

共同主持人： 

計畫參與人員：李盈節，吳翊誠，王薇涵，林玟蕙 

 

成果報告類型(依經費核定清單規定繳交)：□精簡報告  ■完整報告 

 

本計畫除繳交成果報告外，另須繳交以下出國心得報告： 

□赴國外出差或研習心得報告 

□赴大陸地區出差或研習心得報告 

■出席國際學術會議心得報告 

□國際合作研究計畫國外研究報告 

 

處理方式：除列管計畫及下列情形者外，得立即公開查詢 

            □涉及專利或其他智慧財產權，□一年□二年後可公開查詢 

 

中   華   民   國  100 年 10 月 30 日 

 

 



 
 

2

 

國科會國科會國科會國科會補助補助補助補助專題研究計畫成果報告自評表專題研究計畫成果報告自評表專題研究計畫成果報告自評表專題研究計畫成果報告自評表 

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。 

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估 

□ ■達成目標 
□ 未達成目標（請說明，以 100 字為限） 

□ 實驗失敗 

□ 因故實驗中斷 
□ 其他原因 

說明： 
 
 
 
2. 研究成果在學術期刊發表或申請專利等情形： 

論文：■已發表 □未發表之文稿■撰寫中 □無 

專利：□已獲得 □申請中 □無 

技轉：□已技轉 □洽談中 □無 

其他：（以 100 字為限） 
已經發表會議論文兩篇（IWSSPS 2010, CPSNA 2011，如附件），並被邀請投

稿至 IEEE embedded systems letter 的一個 special issue 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限） 

 

本計劃成果為固態硬碟的虛擬平台。原則上我們透過產學合作的管道推廣至

業界使用，目前廠商的回應都相當不錯。而學術研究方面，基於這個虛擬平

台，我們目前得以研究開發新的儲存裝置與主機端的溝通方式，藉以達成更

好的效能改善。 

 

 

 
 



Design and Implementation of a 

Virtual Platform for Solid-State Disks 
 

 

 

摘要 

 

本研究提出一個針對固態硬碟之

虛擬平台，提供線上的即時模擬環境。

該虛擬平台包含兩部分：一個模擬引

擎以及一個虛擬磁碟。模擬引擎部分

可以對固態硬碟內部的硬體架構與韌

體演算法作快速制訂，並進行行為層

次的模擬。該模擬引擎具有高度可重

組性以及使用上的簡便性。而虛擬磁

碟部分則以一個一般的磁碟出現在主

機中，並且直接接收來自於主機的讀

寫動作，就好像是一個真正的磁碟一

般。此虛擬磁碟與模擬引擎之間透過

作業系統內部的事件機制互動，計算

並模擬讀寫延遲，使得該虛擬平台的

效能就像一個真正的固態硬碟一樣。

這個虛擬平台不但能夠幫助固態硬碟

設計者快速地定下韌硬體的組態，縮

短開發測試時間，亦提供研究者一個

絕佳的互動式環境，藉以開發主機端

與儲存裝置的協同式效能最佳化方

法。 

 

 

 

關鍵字: 固態硬碟, 快速雛形化, 效能

模擬

 

 

Abstract 

 

This work presents a virtual platform for 

solid-state disks (SSDs). This virtual 

platform consists of a simulation engine 

and a virtual disk. The simulation engine 

provides behavioral simulation of 

hardware architectures and firmware 

algorithms. SSD designers can use the 

simulation engine for fast prototyping. 

The virtual disk appears as a normal disk 

drive in the host, and accepts read/write 

requests as if it was a real disk drive. 

The virtual disk and the simulation 

engine are integrated into the host 

operating system and they interact with 

each other via event-signaling 

mechanism. Users can have live 

performance experience when using the 

virtual platform. The benefits of this 

virtual platform are twofold: First, the 

virtual platform is useful to fast 

prototyping and speeding up the 

design-and-test cycles. Second, this 

virtual platform can be useful to 

researches focusing on cross-layer (i.e., 

between the host and the storage device) 

performance optimization techniques. 

 

Keywords: solid-state disk, fast 

prototyping, simulation   



I. INTRODUCTION 

 

近年來行動電腦的儲存裝置由傳

統硬碟(Hard Disk Drive, HDD)逐漸被

以快閃記憶體為基礎的固態硬碟 

(solid-state disks, SSDs)所取代。由於

SSD複雜的硬體架構以及韌體的演算

法，使得如何設計高效能的 SSD成為

一項艱鉅的任務。廠商面臨一個實際

的問題，在不同的環境或用途下，要

如何組合硬體與韌體的設計才能達到

最佳的效能。目前有一些離線模擬的

工具[1][2][3][4]可以用來測試硬體與

韌體的組合。 

 

由於現有的離線模擬工具不易使

用，使得 SSD的研發和測試週期相當

耗時，因此廠商強烈要求降低修改和

測試週期的時間。另一方面，離線模

擬工具有個問題是從 HDDs 收集

workload的存取紀錄(trace file)時，I/O 

request的反應時間會受限於底層的儲

存設備，假若從一個慢速設備收集

trace，那麼 I/O request時間將會增加。

因此使用 HDDs收集 trace無法完全展

現真實 SSD的 I/O反應。 

 

本研究提出一種線上 SSD模擬環

境且提供一個快速的硬體-韌體之原型

工具為 SSD設計之用，該模擬環境具

有簡單的 programming介面並有豐富

的硬體/韌體設計的選擇。整體而言，

該模擬環境包括 sim-engine與 virtual 

drive兩部分，sim-engine計算 SSD的

I/O延遲，virtual drive在主機端的作業

系統創建一個虛擬磁碟，設計者可以

透過一般的磁碟存取操作對此虛擬磁

碟進行讀寫，virtual drive會將這些 I/O 

request送予 sim-engine， sim-engine

計算這些 request需要多少 flash 

 
Fig. 1 SSD Inter-chip architecture 
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Fig. 2 Out-of-place updating data 

operations且花費多少時間，再讓

virtual drive模擬出這些 I/O 延遲。該

工具的目的在於降低除錯的成本，且

不需要冗長的 trial-and-error週期就能

找出最佳的設計方案。 

 

虛擬平台有幾項技術上的挑戰如

下: 第一，sim-engine如何提供一個簡

單又具共通標準制定的SSD硬體/韌體

的抽象方法，讓設計者可以簡單地改

變 SSD的設計。第二，虛擬平台如何

與作業系統結合互動才能實現虛擬磁

碟的功能。第三，sim-engine如何準確

地計算 I/O 的延遲，virtual drive如何

模擬這些 I/O延遲。第四，如何利用有

限的 RAM 創建出一個很大的虛擬磁

碟。 

 

II. HARDWARE/FIRMWARE 

ABSTRACTION 

 
A. SSD硬體架構 

 

Figure 3為 SSD 的硬體架構。

Figure 4 (a)稱為"gang"，所有通道由同

一條 chip enable line連接，每個通道必



須做相同的讀/寫操作。若通道不是由

同一條 chip enable line所連接，如

Figure 5 (b)，每個通道可以獨立操作讀

/寫。"interleave"類似計算機架構中管

線的概念，同一通道中的 chips可以做

不同的讀/寫命令，如 Figure 6 (c)。 

 

在我們的虛擬平台中，我們使用

時序引擎(timing engine)來模擬平行的

硬體操作，當一個操作完成時會通知

其他的模擬模組，換句話說，平行的

硬體操作只會計算一次的時間。 

 

B. 韌體演算法 

 

快閃記憶體的最小寫入單位為一

個page，且具有重複寫入相同page前，

必須要做 erase的特性，而一個 erase

的單位為一個 block，基於效能的考量，

SSD使用 out-of-place的資料更新方式

(如 Figure 2)，該方法須使用對照表

(mapping table)紀錄資料位址的資訊且

利用 garbage collection(gc)機制以回收

block。FTLs(Flash Translation Layer)負

責 SSDs的 mapping與 gc。 

 

在我們的虛擬平台中，我們設計

了一套韌體演算法的 APIs，並定義了

FTLs 共用的三種抽象化元素，如

Figure 3。這裡說明了我們如何建立 

FTLs使用它們的行為之模型。 

 

這是 NK[6] FTL，如 Figure 3(a)

所示，FTL利用 Index處理位址映射，

所以我們不只記錄邏輯位址區塊(LBA)

與實體區塊位址間(PBA)的關係，還要

記錄邏輯分頁位址(LPA)與實體分頁

位址間(PPA)的關係。Association則用

來表示 FTLs之資料集合間的關係，舉

例來說，多少個 data block對映到 log 

block。Figure 3(b)表示，在 GC時是以

Prioritization來選擇出犧牲者。 

 

C.  硬體組態配置範例 

  

我們訂定硬體環境 : 4 independent 

channel, 1 bank, 1 plane, 1 interleave 

level。而 Flash Chip的特性如下所示: 

 

 

association

proritizationindex

Fig. 7 Abstract Firmware Translation Layer 



NUMBER OF GANG = 1; 

CHANNEL PER GANG = 4; 

CHIP PER CHANNEL = 1; 

PLANE PER CHIP = 1; 

hwAPI->SetupFlashChip(Chip 

Character); 

  

關於韌體的部分，如Algorithm 1所示，

韌體API可以做到: 1) 若寫入量小於1 

page且此 page之前已經寫過，則我們

執行 read modify write。2) 將此 page

寫到 log block並透過 API處理GC或

是取得新 log block。3) 修改 index，將

邏輯分頁位址與實體分頁位址綁在一

起。4) 將邏輯分頁位址與其 log block

記下來 (association)。5) 若沒有 free 

space則執行 GC。 

 

Fig. 8 Virtual Platform: on-line simulation environment 



和真實 SDD 開發平台的 BAST 

FTL 程式碼比較，用我們的韌體 API

可以減少超過 75%的程式碼行數。 

 

III.  虛擬虛擬虛擬虛擬磁碟磁碟磁碟磁碟(virtual drive):線上模擬線上模擬線上模擬線上模擬 

  

我們提出一種線上模擬的構想，如

Figure 4所示。這是一個作業系統核心

模式下的虛擬磁碟，設計者可以建立

並控制一個虛擬磁碟如同一個真實硬

碟，不像使用者模式的檔案系統[8]只

處理使用者資料，在虛擬磁碟上，虛

擬平台會產生硬體/韌體結合的 I/O 延

遲，設計者可以在任何時間測試並使

用虛擬磁碟，用這個方法設計硬體/韌

體整合將更加直接且靈敏，可以減少

修改和測試的時間。 

  

如 Figure 4所示，這裡有一些議題: 1) 

作業系統的相互影響 2) metadata的識

別，以及 3) I/O延遲的計算。我們將會

在以下的部分討論這些議題。 

A. Host作業系統相互影響 

 

之前提到，在我們虛擬平台上，我

們設計了硬體/韌體抽象化 API。為了

讓設計 SSDs 硬體/韌體變簡單，這個

硬體/韌體抽象化 API必須保留在作業

系統的使用者模式中。 

 

Fig. 10 Rules database of metadata conception 

Fig. 9 Sync event flow between kernel mode and user mode 



所以我們必須將作業系統的核心

模式與使用者模式做同步化動作。如

Figure 5所示，有兩個共用物件 A 和 B

共用了記憶體C，sim-engine設成"wait"

狀態並且等待 A。接下來我們將會用

item 5-1 來解釋 Figure 5中第一項

item。 

 

虛擬磁碟將會接收從應用程式送

出的 I/O request packets(IRPs)，並將它

們放在一個 Queue中，如 item 5-1所

示，接著用執行緒處理這個 Queue。在

使用者模式中，執行緒將模擬請求的

資訊給 C 並且設置 A 來通知 

sim-engine，如 item 5-2所示，然後它

將會設置"wait"狀態。當 sim-engine被

A 通知，如 item 5-3所示，它將會啟動

並從 C 獲得資訊，並且開始模擬，我

們將會計算模擬所用去的時間以及作

業系統模式轉換的開銷，當模擬結束，

sim-engine將會設置 B，如 item 5-4所

示，而執行緒將會從記憶體 C 讀取延

遲資訊並產生虛擬 I/O延遲及完成 IRP，

如 item 5-5 所示，然後繼續處理

metadata。我們將會在實際 SSD平台

實驗中驗證模擬的 I/O延遲正確性。關

於作業系統執行緒轉換的開銷，我們

將在第 IV.章節中解釋。 

另一方面，sim-engine也許會實施

排程機制，out-of-order完成請求。 

 

B. Metadata之辨識 

 

為了利用大小有限的 RAM 去模擬

一個大容量的 SSD，我們提出了一種

定義 metadata的構想。 

 

 Metadata即為用來詮釋資料的一

種資料，又可以稱為資料的索引，

metadata只佔所有 data的一小部分。

Disk中即使只存 metadata ，檔案系統

也 可 以正 常運 作， 並 且讓 disk 

benchmark tools不要去驗證寫到 disk

上的 data，因此 benchmark tools可以

正常運作在只存有檔案系統 metadata 

的虛擬磁碟上。 

 

 舉例來說，當我們格式化一個 

 250GB的硬碟成 NTFS的磁區 ，則

這 個 硬 碟 上 的 metadata只 佔 了

74.46MB 的硬碟空間，因此我們藉由

metadata之識別方法來降低 SSD虛擬

平台對 RAM 的使用量。Sivathanu[7]

提出一個方法去定義"live data"，但這

個方法專注在資料內容的定義，而非

metadata。 

 要定義 metadata，不同檔案系統有

不同的架構，所以我們實作一套"rules 

database"在我們的虛擬磁碟中，如

Figure 6所示，該"rules database"包含

許多的不同檔案系統 metadata定義規

則，藉由這個資料庫，我們可以找到

並儲存metadata到不同的檔案系統上。

我們將會在接下來的章節中，來討論

NTFS 與 ext2 中定義 metadata的方

法。 

在 NTFS 檔案系統的環境中，最

主要的 metadata都存在 MFT(Master 

Files table)中。首先，在 disk的開機磁

區中，我們可以知道MFT存放的位置，

幸運地，每個 MFT的項目為一筆紀錄

的開頭，我們可以透過解析虛擬磁碟

上的資料內容來定義這些紀錄，因此

我們可以儲存這些紀錄來維持 NTFS

的正常運作，如 Figure 6所示。 

 



  

 

 之前的研究[9]中只有辨識 EXT2

檔案系統上固定位置的 metadata，所以 

無法辨認出 EXT2 中 block group的

"directory i-node"，因為 EXT2的目 

錄不是存在固定的位置。我們的 EXT2 

metadata定義方式可以辨認出 EXT2

的目錄，如 Figure 6所示。首先，我們

可以解析 i-node資料內容，接著比較

i-node上的 i-node number與 bitmap，

若 i-node為一個目錄型的 i-node，則儲

存該 metadata到記憶體中。 

 

IV.  I/O延遲延遲延遲延遲之之之之模擬模擬模擬模擬 

 

虛擬平台有兩個 I/O 延遲模擬的

問題：硬體的時間花費，與作業系統

的時間消耗。I/O延遲模擬有兩個模式：

一種是只儲存 metadata，另一種則是儲

存 metadata與實際資料。如果我們不

考慮作業系統花費的時間，則當

sim-engine產生一個裝置 I/O延遲，減

去模擬器執行的時間，與 kernel mode

的延遲時間，則為在虛擬磁碟上的 I/O

延遲，如圖 7(a)所示。虛擬平台可以儲

存實際的資料，如圖 7(b)所示，裝置

I/O延遲必須扣除 sim-engine執行時間

與處理資料時間。因磁碟的搜尋時間

會破壞虛擬 I/O的延遲準確度，我們可

以用 ram disk來解決。 

 

由於虛擬平台使用事件訊號去同

步 sim-engine與 virtual drive，所以會

產生一些 kernel mode與 user mode訊

號傳遞的 overhead。另一方面，user 

mode的 process會被排程，排程器將

觸發 user process的 context switch，也

會影響虛擬平台模擬的準確度。 

 

為了最小化作業系統模式 switch

的時間消耗與使用者程序的 context  

Exp. I Virtual disk I/O delay expression 

Fig. 11 IO delay simulation 



 switch，我們使用一些方法去解決這

個問題。首先，我們得到處理器

(processor)的時間戳記(TSC)去計算用

來發送事件訊號的 CPU cycle time，換

句話說，我們使用一個時間校準階段

去計算事件訊號的時間消耗。第二，

我們加入的虛擬平台 I/O 延遲是在作

業系統核心模式，去避免使用者程序

的競爭。第三，我們讓 sim-engine執

行在高優先權下，避免虛擬平台被系

統的 context switch所影響。 

 

在計算虛擬 I/O 延遲上符號的意

義與方法，如 TABLE I 所示。 

������與���皆由TSC計算出來的，

����	��
��為多通道架構環境下處理

request所花的時間。 

 

V.  實驗結果實驗結果實驗結果實驗結果 

 

 在這一節，我們有兩個實驗部分。

第一個是驗證虛擬平台的準確性，我

們會與真正的 SSD(GP5086)平台來跟

虛擬平台的模擬結果比較。第二個是

在實際 workload之操作下，虛擬平台

展現的硬體/韌體搭配之下的效能。 

 

我們使用業界最常使用的磁碟效

能評比工具：IOmeter、ATTO 來驗證

我們的虛擬平台與真實的 SSD 

(GP5086)，並且在虛擬平台安裝 Office

軟體，來測試兩種不同的硬體/韌體組

合下的效能差異。 

 

我們已經依照「硬體組態配置範

例」章節中，將虛擬平台設定為跟真

實平台(GP5086)相同的硬/韌體架構。

如同 TABLE II 所示，我們可以觀察到

虛擬平台的 I/O 延遲誤差低於百分之

五，其誤差的原因來自快閃記憶體晶

片的寫入/抹除時間會隨著溫度及電壓

的變化而改變。為了要測試我們處理

事件通知的時間消耗以及使用者程序

間的行程切換的方法，我們使用了

FFT-z這套工具來增進 CPU使用率，

測試我們的虛擬平台在 CPU高壓力下

的效能，如同 TABLE III 所示。因為

行程切換的開銷影響不大，並且 I/O延

遲是在作業系統核心模式，故可以降

TABLE I: I/O delay symbol table 
TABLE II: Compare a real SSD (GP5086) 

results with our virtual platform 



低使用者程序排程造成的影響，我們

的虛擬平台在高度壓力的環境下可以

維持虛擬 I/O延遲的準確性。 

 

為了要比較在兩種不同 SSD設計

下安裝 Office的效能，我們設定了以 

下硬體配置組態：32GB容量，256MB

備用空間。首先來看 Figure 8所示的兩

種不同設計的硬體架構。我們定義了

Flash晶片數量為八個，並且將通道數

量設定為 2及 4。我們可以發現如果通

道數量越多，資料處理可以愈平行地

進行，因此在 GC時有較低的回應時間；

但愈多的通道將會分割備用空間，其

將導致頻繁的 GC。接著我們比較兩種

不同的韌體設計：NK 16:32以及 FAST，

如 Figure 9所示。FAST不會限制 log 

block的關聯度，因此在 GC的時候，

FAST的回應時間會高於 NK，這意味

著在這段時間，FAST將會使 SSD產

生較明顯之延遲現象。 

 

VI. 結論結論結論結論 

 

Fig. 13 Installing Office using two different FTL algorithms (firmware) 

Fig. 12 Installing Office using two different channel architectures of SSDs (hardware) 
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TABLE III: Experiments with/without 

CPU stress 



本研究提出一個針對固態硬碟

(SSD)的虛擬平台，並且在 user mode

中設計了一個抽象化的硬體/韌體介面

以方便設計 SSD。這個虛擬平台可以

做快速的"測試並修改"設計循環並於

線上模擬。該虛擬平台可以只儲存

metadata，並在有限的記憶體下，建立

大容量的 SSD。在實驗中，我們驗證

了時間準確性之誤差相較於真實產品

是低於百分之五。此外，我們也比較

了兩種不同SSD的硬體/韌體設計來安

裝 Office的效能。 
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Abstract 
A solid-state drive (SSD) uses flash memory as storage 

media. In the recent years, due to the SSD’s ability to conserve 
power, and to endure shock and vibration, as well as its random 
access capability, it has started to take the place of the traditional 
hard drive. However, users’ experiences usually do not match the 
performance claimed by the manufacturers for the SSD. The main 
reason for this is that most tools used to evaluate the performance 
of the SSD are the same as those used to test traditional hard 
drives. The performance cost of the internal management 
mechanism in SSD is not taken into account by the test methods, 
so that the apparent results do not represent the true performance 
of the SSD. This paper proposes a method to test the management 
efficiency of the SSD based on the disk workload of a real system. 
The proposed method is able to differentiate the access patterns of 
an SSD, categorize real workloads into four sets of benchmark 
suites, and then identify SSD performance bottlenecks. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Garbage collection; B.3.2 [Memory 
Structures]: Mass Storage. 

General Terms 
Design, Performance. 

Keywords 
Solid-State Disks, Flash Memory, Benchmark. 

1. Introduction 
NAND flash memory is known for its small dimension, 

ability to endure vibration and conserve power, and its fast 
random access capability. SSDs composed of NAND flash 
memory are already commonly used in personal computers. 
Unlike traditional hard drives, managing data in SSD is subject to 
physical constraints of NAND flash memory, such as uneven 
physical units of read/write and erase, address translation, free-
space reclaiming and wear leveling. SSDs use a flash translation 
layer to simulation block device interface and to hide NAND flash 
memory’s physical characteristics. Manufacturers implement 
different management strategies in the hardware controller to 
process SSD management issues and handle performance 
problems caused by large amounts of data reading/writing.  

Apart from the hardware specification, the performance of 
the SSD is also affected by the management algorithm in the SSD 
firmware.  The test results delivered by such tools do not help 
users to make a fair evaluation of the SSD. Most current hard 
drive benchmark tools target traditional mechanical hard drives. 
They focus on seek, rotate, data transfer and time overhead, which 
are absent from the management issues of NAND flash memory. 

So far, only a few papers have discussed the performance of 
the SSD and test methods. [1] studied the effects of a variety of 
design methods on the SSD performance, using by software 
simulation. However, the test was not conducted on a real product. 
[2] developed a tool to test SSD resource access patterns, but 
empirical test results were not reported. [3] defined a complete set 
of SSD performance evaluation methods including pre-test 
configuration, post-test configuration and a battery of access 
pattern tests. The focus of that work was the methodology of 
performance evaluation, but it failed to identify the reasons for the 
low performance of SSD management strategies.  

The two problems with current test methods are: firstly, the 
performance metrics of traditional hard drives cannot identify the 
reasons that cause the SSD performance differential; secondly, 
tested access patterns do not cover the access patterns actually 
used by customers. To respond to these difficulties, we propose a 
new performance metric, Per-Byte-Response. The metric 
represents the response time of every kilobyte in a single 
read/write request. The metric emphasizes the overheads imposed 
by the SSD management activities on each individual request, 
neglecting the data transfer time. We analyze the spatial 
distribution and access time distribution of the data’s Per-Byte-
Response, summarize the typical symptoms of poor resource 
management, and provide the user with an account of the causes 
of poor performance. Secondly, we gather the user’s real access 
patterns as a test workload, and conduct an analysis of the 
characteristic access patterns for different types of workloads. 
These workloads are categorized into four benchmark suites, 
which provide users with evaluations of transfer speed, address 
translation, free-space reclaiming and buffer management. The 
user can choose a suitable Benchmark suite for the specific SSD 
or SSD management issue which needs to be addressed, obtain 
performance metrics and find out what factors are adversely 
affecting performance. 

2. SSD Management 
The overall performance of the SSD depends on the hardware 

architecture and the data management schemes. The hardware 
architecture includes parallel transmission architecture (Multi-
channel or Inter-leaving), controller, types of NAND flash 
memory, and buffer configurations.  

Currently, there are two types of NAND flash memory, SLC 
and MLC. In order to increase the capacity of the device, many 
SSDs use MLC as the storage media. However, MLC has a longer 
read/write time than SLC. Therefore, MLC use has a significant 
impact on the performance and lifetime of the device. 



 To improve read/write performance, SSD employs 
additional RAM as write buffer or read cache. The current SSD 
buffer management can be categorized into: (1) traditional 
management schemes, such as FIFO, LRU; (2) new management 
schemes designed for NAND flash physical characteristics, such 
as FAB, BPLRU[4]. The former only utilizes the hardware 
advantage of RAM to shorten access time, while the latter 
optimize the management scheme costs as well. 

The major management issues of the SSD are: address 
mapping, free-space reclaiming and wear leveling. As the unit of 
SSD read and write is a page, while the unit of erase is a block, it 
is necessary to use out-place updates to avoid frequent erasure 
operations. An address mapping mechanism is needed to translate 
logical addresses into physical addresses. Most of the current 
address mapping mechanisms divide the blocks into data blocks 
and log blocks. All the original data is stored in the data blocks. 
When each data update arrives, log blocks are used to hold the 
updated data. It is a design option that how data blocks are 
associated with log blocks. When a lot of free-space reclaiming 
actions are taken by a small amount of data written, we can 
conclude that the address mapping mechanism is not working well, 
and action needs to be taken [5]. 

When there is insufficient free-space for data writes, the SSD 
needs to reclaim free-space by erasing invalid data. However, the 
minimum unit that can be erased is a block. Garbage collection 
will trigger a sequence of data moves and erases. The time cost of 
garbage collection is the major management cost. Generally 
speaking, garbage collection should be postponed as late as 
possible, and should erase the block with most invalid pages. 
When the cold data (rarely updated data) and hot data (frequently 
updated) are mixed in the same block, the efficiency of garbage 
collection will be significantly impaired. It is therefore better, 
where possible, to store hot and cold data in different blocks. 

3. Performance Evaluation using Real 
Workloads 

The SSD performance benchmarking proposed in this paper 
takes the form of a black-box test to evaluate external response 
time performance. The advantages of this method are easy test 
environment setup and simple parameters. The disadvantage is the 
difficulty in diagnosing the reasons for poor performance in a 
single test. This section will introduce the system configuration of 
the SSD benchmarking, performance metrics and typical 
symptoms of suboptimal management strategies. 

Our SSD benchmarking method is composed of two steps. 
The first step is Trace-Collect. It operates in the driver layer of the 
file system, collecting users’ access patterns to hard drives. The 
second step is called Trace-Replay. It is mainly used to reproduce 
the data access activities on the SSD that is going to be tested. 
Because only write requests involve SSD management activities, 
the benchmarking method proposed in this paper only concerns 
write requests in the collected traces.  

To focus on the impact of the SSD management strategies on 
performance, we propose the Per-Byte-Response (PBR) as a 
performance metric to eliminate the time overheads contributed by 
data transfer. For each SSD write request, the PBR is defined by 
the following formula: 

Response time (in seconds) / Request size (in bytes). 

Under optimal management scheme conditions, the 
management overheads in SSD are kept as low as possible, and no 
PBRs of requests are noticeably large. However, with suboptimal 
management schemes, it is possible that a small request introduces 
lengthy management activities, suddenly increasing its PBR. . 
General users can not easily identify performance bottleneck of 
various SSD devices by observing PBR only. To assist users to 
diagnose the problem, it is necessary to analyze PBR results 
exhibited by typical symptoms of suboptimal management 
strategies. 

To observe the time and spatial distribution of the PBR 
values, we used a 3D visualization method, where the X axis 
represents data reference numbers, the Y axis represents the 
original logical address and the Z axis represents the PBR 
value.As shown in Figure (1), there is a significant difference 
between PBR values. The Figure shows how the data is buffered 
to improve the performance before the data is written in SSD. 
When there is free space in the write buffer, the extremely low 
PBR values represent the time cost of writing data to RAM. When 
the write buffer is full, data will be written to the SSD, which 
results in a series of management activities and a significant 
increase in the PBR value. However, this buffer management 
scheme is not optimized for the flash translation layer, instead of 
delivering stable PBR values, the PBR values changes severely. 
This phenomenon is defined as “suboptimal write buffer 
management”.  

As shown in Figure (2), when the PBR values increase 
dramatically and are randomly distributed over a large range of 
logical addresses, garbage collection is triggered at a high 
frequency, even through the total amount of data written is low. 
The reason is that the suboptimal address mapping scheme results 
in low utilization rate of the SSD space (i.e., log-blcok threshing). 
This phenomenon is defined as “suboptimal address mapping”.  

In Figure (3), the PBR values increase dramatically but only 
appear densely in a small area and in a short time. This means that 
certain data a updated frequently, triggering garbage collection. 
There are two reasons for this phenomenon: (1) extremely high 
PBR values representing large data relocation cost during garbage 
collection. (2) high incidence of PBR values, indicating a 
problematic garbage collection strategy, such as premature 
garbage collection or improper selection of recycling victims. This 
phenomenon is defined as “suboptimal garbage collection 
scheme”. 

4. Workload Characterization and 
Benchmark Suites 

In this section, we will discuss how to conduct temporal and 
spatial analysis on the collected workloads, list important 
characteristics, analyze the relationship between these 
characteristics and SSD management schemes, and categorize 

Figure (1) Suboptimal 
write buffer 
management 

 

Figure (2) Suboptimal 
mapping scheme 

Figure (3) garbage 
collection scheme 



these workloads into suites of evaluating transfer speed, address 
mapping, garbage collection and buffer management.  

To completely reproduce the data access activities on the 
SSD to be tested, three parameters need to be recorded for each 
data item during the trace-collect stage: data write sequence, start 
address and length of transfer. Each data item is either a write or a 
rewrite. When the data is written into blank regions, it is known as 
a write. When the data is written into regions that contain 
addresses have already been written to, it is called a rewrite. 
Workloads with large amounts of rewrite requests have high time 
locality and space locality of data read and write.  

According to the start address of each data item, we can 
further categorize the data into two types: sequential data and 
random access data. As modern operating systems support multi-
tasking environment, sequential data writes or rewrites can be 
interrupted by write requests from other processes. We determine 
the sequence of read/write actions by assigning an error value K . 
Then, the data is defined as sequential data if the write address of 
the Nth data item and the start address of the N+Kth data item are 
contiguous, where N is an integer. If the data is non-sequential, it 
is deemed to be random access data. A workload with a high 
percentage of sequential data has high space availability, which 
means that it is easy to gather large amounts of invalid data space 
during garbage collection.  

Most data write requests of the file system are for small 
writes, falling into the size range of 4KB. So request with 
transfers length smaller than 4KB are treated as small writes. 

If a write request’s starting address is unable to align with the 
page boundary of NAND flash-memory pages, then writing a page 
may require extra overheads of read-modify-write operations. This 
concerns the performance of the address mapping scheme. To 
account this, we record whether the data’s start address and end 
address are aligned to the 4KB boundary in sector addresses, and 
further analyze the ratio of aligned data to the entire dataset.  

According to the parameters collected in the trace-collect 
stage, we directly analyze the rewrite ratio, sequential ratio, 
alignment ratio and transfer length statistics. This analysis is 
called macroscopic analysis. For small-scale workloads with 
simple behaviors, these four characteristics can be categorized and 
used to test the performance of the SSD management schemes. 
However, for large-scale workloads with complex behaviors 
further parameter calculations are required.  

Microscopic analysis focuses on the time distribution and 
space distribution of the access pattern, and understands the 
formation of its characteristics. To analyze the spatial locality of 
an access pattern, we derive the traditional performance metric 
“Seek Distance” to calculate the distance between the end address 
of the current data item and the state address of the next data item. 
Even though SSD does not suffer from the cost of the read/write 
head movements, this metric represents the randomness of the 
data access. If the variation of seek distances is very large, then 
the access pattern exhibits random access. This can be used to test 
the performance of the address mapping scheme. 

The temporal locality of an access pattern represents the data 
rewrite frequency. There are two kinds of data, hot data and cold 
data, where the temperature of a piece of data is proportional to 
the frequency that the data is updated. However, for large-scale 
workloads, hot data are accessed by bursts of variable lengths. 

Therefore, the time window of accessing hot data must be 
considered. We define life span and life cycle as follows: 

Definition 1：Life Span 

Let X be some Logical Sector Address (LSA). Let 
FIRST_ACCESS(X) represent the request sequence number when 
X is written for the first time; let LAST_ACCESS(X) represent 
the request sequence number when X is written for the last time. 
Life span is defined as: 

Life_Span(X) = LAST_ACCESS(X)-FIRST_ACCESS(X). 

 Definition 2：Life Cycle 

 Assume Write_Count(X) represents the number of times a 
LSA address, X, was written. Then 

 Life_Cycle(X) = Life_Span(x) / Write_Count(x). If 
Life_Cycle(X)=0, no rewrite has occurred in this address.  

Using the life span and life cycle definitions, we are able to 
observe hotness/coldness differences in the logical address space 
and understand the mixing level of the hot data and cold data. 
When the cold data and hot data are separated correctly, the data 
relocation cost during garbage collection can be reduced 
significantly. The cold/hot data distribution can be used to test the 
performance of the garbage collection. 

 After profiling workloads using the above mentioned 
indexes, workloads can be match to four benchmark suits, 
Transfer, Buffer, Mapping and Garbage Collection. The transfer 
suite is used to evaluate hardware transfer cost. The other three 
suites are used to evaluate the performance cost of the SSD 
management schemes. The data mainly composed of sequential 
write requests can be used in the hardware transfer architecture. 
Because sequential write requests are less likely to introduce extra 
copy operations during free-space reclaiming, workloads with a 
large number of sequential writes are classified as Transfer Suite. 
When the rewrite ratio of the workload is high and the transfer 
amount is larger than the write buffer capacity, the write-back 
mechanism will be triggered. Therefore, workloads with a high 
rewrite ratio and a large data amount are classified as Buffer Suite. 
When the rewrite activities of the workloads are random and 
consist of small writes, or there is unaligned write activity, the 
space usage rate is low. Therefore, workloads with random data 
and low alignment ratio are classified as Mapping Suite. When the 
workload has intensive rewrite activities and the cold and hot data 
are highly mixed, the garbage collection will be triggered, and 
such workloads are classified as Garbage Collection Suite. In the 
next section, workload testing will be described. The 
characteristics will be analyzed and assigned to appropriate 
benchmarking suites for SSD performance testing. 

5.  Experimental Results 
5.1 Environment Setup 

This section introduces the experiment environment setup, 
SSD to be tested and collected workloads. The experiment 
platform is built on a personal computer equipped with Intel Core 
2 Dual 1.87GHz,2GB DDR2 memory, and the Windows XP 
operating system. A total of five SSD devices are tested. In order 
of price, MTRON and Samsung are high-end products with extra 
RAM available for write buffering. OCZ is a mid-price product, 
and TRANSCEND is a low-end product. The device 
specifications are shown in Table (1). 



 We collected user file access patterns from personal 
computers. User applications are of four types: general application, 
internet application, operating system installation, and P2P 
application. The access pattern of each user scenario is given in 
the table (2). 

 The first stage, trace-collection, was conducted with 
Windows XP, using the Diskmon trace tool [6] to collect access 
patterns and store them in a 16GB independent NTFS hard drive. 
The second stage, trace-replay, was implemented by using the 
functions CreateFile() and WriteFile() in the Windows API. 
Firstly, we used CreateFile() to open the SSD in the device driver 
mode. Secondly, we used WriteFile() to execute synchronous 
write activities. Time data from the CPU clock cycle was read by 
the assembly language function RDTSC(). 

5.2  Benchmark Suites 
 To conduct categorization of the workload benchmarking 

and management mechanism evaluation, a macroscopic analysis 
was first applied to the four collected workloads that are rewrite 
ratio, sequential ratio, data length and alignment ratio. The value 
of each application and its ratio to the overall data transfer rate is 
given in Table (3). For example, if the update data amount is 

100MB and the overall data transferred is 200MB, the rewrite 
ratio is 50%. The error of the sequential activity is set to 10, which 
means if the logical addresses of the Nth write and N+10th write 
are contiguous, the action is considered a sequential write. 

 Copy has a low rewrite ratio, and the write request is 64KB 
sequential write, which can be categorized in the Transfer suite for 
hardware transfer speed test. Browser has a high rewrite ratio: 
these are most likely small writes with random access, which can 
be categorized to the Garbage Collection Suite or to the Mapping 
Suite. eMule and Install Linux are large-scale workloads. The 
metric intensities of macroscopic analysis are not very clear, 
therefore, we also use microscopic analysis to find out the 
characteristics of eMule and Install Linux, as well as the hot/cold 
data distribution of Browser.  

 Figure (4)-(a)(b) are the Browser data logical address distribution 
and hot/cold data distribution graph. The X axis in Fig. 4 (a) is the 
data sequence, and the Y axis is the logical sector address. As can 
be seen from the graph, the random access of the Browser is small 

and intense. This is because the browser temporarily stores 
website data on the hard drive to increase the website browsing 
speed. These temporary files are managed by Index.dat, which is 
frequently updated. The hot/cold data distribution is interpreted in 
the Life Cycle analysis. In Fig. 4 (b), the X axis is the logical 
sector address, and the Y axis is the life cycle (calculated by the 
definition 2 given in Section 4). As shown in the graph, the 
hot/cold data are highly mixed. The difference is not clear and 
hard to identify. Due to the intensity of the hot/cold data mix, we 
finally categorize Browser to the GC suite. 

In the macroscopic analysis, the sequential ratio of Install 

Linux is only 20%. As shown in the LSA distribution graph, 
Figure (5)(a), its random access is scattered over a wide area. The 
access addresses are mostly located in group headers –group 
headers are where the metadata is stored in EXT2/EXT3 file 
systems. In EXT2/3 default settings, reading data also causes 
write actions to update the a-time in inode, which causes random 
writes to be much more common than sequential write. Figure 
(5)(b) shows the Seek Distance distribution for Install Linux. The 
X axis is the LSA, and the Y axis is the seek distance. As shown 
in the figure, the write action of Install Linux is scattered over a 
large area. Therefore, we categorize Install Linux to the mapping 
suite to test the address mapping s performance of the SSD. 

eMule is a popular P2P download software. Its principle is to 
cut files into several chunks and download multiple chunks 
simultaneously. A chunk is the minimum download unit, with size 
9.28MB and buffer capacity of 128 KB. According to our 
macroscopic analysis results, 55% of rewrites are sequential and 
the data length is typically around 512KB. As shown in Figure 
(6)(a), the first half of eMule is a sequential write, which is caused 
by the data buffering before downloading each file; the second file 
is the random write of the chunk download. When a chunk starts 
to be downloaded, random access will be limited in the addresses 
of the corresponding chunk. Therefore, every chuck should have  

Table (1) SSD device specifications 

Manufacturer  Interface Memory Unit Capacity Controller

MTRON SATAII SLC 32GB MTRON 

Samsung SATAII SLC 32GB Samsung 

TRANSCEND SATAII SLC 16GB SMI 

TRANSCEND SATAII MLC 32GB SMI 

OCZ SATAII MLC 64GB JMICRON

(a) Logical address Distribution (b) Life Cycle Distribution 

Figure (4) Characteristics of the Browser workload 

Table (2) Workload of user scenarios 

Workload Scenarios 

Copy  Copy 200 files from one directory to another 

Browser Use Internet Explorer 5.0 to browse internet for 3 
hours 

Install 
Linux 

Install Fedora Linux Server 4,the file system is EXT3

eMule Use eMule 0.48b to download 3 files for 3 hours 

Table (3) Workload Macroscopic Analysis Results 

Workload Data 

Transfer 

Rewrites

Ratio 

Sequ-
ential 

Ratio 

Data 

Length 

Alig-
nment 

Ratio 

Copy  816MB 0.1% 96% 64KB 0% 

Browser 477MB 80% 4% 4KB 31% 

Install 
Linux 

2387MB 18% 25% 4KB, 
128KB 

0% 

eMule 9437MB 5% 55% 4KB, 
512KB 

0% 

Hot/Cold Data Mix 



high time locality and space locality. As shown in Figure 6(b), 
we focused the logic sector address inside a chunk, however, we 
found the seek distance was large and random. It is suspected that 
this is because multiple chunks are downloaded simultaneously. 
When we introduced the life cycle concept, we found the time 
locality and space locality were indeed concentrated on a small 
area. The pseudo randomness in a large area created by multiple 
chunk download may instantly consume the buffer set by eMule 
and cause frequent rewrites. Therefore, we categorize eMule to 
the Buffer Suite to test the write buffer management, as well as to 
determine whether the buffer management mechanism can handle 
downloading multiple chunks. 

Based on the macroscopic and microscopic analysis results, 
we conclude that the real workload and benchmark suite pairs as 
follows: Copy was matched to Transfer Suite, Browser is tied to 
GC Suite, Install Linux is categorized to Mapping Suite, and 
eMule is classified to the Buffer Suite. 

5.3 Benchmark Results 
SSD benchmarking is composed of two parts. In Part I, 

traditional sequential and random pattern test results are used. In 
Part II, real workloads from the benchmark suites are used to test 
the SSD. Finally, the impact on SSD management performance is 
discussed by comparing results obtain in both parts. 

  

(a) Sequential Write               (b) Random Write 

Figure (7) IOMeter Sequential and Random Write 
Test :X axis is data length, Y axis is transfer speed in MB/sec 

 

In Part I, the selected SSD devices are tested by the IOMeter 
sequential and random write patterns. In Figure (7)(a), MTRON 
has a faster transfer speed than any other competitors. Figure(7)(b) 
shows that SSD composed of SLC chipset outperform SSD 
composed of MLC chipset, which also indicates the performance 
gap of physical characteristics of SLC and MLC. Also, as shown 
in Figure (7)(b), MTRON and Samsung perform better than 
Transcend because of the extra write buffer. In addition, 
MTRON’s performance is slightly better than that of Samsung, 
which shows that the write buffer of MTRON effectively handles 
the small writes. Given the results, we can conclude that using 
SLC chipset and extra write buffer will improve the overall 
performance of SSD. 

IOMeter test results match with the product price range. 
MTRON has the best performance, while Transcend with MLC 
chipset comes last. Next, we use the benchmark suite to test these 
devices and use the proposed performance metric Per-Byte-
Response (PBR), which is the ratio of response time to data 
transferred. The experiment results are shown in 3D graphs with X 
axis representing data sequence, Y axis representing LSA, and Z 
axis representing PBR. The higher the PBR values are, the higher 
the management cost is. 

Figure (8) shows the Transfer Suite test results of MRTON 
and Samsung. Both the performance and the readings match the 
IOMeter test results. Next, we test the performance of the SSD 
management mechanism of each device. In Figure (9), we 
demonstrate the results of MTRON and Samsung by using eMule 
in the Buffer Suite. We found that the PBR values of MTRON 
fluctuate considerably. This is probably because the write buffer 
does not integrate with FTL (File Transfer Layer) design, and is 
not able to reduce the management cost effectively. The frequent 
rewrites caused by downloading chunks in eMule triggers address 
mapping or garbage collection, which reduces performance. 
According to the Samsung PBR values, the buffer management 
mechanism effectively reduced the management cost, which 
indicates its management method integrates with the FTL design. 

(a) MTRON: 
22.95MB/sec 

 

(b) Samsung: 18MB/sec 

 

(c) Transcend SLC: 
4.47MB/sec 

Figure (8) Transfer Suite Test Results 

 

(a) Samsung:18MB/s 

 

(b) MTRON:8MB/sec 

Figure (9) Buffer Suite Test Result 

 

(a) LSA Distribution (b) Seek Distance Distribution 

Figure (5) Characteristics of the Install Linux workload 

 

(a) LSA Distribution (b) Seek Distance Distribution 

Figure (6) Characteristics of the eMule workload 
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Figure (10) illustrates the results of the Mapping Suite test on 
MTRON, Transcend SLC and OCZ MLC by using the Install 
Linux workload. The results show lack of effective handling on 
the random rewrites caused by Install Linux. However, the overall 
performance differs from one device to another depending on 
whether write buffering is available. MTRON is significantly 
better than Transcend SLC. Significantly, OCZ MLC outperforms 
Transcend SLC, even though Transcend SLC has better hardware 
performance. As shown in Figure (10)(b), OZC has a much lower 
address mapping cost than Transcend SLC. It is clear that current 
SSD address mapping mechanisms are not suitable for the Install 
Linux workload. The reason is that EXT2/EXT3 headers will 
generate random rewrites over a large LSA area, causing a low 
space usage problem. 

Figure (11) demonstrates the GC Suite test results on 
Transcend SLC and OCZ by using the Browser workload. The 
results show the PBR values of Transcend SLD scattered in a 
large LSA area with high intensities, which indicates that the 
garbage collection is triggered frequently and the garbage 
collection mechanism cannot handle the highly mixed hot/cold 
data and high rewrite ratio associated with this workload. OCZ 
also has high PBR readings, but the high readings are located at a 
few LSA, which represents low garbage collection frequency and 
high garbage collection cost. 

According to IOMeter test results, the performance ranking 
of sequential write is MTRON->Samsung->OCZ->Transcend 
SLC; while the random access write ranking is MTRON-
>Samsung->Transcend SLC->OCZ. However, Benchmark Suite 
test results show that the performance of the SSD is related to the 
specific workload performed on the device. The reason for this is 
that the typical access patterns are lack of small data rewrite 
activities, which does not affect the performance of traditional 
mechanical hard drive. When the activities have random writes in 
a large LSA area or high mixed hot/cold data, they will lead to 
SSD management system bottlenecks. 

In the random write test, Transcend SLC has much better 
performance than OCZ does. However, in the Mapping Suite test 

and GC Suite test, OCZ outperforms Transcend SLC. This is 
mainly because the workload demands many small writes. When 
the small write data is distributed randomly in a large LSA area, 
the space usage utilization depends on the address mapping 
mechanism. Proper changes of the ratio of data block and log 
block can increase the space usage utilization, reduce unnecessary 
garbage collections and management cost. It is difficult to execute 
garbage collection effectively if the hot/cold data is highly mixed. 
Garbage collection should be postponed until enough invalid data 
has accumulated; at the same time hot data should be separated 
from cold data. As shown in the results, this was why the OCZ 
SSD with MLC outperformed Transcend SLC. 

It follows from the discussion above that a necessary 
characteristic of SSD management is the ability to handle small 
and hot data. This is best accomplished by selecting an SSD 
device which offers RAM write buffering. In an IOMeter 
sequential test, MTRON performed significantly better than 
Samsung. However, when small data has random writes with large 
LSA area and the data with larger size than the write buffer 
capacity, the write back is frequently triggered by the buffer 
management of MTRON, which causes a higher management cost 
than Samsung’s. Although MRTOM has larger write buffer size, 
the write back mechanism is inappropriate. The time cost of data 
writes can be only achieved by the access time advantage of the 
RAM. Therefore, the overall performance still depends on the 
buffer write back mechanism. A good buffer write back 
mechanism should integrate with the FTL design to process small 
hot data and reduce the randomness of the data, rather than the 
size of the write buffer. 

6. Conclusion 
This paper discussed the test method for the SSD 

management performance. We proposed a new performance 
metric, Per-Byte-Response, to test SSD management performance, 
and analyzed the typical symptoms of the PBR when the 
management performance is low. Feedback is given to users so 
they can diagnose the reason for low performance.  Four 
benchmark suites were used to evaluate each management 
performance. These benchmark suites, alongside PBR, yielded 
different results from traditional test methods. This offers 
considerable insight into the impact of SSD management 
mechanisms on actual performance.  
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Abstract

Solid-state disks use flash memory as their storage
medium, and adopt a firmware layer that makes data map-
ping and wear leveling transparent to the hosts. Even
though solid-state disks emulate a collection of logical sec-
tors, the I/O delays of accessing all these logical sectors
are not uniform because the management of flash memory is
subject to many physical constraints of flash memory. This
work proposes a collection of black-box tests can detect the
geometry inside of a solid-state disk. The host system soft-
ware can arrange data in the logical disk space according
to the detected geometry information to match the host write
pattern with the device characteristic for reducing the flash
management overhead in solid-state disks.

1 Introduction

Flash storage is an enabling technology for cyper-
physical systems because of its portability, energy effi-
ciency, and small form factors. Because flash memory has
some unique physical constraints such as erase-before-write
and bulk erase, it exhibits highly asymmetric performance
in terms of read and write. Thus, it is important that sys-
tem software and user applications of cyper-physical sys-
tems cope with this performance characteristic for high-
performance data access.

Solid-state disks use flash memory as their storage
medium. They adopt a firmware layer to enable transpar-
ent data access. This firmware layer is usually referred to as
flash-translation layer, which maps logical sectors to phys-
ical flash locations and levels the wear in the entire flash
memory. Not surprisingly, the management of flash mem-
ory imposes noticeable timing overheads on the processing
ordinary read and write requests.

The design of an efficient flash translation layer aims at
reducing the overhead of garbage collection, i.e, the extra
data copy and flash erasure operations during the reclaim-
ing of free space. Chiang et al. [1] proposed using page-

level mapping between logical sectors and flash locations.
This approach classifies data into different logical regions
according to their update frequencies, and mapping these
regions to different flash locations. Lee et al. [2] and Park et
al. [4] proposed using hybrid mapping that combines block-
level mapping and page-level mapping for a good balance
between the mapping-table size and write performance.

In spite of firmware design optimizations, recently re-
searchers started investigating how the host system soft-
ware can cooperate with the solid-state disk firmware to re-
duce the flash management overheads inside of solid-state
disks. Lee et al. [3] proposed a software layer in the host
that converts random write requests into long and sequen-
tial write bursts. This method effectively relieves flash stor-
age devices of heavy garbage-collection overheads, espe-
cially for those low-end flash storage devices like thumb
drives. A similar technique had also been proposed for tra-
ditional disk-based storage systems: Schindler et al. pro-
posed aligning file-system extents to disk-track boundaries
to enable whole-track pre-fetching and to avoid extra disk-
head movement during data accessing [6].

Even though geometry-aware data layout is a promis-
ing technique for improving read-write performance, before
the host system software can arrange data they must have
the geometry information of the storage device (solid-state
disks in our case). Such information includes parameters
specific to the physical medium like the smallest unit sizes
for read/write and flash erasure. There are also logical ge-
ometry information such as the unit size of data mapping
and the total number of logical sectors that a mapping table
can reach. Unfortunately, storage devices will not disclose
these information to the host. This prohibits the host soft-
ware from optimizing data layout for device geometry.

This work proposes a test suite for detecting the geom-
etry information inside of solid-state disks. This method
treats solid-state disks as black boxes, and use a set of spe-
cial read-write patterns to access the storage device and col-
lects the I/O response times during the test. Finally, the
distribution of these response times will reveal the desired
geometry information.



Figure 1. The set-associative mapping
scheme whose group size is two. Each
data-block group is associated with up to
one log-block group.

The rest of this paper is organized as follows: Section
II describes the flash characteristics and the fundamentals
of flash translation layers. Section III introduces the typi-
cal composition of the geometry inside of a solid-state disk,
and discuss how the host system software can use these in-
formation. Section IV presents a set of tests to detect these
geometry information and the test results of several off-the-
shelf products. Section V concludes this work.

2 Background

A piece of flash memory is a physical array of blocks,
and every block contains the same number of pages. In
a typical flash specification, a flash page is 4096 plus 128
bytes, while a flash block consists of 128 pages [5]. Solid-
state disks emulate a collection of logical sectors using a
firmware layer called the flash-translation layer (i.e., FTL).

Flash-translation layers update existing data out of place
and invalidate old copies of the data to avoid erasing a flash
block every time before rewriting a piece of data. Thus,
flash-translation layers require a mapping scheme to trans-
late logical disk-sector numbers into physical locations in
flash. After writing a large amount of data to flash, flash-
translation layers must recycle flash pages storing invalid
data by means of block erase. Before flash-translation lay-
ers erase a block, it must secure any valid data in this block-
to-erase by data copying. Garbage collection refers to these
internal copy and erase operations.

Flash-translation layers use RAM-resident index struc-
tures to translate logical sector numbers into physical flash
locations, and mapping resolutions have direct impact on
RAM-space requirements and write performance. Solid-
state drives for a moderate-level performance requirement
usually adopt hybrid mapping for a good balance between
the above two factors. Fig. 1 shows a typical design of a
hybrid mapping flash-translation layer [4]. Let lbn and pbn
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Figure 2. The effective page size is eight
times as large as a flash page in a solid-state
disk using a two-channel, four-way interleav-
ing architecture. Disk sectors are mapped to
flash chips using the RAID-0 style striping.

in Fig. 1 stand for a logical-block number and a physical-
block number, respectively. A logical block is a collection
of logical sectors. Hybrid mapping maps logical blocks to
physical blocks via a block mapping table (i.e., BMT in this
figure).

Hybrid mapping uses spare flash blocks as log blocks to
serve new write requests, and uses a sector mapping table
(SMT in this figure) to redirect read requests to the newest
versions of data in spare blocks. In Fig. 1, term lsn rep-
resents a logical-sector number, and disp is the page offset
in a physical block. A group of logical blocks can share a
number of flash blocks as their log blocks. In this example,
a mapping group size has two logical blocks, and a group
can have up to two log blocks. Whenever garbage collec-
tion is necessary, the flash-translation layer “applies” the
updates of sector data in the log blocks to logical blocks,
and erases log blocks to reclaim spare (free) blocks. Ap-
plying data change is basically a form of garbage collection
because it involves data copy and block erase.

3 SSD Geometry Basics

This section introduce the composition of the geometry
of solid-state disks and discuss how the system software can
use these geometry information for data placement.

3.1 Effective Pages

Flash pages are relatively larger than disk sectors (4096
bytes compared to 512 bytes). The former is the small-
est unit for flash read/write, while the latter is the small-
est addressable unit in the host software. The effective unit
for read and write in solid-state disks can even be several
flash pages because many solid-state disks adopt multichan-
nel architectures for parallel data transfer. Fig. 2 shows an
example architecture, which uses two channels and 4-way



interleaving: The controller connects the chip-enable lines
(i.e., CE’s) of two parallel flash chips in the two channels to-
gether for synchronized flash operations. The four pairs of
flash chips have separate CE lines, but they share the same
data path and control path. Thus, during operations, the
controller must issue commands to the four chip pairs in
turn, and then interleaves the data transfers from/to these
flash pairs over time. Logical sectors are striped among
flash chips on a RAID-0 basis. Thus, in this architecture
an effective page is eight times as large as a flash page.

The mismatch between the sizes of disk sectors and ef-
fective pages can cause serious performance problems. For
example, consider that a disk volume is formatted in Linux
ext4 with 4 KB allocation units. When updating a small
file, the file system writes 4 KB of data to the underlying
block device. Because the effective page size is 32 KB
here (eight 4 KB pages), the solid-state disk first retrieves
a 32 KB effective page from the flash chips into an internal
page buffer, partially updates data in the buffer with new
data, and then write the 32 KB of data back to the flash
chips. This procedure is referred to as a read-modify-write
(RMW) operation. Even worse, if the 4 KB file-system al-
location unit happens to be on the boundary between two
effective pages, the RMW operations will involves two ef-
fective pages. This problem also occurs if a long write burst
whose starting sector number is not aligned to a boundary
of effective pages.

The RMW overheads not only degrades write perfor-
mance (2x in the worst case) but also shorten the device
lifespan because of writing unmodified data. If the host
knows the size of effective pages, then it re-arrange data
structures and also de-compose write bursts to align write
operations to the boundaries among effective pages.

3.2 Effective Blocks and Mapping Groups

The use of parallel architectures also proportionally en-
larges the effective size of blocks. Different from effec-
tive pages, the size of effective blocks are related to the be-
haviors of garbage collection. Fig. 1 had shown that the
flash-translation layer allocates log blocks to groups of log-
ical blocks. Let these groups of logical blocks be mapping
groups. When the host writes to the sectors of a mapping
group which do not currently have any log blocks, the flash-
translation layer will find new spare blocks as log blocks
for this group. If there is not any available spare blocks,
the flash-translation layer must trigger garbage collection to
reclaim log blocks from other groups.

If the host writes to a collection of logical sectors which
are widespread in the entire disk space, then a large number
of mapping groups will demand their own log blocks. With
a keen competition for log blocks among mapping groups,
the flash translation layer will frequently perform garbage
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Figure 3. Dividing the logical disk space into
zones and each zone uses its own mapping
table. The controller can only afford to cache
a subset of all these mapping tables.

collection to reclaim log blocks. As a result, garbage col-
lection can erases a log block before this log block fully
utilizes all its pages for serving updates. This problem is re-
ferred to as log-block thrashing, and a solid-state disk will
have very poor write performance when experiencing log-
block thrashing.

If the host knows the sizes of effective block and map-
ping groups, it can place those frequently updated (written)
data in the same mapping group. Confining the host write
pattern to a small number of mapping groups can effectively
avoid log-block thrashing.

3.3 Mapping Zones

The controllers in many solid-state disk designs are
equipped with a very limited amount of RAM. These con-
trollers even cannot afford to store the entire mapping table
in RAM. Thus, many designs divide the entire logical disk
space into mapping zones, and have these zones use their
own mapping tables. Logically, the entire storage device
is managed many separate instances of the flash-translation
layer. As Fig. 3 shows, the controller can only cache a
subset of all the mapping tables, and an instance of the
flash-translation layer reloads its table from flash whenever
necessary, and stores this table back to flash if its table is
evicted from the cache.

If the host frequently accesses a collection of mapping
zones and the total size of these zones’ tables is larger than
the table cache size, then the solid-state disk will spend a
noticeable amount of time to reload and commit these map-
ping tables. Similar to the use of mapping groups, if the host
knows the size of mapping zones, then it can place the fre-
quently accessed (not only frequently written but also fre-
quently read) data in the same mapping zone. This increases
the hit ratio of the table cache and alleviates the overhead
caused by table cache misses.



4 Experimental Results

4.1 Experimental Setup

This section is meant to explore the geometry of SSDs
by a series of experiments. The experiments are con-
ducted over a personal computer with Intel Pentium 4 CPU
(3.4GHz). The operating system is Windows XP. To elim-
inate disturbance from the file system, we adopt Windows
API, i.e., ReadFile() and WriteFile(), to access underlying
storage devices. Using DeviceIoControl() in conjunction
with IOCTL ATA PASS THROUGH as parameter, we can
send ATA command to storage devices directly. Therefore,
we can impose special controls, such as DISABLE READ
CACHE, DISABLE WRITE CACHE, or FLUSH WRITE
CACHE over SSDs.

We evaluate the management overhead inside SSDs in
terms of read/write response time. To achieve a precise
measurement, the RDTSC (read time stamp counter) in-
struction is used to obtain a proper cycle count (which is
incremented every clock cycle). Since the response time
incurred by a garbage collection varies widely, trigger of
a garbage collection is detected based on the throughput.
For detection of SSD geometry, we disable read cache or
write buffer to precisely assess how FTL adopted in vari-
ous SSDs operates over underlying NAND flash memory
for read/write requests. Table 1 summarizes SSDs evalu-
ated in our experiments. Since MLC SSD is unstable in
write performance, we focus on SLC SSD to present our
experimental results.

Table 1. Devices under tests.

Brand Model Type Size
Transcend TS16GSSD25S-S SLC 16 GB
Transcend TS32GSSD25S-M MLC 32 GB
SAMSUNG MCBQE32G5MPP-0VA SLC 32 GB
Mtron MSP-SATA7525-032 SLC 32 GB
Intel SSDSA2MH080G1GC MLC 80 GB
OCZ OCZSSD2-1C64G MLC 64 GB
OCZ OCZSSD2-1VTX60G MLC 60 GB

4.2 Detecting Effective Page Size

4.2.1 Detection Method

When a write request is not aligned with the effective page
size, one or two read-modify-write operations might be re-
quired depending on amount of the request data. The ex-
periment is conducted by issuing two update requests with
adjacent starting addresses to the target SSD iteratively. For

x

x

x

x

1 KB

1 KB

Figure 4. Effective Page Size Detector.

each iteration, amount of the updated data is incremented by
1KB. Once the difference between the response time of re-
quests exceeds a threshold, the effective page size can thus
be detected.

As shown in Fig. 4, two possible cases might be en-
countered as amount of the updated data increased. When
amount of the updated data x is smaller than the effective
page size of the target SSD, as shown in Case 1, the starting
address of update requests either from 0KB or 1KB would
have no impact on response time since both of them would
require one read-modify-write operation. When amount of
the updated data x is equal to the effective page size of the
target SSD, as shown in Case 2, the request with its starting
address from 0KB requires only one write operation. How-
ever, the request with the starting address from 1KB would
incur two read-modify-write operations, which is time con-
suming compared with only one write operation. Thus the
effective page size can be detected by comparing response
times of two requests with adjacent starting addresses. Note
that we must disable write buffer to have a precise measure-
ment.

4.2.2 Detection Results

Fig. 7(a) and 7(b) shows the experimental result of ef-
fective page size detection for Transcend TS16GSSD25S-
S and Samsung MCBQE32G5MPP-0VA. As shown in
the figure, there is an obvious distinguishability on re-
sponse time of update requests with starting address from
0KB and 1KB when amount of written data is 4KB
for Transcend TS16GSSD25S-S and 16KB for Samsung
MCBQE32G5MPP-0VA, respectively. We also conduct an
experiment for read requests. As shown in Fig. 7(c), since
read-modify-write has no impact on read, there is no sig-
nificant difference on read response times whether we align
the request with the starting address of an effective page or
not. However, for those target SSDs that cannot have write
buffer disabled, we must explore the effective page size
from read operations. As shown in Fig. 7(d), a read request
aligned with the starting address of an effective page would
have a shorter response time for Mtron MSP-SATA7525-
032 when data amount of the request is fixed to 8KB. It



64 MB

x KB x KB x KB

Effective Block

x

x

Need valid pages copy when performing garbage collection

Step 1

x KB x KB x KB

Effective Block

FTL can performing switch merge

Step 2 Step 3

Figure 5. Effective Block Size Detector.

is because such a read request would incur an additional
read operation if the request is not aligned with the effec-
tive page.

4.3 Detecting Effective Block Size and
Mapping Groups

Notably, even though effective blocks and mapping
groups are two different things, we use these terms inter-
changeably here because their difference is insignificant in
terms of geometry detection.

4.3.1 Detection Method

For a block-level mapping FTL, overhead of live data copy-
ing is inevitable for a partial merge or a full merge [4]. How-
ever, when all the data in a data block are sequentially up-
dated, a low-cost switch merge can be performed instead.
The experiment is conducted by issuing update requests to
the target SSD iteratively. For each iteration, amount of the
sequentially updated data is doubled. Once a switch merge
is triggered by an update request, the effective block size
can thus be detected.

As shown in Fig. 5, two possible cases might be encoun-
tered as amount of the sequentially updated data increased.
When amount of the sequentially updated data x is smaller
than the effective block size of the target SSD, as shown in
Case 1, a partial merge is required to reclaim free space.
Since a partial merge incurs live data copying, the effec-
tive throughput drops. When amount of the sequentially
updated data x is equal to the effective block size of the tar-
get SSD, as shown in Case 2, a switch merge can be adopted
to reclaim free space without any live data movement. Thus
the best effective throughput can be achieved.

To ensure that each request is mapped to a different logi-
cal block, we separate each subsequent request with enough
space, e.g., 64MB in our experiment. As a result, log blocks
are consumed quickly and a garage collection would be trig-
gered frequently to reclaim free space for a one-to-one map-

ping scheme. For a many-to-one mapping scheme, merge
operation would be more complex and cost of live data
copying for a garbage collection can thus be observed eas-
ily.

4.3.2 Detection Results

Fig. 7(e)-7(g) shows the experimental result of effective
block size detection. As shown in the figure, there is an
obvious distinguishability on throughput improvement un-
der different request sizes. The throughput improves dra-
matically as the request size increased. The throughput
improvement achieves the best performance and becomes
steady when the request size exceeds a certain amount of
data due to efficiency of switch merge. Therefore, we
could conclude that the effective block sizes of Transcend
TS16GSSD25S-S, Samsung MCBQE32G5MPP-0VA, and
Mtron MSP-SATA7525-032 are 1MB, 4MB, and 4MB, re-
spectively.

4.4 Detecting Mapping Zones

4.4.1 Detection Method

The experiment is conducted by issuing two read requests
A and B iteratively. For each iteration, the starting address
of the read request A is fixed, while the starting address of
the read request B is increased by 1MB. Once the requests
access different zones, mapping table thrashing would be
incurred. Therefore, the response time of the read request B
would be longer afterward.

As shown in Fig. 6, two possible cases might be encoun-
tered as the starting address of the read request B increased.
When the distance between starting addresses of two read
requests is smaller than the zone size, as shown in Case 1,
read requests A and B would access the same zone. Thus
no mapping table reloading is required. When the distance
between starting addresses of two read requests is larger
than the zone size, as shown in Case 2, read requests A
and B must access different zones. As a result, mapping ta-
ble reloading is required. In our experiment, we repeatedly
issue read requests A and B to trigger mapping table thrash-
ing, from which the overhead of mapping table reloading
would be more obvious.

4.4.2 Detection Results

As shown in Fig. 7(h), when the distance between read re-
quest A and read request B is shorter than 422MB, the re-
sponse time of reading 512 Bytes data from address B is
obviously better. When the distance between read request
A and read request B exceeds 422MB, the response time of
reading 512 Bytes data from address B is increased with a
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steady amount due to the overhead of mapping table load-
ing. Therefore, we can conclude the zone size of Transcend
TS16GSSD25S-S is 422MB.

5 Conclusion

The management of flash memory in solid-state disks
imposes non-uniform response times on random sector ac-
cesses. Being aware of the geometry information inside of
solid-state disks can help the host system software to change
data placement for matching the host write pattern and the
storage device characteristics. This work demonstrates a
collection of black-box tests that successfully detects the
geometry of flash storage devices. We believe that these
techniques are beneficial to not only enhancing existing sys-
tem software but also designing new file systems.
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Figure 7. Experimental Results.
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快閃記憶體目前發展看好，除了當做外部儲存的媒體之外，未來會逐

漸對系統軟體以及程式語言的層面發生影響。因此，雖然 LCTES 主

軸是嵌入式系統的程式語言支援與技巧，但快閃記憶體相關的議題仍

然引起與會學者的莫大興趣，而我亦透過現場的問答得到了許多寶貴

的觀點與意見。    

過程過程過程過程：：：：    

本次會議，我在 LCTES 報告了一篇論文，而時程上相關的研究

在同屬 CPS Week 的 RTAS 剛好有錯開，所以我就同時參與了兩個會

議，並且進行了一些意見交流。 

我這次報告的論文題目，是討論如何設計一個簡單、有效、而又

能自我調適的平均磨損演算法。目前業界使用的平均磨損演算法，大

多基於靜態平均磨損，其效果不佳。但既有成果之中，效果好的演算

法其實作複雜度又頗高，所以這篇研究切入了這個議題，設計出效果

又好，實作又簡單的平均磨損方法。而這研究成果亦多加探討關於平

均磨損的積極程度，應該要根據寫入儲存裝置的樣式來作自我調整。

故這篇論文也探討了這樣的調整應該怎麼做，以及調整的結果如何。 

與會學者大多對於該方法的簡單與自我適應能力表示贊同，亦提

出了關於多通道架構下的平均磨損該如何處理的問題。也就是說，先

進的快閃儲存裝置都會使用多個記憶體通道來平行操作，藉以提升資



料讀寫的速度。而通道架構亦會引起新層面的平均磨損問題，也就是

不同通道內的快閃記憶體其磨損頻率將不同。針對這個寶貴意見，我

回國後也開發了一些對策，目前已經將該新方法加入會議論文版本，

並已經投稿到期刊了。 

除了 LCTES 會議內的互動，我也參加了 RTAS 的議程。其中有

來自於香港的一些學者，發表關於快閃轉換層中轉址表如何做快取的

技術。轉址表需要作快取，主要是因為高解析度位址轉換下（有如作

業系統分頁機制下，使用極小的頁），轉址表會變得太大，而必須只

能一部分放在快閃儲存控制器內的隨機存取記憶體中。而會後跟幾位

研究記憶體相關的學者進行了很多交流，而我在今年六月的 DAC 與

十月的 EMSOFT 也再次遇到他們，因此算是建立了一些良好的關係。 

 

二、 與會心得 

 

在會議過程中，與不少國內外學者交換了意見。我個人感覺，快

閃儲存裝置內部的快閃轉換層，已經從過去五年韓國學者主導的混合

式轉址法又回到頁級轉址法，這是因為先進的固態硬碟控制器設計

商，如 Marvell 或 SandForce 等等，開始『捨得』使用硬體規格比

較足夠的控制器，故頁級轉址法這兩年又重新獲得重視。此外，過去

快閃儲存裝置內部多通道管理方面，大多是沒有特別的策略，也就是



將所有通道綁在一起來同步使用。這次與會之後，深深感受到這邊將

是一個火熱的研究題目，值得進入好好探討。 

此外，就相關研究領域的發展，目前我個人觀察到除了台灣與韓

國的學者之外，目前有一批原本作即時系統或者記憶體系統的香港學

者亦開始研究快閃記憶體的議題，而且他們最近在頂級的會議與期刊

也有許多斬獲，而美國西岸一些大學以及微軟的研究中心也持續地發

表成果。個人覺得，與會過程中接收到這類的資訊，對於將來研究題

目的規劃也是有些戰略性的價值。 

 

三、 攜回資料 

本次會議攜回 LCTES 論文紙本一本，以及 CPSWeek 論文集光碟

一片。 
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Abstract
Multilevel flash memory cells double or even triple storage den-
sity, producing affordable solid-state disks for end users. However,
flash lifetime is becoming a critical issue in the popularity of solid-
state disks. Wear-leveling methods can prevent flash-storage de-
vices from prematurely retiring any portions of flash memory. The
two practical challenges of wear-leveling design are implementa-
tion cost and tuning complexity. This study proposes a new wear-
leveling design that features both simplicity and adaptiveness. This
design requires no new data structures, but utilizes the intelligence
available in sector-translating algorithms. Using an on-line tuning
method, this design adaptively tunes itself to reach good balance
between wear evenness and overhead. A series of trace-driven sim-
ulations show that the proposed design outperforms a competitive
existing design in terms of wear evenness and overhead reduction.
This study also presents a prototype that proves the feasibility of
this wear-leveling design in real solid-state disks.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Garbage collection; B.3.2 [ Memory Structures]: Mass Storage

General Terms Design, Performance, Algorithm.

Keywords Flash memory, wear leveling, solid-state disks.

1. Introduction
Solid-state disks are storage devices that employ solid-state mem-
ory like flash as the storage medium. The physical characteris-
tics of flash memory differ from those of mechanical hard drives,
necessitating different methods for memory accessing. Solid-state
disks hide flash memory from host systems by emulating a typi-
cal disk geometry, allowing systems to switch from a hard drive to
a solid-state disk without modifying existing software and hard-
ware. Solid-state disks are superior to traditional hard drives in
terms of shock resistance, energy conservation, random-access per-
formance, and heat dissipation, attracting vendors to deploy such
storage devices in laptops, smart phones, and portable media play-
ers.

∗ This work is in part supported by research grant NSC-98-2220-E-009-048
from National Science Council, Taiwan, ROC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’11, April 11–14, 2011, Chicago, Illinois, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0555-6/11/04. . . $10.00

Flash memory is a kind of erase-before-write memory. Because
any one part of flash memory can only withstand a limited number
of erase-write cycles, approximately 100K cycles under the current
technology [17], frequent erase operations can prematurely retire a
region in flash memory. This limitation affects the lifetime of solid-
state disks in applications such as laptops and desktop PCs, which
write disks at very high frequencies. Even worse, recent advances in
flash manufacturing technologies exaggerate this lifetime issue. In
an attempt to break the entry-cost barrier, modern flash devices now
use multilevel cells for double or even triple density. Compared to
standard single-level-cell flash, multilevel-cell flash degrades the
erase endurance by one or two orders of magnitude [18].

Localities of data access inevitably degrade wear evenness in
flash. Partially wearing out a piece of flash memory not only de-
creases its total effective capacity, but also increases the frequency
of its housekeeping activities, which further speeds up the wearing
out of the rest of the memory. A solid-state drive ceases to func-
tion when the amount of its worn-out space in flash exceeds what
the drive can manage. The wear-leveling technique ensures that the
entire flash wears evenly, postponing the first appearance of a worn-
out memory region. However, wear leveling is not free, as it moves
data around in flash to prevent solid-state disks from excessively
wearing any one part of the memory. These extra data movements
contributes to overall wear.

Wear-leveling algorithms include rules defining when data
movement is necessary and where the data to move to/from. These
rules monitor wear in the entire flash, and intervene when the flash
wear develops unbalanced. Solid-state disks implement wear lev-
eling at the firmware level, subjecting wear-leveling algorithms to
crucial resource constraints. Prior research explores various wear-
leveling designs under such tight resource budgets, revealing three
major design challenges: First, monitoring the entire flash’s wear
requires considerable time and space overheads, which most con-
trollers in present solid-state disks cannot afford. Second, algo-
rithm tuning for environment adaption and performance definition
requires prior knowledge of flash access patterns, on-line human
intervention, or both. Third, high implementation complexity dis-
courages firmware programmers from adopting sophisticated wear-
leveling algorithms.

Standard solid-state-disk microcontrollers (controllers in the
rest of this paper) cannot afford the RAM space overhead required
to store the entire flash’s wear information in RAM. Chang et al.
[2] proposed caching only portions of wear information. However,
periodic synching between the wear information in RAM and in
flash introduces extra write traffic to flash. Jung et al. [9] proposed
a low-resolution wear information method based on the average
wear of large memory regions. Nevertheless, this approach suffers
from distortion whenever flash wearing is severely biased. Chang et
al. [5] introduced bit-indicated recent wear history. However, recent



wear history blinds wear leveling because recency and frequency
are independent in terms of flash wear.

Almost all wear-leveling designs subject wear evenness to tun-
able threshold parameters [2, 5, 9]. The system environment in
which wear leveling takes place includes many conditions, such as
sector-translating algorithms, flash geometry, and host disk work-
loads. Even though the wear-leveling threshold remains unchanged,
the results of using a wear-leveling algorithm under various sys-
tem environments can be very different. Using inadequately tuned
parameters can cause unexpectedly high wear-leveling overhead
or unsatisfactory wear evenness. Existing approaches require hu-
man intervention or prior knowledge of the system environment
for threshold tuning.

From a firmware point of view, implementation complexity pri-
marily involves the applicability of wear-leveling algorithms. The
dual-pool algorithm [2] uses five priority queues of wear infor-
mation and a caching method to reduce the RAM footprints of
these queues. The group-based algorithm [9] and the static wear-
leveling algorithm [5] add extra data structures to maintain coarse-
grained wear information and the recent history of flash wear, re-
spectively. These approaches ignore the information already avail-
able in sector-translating algorithms, which are firmware modules
accompanying wear leveling, and unnecessarily increase their de-
sign complexity.

This study presents a new wear-leveling design, called the lazy
wear-leveling algorithm, to tackle the three design challenges men-
tioned above. First, this design does not store wear information in
RAM, but leaves all of this information in flash instead. Second,
even though this algorithm uses a threshold parameter, it adopts an
analytical model to estimate its overhead with respect to different
threshold settings, and then automatically selects a good thresh-
old for good balance between wear evenness and overhead. Third,
the proposed algorithm utilizes the address-mapping information
available in the sector-translating algorithms, eliminating the need
to add extra data structures for wear leveling.

The rest of this paper is organized as follows: Section 2 reviews
flash characteristics and the existing algorithms for sector trans-
lating and wear leveling. Section 3 presents the proposed wear-
leveling algorithm, and Section 4 describes an adaptive tuning strat-
egy for this algorithm. Section 5 reports the results of trace-driven
simulations, and Section 6 presents an implementation of the pro-
posed algorithm based on a real solid-state disk. Section 7 con-
cludes this paper.

2. Problem Formulation
2.1 Flash-Memory Characteristics
Solid-state disks use NAND-type flash memory (flash memory for
short) as a storage medium. A piece of flash memory is a physical
array of blocks, and each block contains the same number of pages.
In a typical flash geometry, a flash page is 2048 plus 64 bytes. The
2048-byte portion stores user data, while the 64 bytes is a spare
area for storing housekeeping data. Flash memory reads and writes
in terms of pages, and it must erase a page before overwriting
this page. Flash erases in terms of blocks, which consist of 64
pages. Under the current technology, a flash block can sustain a
limited number of write-erase cycles before it becomes unreliable.
This cycle limit depends on the type of the flash manufacturing
technology: a single-level-cell flash block endures 100K cycles
[17], while this limit is 10K or less in multilevel-cell flash [18].
The rest of this paper uses terms “flash blocks”, “physical blocks”,
or simply “blocks” interchangeably.

Solid-state disks emulate disk geometry using a firmware layer
called the flash translation layer (i.e., FTL). FTLs update existing
data out of place and invalidate old copies of the data to avoid

Figure 1. The set-associative mapping scheme whose group size is
two. Each data-block group is associated with up to one log-block
group.

erasing a flash block every time before rewriting a piece of data.
Thus, FTLs require a mapping scheme to translate logical disk-
sector numbers into physical locations in flash. Updating data out
of place consumes free space in flash, and FTLs must recycle mem-
ory space occupied by invalid data with erase operations. Before
erasing a block, FTLs copy all valid data from this block to other
free space. This series of copy and erase operations for reclaiming
free space is called garbage collection. Reducing data-copy over-
head during garbage collection is a priority in FTL designs.

2.2 Flash Translation Layers
FTLs are part of the firmware in solid-state disks. They use RAM-
resident index structures to translate logical sector numbers into
physical flash locations. Mapping resolutions have direct impact
on RAM-space requirements and write performance. Block-level
mapping [21], adopted in many entry-level flash-storage devices
like USB thumb drives, requires only small mapping structures.
However, low-resolution mapping suffers from slow response when
servicing non-sequential write patterns. Sector-level mapping [3, 6,
7] better handles random write requests, but requires large mapping
structures, making its implementation infeasible in high-capacity
solid-state disks.

Hybrid mapping combines both sector and block mapping for
good balance between RAM-space requirements and write perfor-
mance. This method groups consecutive logical sectors as logical
blocks as large as physical blocks. It maps logical blocks to phys-
ical blocks on a one-to-one basis using a block mapping table. If
a physical block is mapped to a logical block, then this physical
block is called the data block of this logical block. Any unmapped
physical blocks are spare blocks. Hybrid mapping uses spare blocks
as log blocks to serve new write requests, and uses a sector map-
ping table to redirect read requests to the newest versions of data in
spare blocks.

Hybrid mapping requires two policies: the first policy forms
groups of data blocks and groups of log blocks, and the second
policy associates these two kinds of groups with each other. Figures
1 and 2 show two FTL designs that use different policies. Let
lbn and pbn stand for a logical-block number and a physical-
block number, respectively. The term lsn represents a logical-
sector number, and disp is the page offset in a physical block.
The bold boxes stand for physical blocks, each of which has four
pages. The number in the pages indicate the lsns of their storage
data. White pages, shadowed pages, and pages with diagonal lines
represent pages containing valid data, invalid data, and free space,
respectively. The BMT and the SMT are the block mapping table
and the sector mapping table, respectively.



Figure 2. The fully-associative mapping scheme. All data blocks
are in one group and all log blocks are in the other.

Let the group size denote the number of blocks in a group. In
Fig. 1, the group size of data blocks is exactly two, while the group
size of log blocks is no larger than two. This mapping scheme,
called set-associative mapping, associates a data-block group with
one log-block group or none. This design has two important vari-
ants: set-associative sector translation (SAST), developed by Park
et al. [15], and block-associative sector translation (BAST), de-
veloped by Chung et al. [22]. SAST uses two variables, N and
K, to set the group sizes of data blocks and log blocks, respec-
tively. BAST (Block-Associative Sector Translation) [22] is sim-
pler, fixing N=1 and K=1 always. Figure 2 depicts another map-
ping scheme, called fully-associative mapping. This method has
only two groups associated with each other, one for all data blocks
and the other for all log blocks. Fully-associative sector translation
(FAST), developed by Lee et al. [12], is based on this design.

2.3 The Need for Wear Leveling
FTLs write new data in log blocks allocated from spare blocks.
When they run low on spare blocks, FTLs start erasing log blocks.
Before erasing a log block, FTLs collect the valid data from the
log block and from the data block associated with this log block,
copy this valid data to a blank block, remove the sector-mapping
information related to the log block, re-direct block-mapping in-
formation to the copy destination block, and finally erase the old
data block and log block into spare blocks. This procedure is called
either merging operations or garbage collection.

For example, in Fig. 1, the FTL decides to erase the group
consisting of log blocks at pbns 3 and 6. This log-block group is
associated with the group of data blocks at pbns 0 and 2. The FTL
prepares a group of two blank blocks at pbns at 7 and 8. Next, the
FTL collects four valid sectors at lsns 0 through 3, and writes them
to the blank block at pbn 7. Similarly, the FTL copies valid sectors
at lsns 4 through 7 to the blank block at pbn 8. Finally, the FTL
erases the physical blocks at pbns 0, 2, 3, and 6 into spare blocks,
and then re-maps lbns 0 and 1 to physical blocks at pbns 7 and 8,
respectively.

Log-block-based FTLs exhibit some common behaviors in the
garbage-collection process regardless of their grouping and associ-
ating policies. FTLs never erase a data block if none of its sector
data have been updated. In the set-associative mapping illustration
in Fig. 1, erasing the data blocks at pbn 5 does not reclaim any
free space. Similarly, in the fully-associative mapping illustration
in Fig. 2, erasing any of the log blocks does not involve the data
block at pbn 5. This is a potential cause of uneven flash wear.

Figure 3(a) shows a fragment of the disk-write traces recorded
from a laptop PC’s daily use1. The X-axis and the Y-axis of this

1 This workload is the NOTEBOOK workload in Section 5.1.

Figure 3. Flash wear in a solid-state disk under the disk workload
of a laptop. (a) A fragment of the disk-write workload and (b) the
final distribution of flash blocks’ erase counts.

figure represent the logical time and the lsns of write requests, re-
spectively. This pattern biases write requests toward a small collec-
tion of disk sectors. Let a physical block’s erase count denote how
many write-erase cycles this block has undergone. After replay-
ing the trace set on a real solid-state disk which adopts an FAST-
based FTL (Section 6.1 describes this product in more detail), Fig.
3(b) shows that the final distribution of erase counts is severely un-
balanced. The X-axis and Y-axis of Fig. 3(b) represent the pbns
and erase counts of physical blocks, respectively. Nearly 60% of
all physical blocks have zero erase counts, as the horizontal line at
the bottom of Fig. 3(b) shows. In other words, this workload retires
only 40% of all blocks, while the rest remain fresh. Evenly dis-
tributing erase operations can double the flash lifespan compared
to that without wear leveling.

2.4 Prior Wear-Leveling Strategies
This section provides a conceptual overview of existing wear-
leveling designs. Static wear leveling moves static/immutable data
away from lesser worn flash blocks, encouraging FTLs to start eras-
ing these blocks. Flash vendors including Numonyx [14], Micron
[13], and Spansion [20] suggest using static wear leveling for flash
lifetime enhancement. Chang et al. [5] described a static wear lev-
eling design, and later Chang et al. [2] showed that this design is
competitive with existing approaches. However, the experiments in
this study reveal that static wear leveling suffers from uneven flash
wear on the long-term.

Hot-cold swapping exchanges data in a lesser worn block with
data from a badly worn block. Jung et al. [9] presented a hot-cold
swapping design. However, Chang et al. [2] showed that hot-cold
swapping risks erasing the most worn flash block pathologically.
Cold-data migration relocates immutable data to excessively worn
blocks and then isolates these worn blocks from wear leveling until
they are no longer worn blocks compared to other blocks. Chang
et al. [2] described a design of this idea. This design adopts five
priority queues to sort blocks in terms of their wear information
and a cache mechanism to store only frequently accessed wear lev-
eling. However, synching the wear information between the cache
and flash introduces extra write traffic to flash, and its higher im-
plementation complexity may be a concern of firmware designers.

Unlike the wear-leveling designs above that treat wear leveling
and garbage collection as independent activities, Chiang et al. [6]
and Kim et al. [11] proposed heuristic functions that score flash
blocks with considering garbage collection and wear leveling. In
this case, FTLs erase the most scored block. However, erasing a
block can require re-scoring all flash blocks. This task excessively
stress the controllers and delay ordinary read/write requests.

There are compromises between algorithm concept and im-
plementation, because the controllers can offer very limited re-
sources. Even though different wear-leveling designs are based on
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Figure 4. Physical blocks and their erase recency and erase counts.
An upward arrow indicates that a block has recently increased its
erase count.

the same concept, they could have very different resource demands
and performance characteristics. For example, among the differ-
ent designs of static wear leveling, Chang et al. [5] proposed us-
ing a periodically-refreshed bitmap to indicate not recently erased
blocks. Differently, the designs from Numonyx [14] and Chang and
Kuo [4] store blocks’ erase counts in RAM, and involve the block
of the smallest erase count in wear leveling.

Lazy wear leveling (the proposed approach) roots in cold-data
migration. However, different from the dual-pool algorithm [2],
which is also based on cold-data migration, lazy wear leveling
adopts the following innovative designs. First, lazy wear leveling
does not store blocks’ wear information in RAM. It leaves them
in flash instead, and utilizes the mapping information available in
FTLs to assist wear leveling. In contrast, the dual-pool algorithm
requires RAM space to store blocks’ wear information and monitor
them constantly. Caching the frequently referenced wear informa-
tion helps to reduce the RAM requirements, but synching wear in-
formation between the cache and RAM can add up to 10% of extra
write traffic to flash [2]. The second new idea in lazy wear level-
ing is the ability of self tuning. Wear-leveling algorithms subject
wear evenness to a threshold parameter. However, the overhead of
wear leveling grows at different rates under different system envi-
ronments when changing the threshold value. Lazy wear leveling
characterizes the overhead as a function of the threshold values,
and adaptively tunes the threshold for good balance between the
overhead and wear evenness.

3. A Low-Cost Wear-Leveling Algorithm for
Block-Mapping FTLs

3.1 Observations
Let the update recency of a logical block denote the time length
since the latest update to this logical block. If a logical block’s
last update is more recent than the average update recency, then
this logical block’s update recency is high. Otherwise, its update
recency is low. Analogously, let the erase recency of a physical
block be the time length since the latest erase operation on this
block. Thus, immediately after garbage collection erases a physical
block, this block has the highest erase recency among all blocks.
A physical block is an elder block if its erase count is larger than
the average erase count. Otherwise, it is a junior block. Notice that
block seniority is a relative measure. For example, even though all
blocks in a brand-new flash have small erase counts, there will be
some elder blocks and junior blocks.

FTLs avoids erasing flash blocks mapped to unmodified logical
blocks, because erasing these flash blocks reclaims no free space.
Thus, the temporal localities of writing disk sectors can translate
into temporal localities of erasing physical blocks. If a flash block

has a high erase recency, then this block was not mapped to a static
logical block. This flash block will then be mapped to a recently
modified logical block. Because of temporal localities of writing
disk sectors, recently modified logical blocks will be frequently
modified. Therefore, the flash block will be mapped to mutable
logical blocks and frequently increases its erase count. Conversely,
a physical block loses momentum in increasing its erase count if its
erase recency is low.

Figure 4 provides an example of eight physical blocks’ erase re-
cency and erase counts. Upward arrows mark physical blocks cur-
rently increasing their erase counts, while an equal sign indicates
otherwise. Block a is an elder block with a high erase recency,
while block d is an elder but has a low erase recency. The junior
block h has a high erase recency, while the erase recency of the
junior block e is low.

A block should keep its erase count close to the average. For
instance, the junior blocks g and h are increasing their erase counts
toward the average, while the difference between the average and
the erase counts of the elder blocks c and d is decreasing. However,
other than the above two cases, block wear can require intervention
from wear leveling. First, the junior blocks e and f have not recently
increased their erase counts. As their erase counts fall below the av-
erage, wear leveling has them start participating in garbage collec-
tion. Second, the elder blocks a and b are still increasing their erase
counts. Wear leveling should have garbage collection stop further
wear in these two elder blocks.

3.2 The Lazy Wear-Leveling Algorithm
This study proposes a new wear-leveling algorithm based on a sim-
ple principle: whenever any elder blocks’ erase recency becomes
high, the algorithm re-locates (i.e., re-maps) logical blocks with a
low update recency to these elder blocks. This algorithm, called the
lazy wear-leveling algorithm, is named after its passive reaction to
unbalanced flash wear.

Lazy wear leveling focuses on the wear of elder blocks only,
because elder blocks retire before junior blocks. Thus, being aware
of recent wear of elder blocks is important. Physical blocks boost
their erase recency only when the FTL erases them for garbage col-
lection. Thus, if the FTL notifies lazy wear leveling of its decision
on the next victim block, lazy wear leveling can check this victim
block’s seniority. This way, lazy wear leveling needs not repeatedly
check all elder blocks’ wear information.

How to prevent elder blocks from further aging is closely related
to garbage-collection behaviors: Garbage collection has no interest
in erasing a data block if this data block is not associated with any
log blocks. A data block does not require any log blocks for storing
new updates if the logical block mapped to this data block has a low
update recency. Because recent sector updates to a logical block
leaves mapping information in the FTL’s sector-mapping table,
lazy wear leveling selects logical blocks not related to any sector-
mapping information as logical blocks with a low update recency.
The logical block at lbn 3 in Fig. 1 and 2 is such an example.

Re-mapping logical blocks with a low update recency to elder
blocks can prevent elder blocks from wearing further. To re-map
a logical block from one physical block to another, lazy wear lev-
eling moves all valid data from the source physical block to the
destination physical block. This invalidates all data in the source
block and directs the upcoming garbage-collection activities to the
source block. Junior blocks are the most common kind of source
blocks, e.g., blocks e and f in Fig. 4, because the storage of im-
mutable data keeps them away from garbage collection. Therefore,
selecting logical blocks for re-mapping is related to the wear of
junior blocks. To give junior blocks an even chance of wear, it is
important to uniformly visit every logical block when selecting a
logical block for re-mapping.



Algorithm 1 The lazy wear-leveling algorithm
Input: v: the victim block for garbage collection
Output: p: a substitute for the original victim block v
1: ev←eraseCount(v)
2: if (ev − eavg) > ∆ then
3: repeat
4: l← lbnNext()
5: until lbnHasSectorMapping(l)=FALSE
6: erase(v);
7: p← pbn(l)
8: copy(v, p); map(v, l)
9: ev ← ev + 1

10: eavg ← updateAverage(eavg , ev)
11: else
12: p← v
13: end if
14: RETURN p

The temporal localities of write requests can change occasion-
ally. Disk workloads can start updating a logical block which pre-
viously had a low update recency. If this logical block was re-
cently re-mapped to an elder block for wear leveling, then the new
updates neutralize the prior re-mapping operation. However, lazy
wear leveling will perform another re-mapping operation for this
elder block when the FTL is about to erase this elder block again.

3.3 Interaction with FTLs
This section describes how lazy wear leveling interacts with its

accompanying firmware module, the flash translation layer. Lazy
wear leveling and the FTL operate independently, but the FTL pro-
vides some information to assist wear leveling. Algorithm 1 shows
the pseudo code of the lazy wear-leveling algorithm. The FTL in-
vokes this procedure every time it erases a victim block for garbage
collection. This procedure determines if wear leveling needs inter-
vene in the erasure of the victim block. If so, this procedure looks
for a logical block that has not been updated recently, re-maps this
logical block to the victim block, and then selects the physical block
previously mapped to this logical block as a substitution for the
original victim block. Notice that the FTL needs not consider wear
leveling when selecting victim blocks. In other words, lazy wear
leveling is independent of the FTL’s victim-selection policy.

In Algorithm 1, the FTL provides the subroutines with leading
underscores, and wear leveling implements the rest. The algorithm
input is v, the victim block’s physical block number. Step 1 obtains
the erase count ev of the victim block v using eraseCount(). Step
2 compares ev against the average erase count eavg . If ev is larger
than eavg by a predefined threshold ∆, then Steps 3 through 10
will carry out a re-mapping operation. Otherwise, Steps 12 and 14
return the original victim block to the FTL intact.

Steps 3 through 5 find a logical block with a low update re-
cency. Step 4 uses the subroutine lbnNext() to obtain l the next
logical block number to visit, and Step 5 calls the subroutine
lbnHasSectorMapping() to check if the logical block l has

any related mapping information in the FTL’s sector-mapping ta-
ble. These steps cycle through all logical blocks until they find a
logical block not related to any sector-mapping information. As
mentioned previously, to give all junior blocks (which are related
to logical blocks with a low update recency) an equal chance to
get erased, the subroutine lbnNext() must evenly visit all logical
blocks. The implementation of lbnNext() can be any permuta-
tions of all logical block numbers, such as the Linear Congruential
Generator [16]. Using permutations also maximizes the interval
between two consecutive visits to the same logical blocks, reduc-
ing the probability of re-mapping a logical block with a low update
recency from an elder block to another.

1 B
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Figure 5. A scenario of running the lazy wear-leveling algorithm.
Crosses indicate write requests to logical blocks.

Steps 6 through 8 re-map the previously found logical block l.
Step 6 erases the original victim block v. Step 7 uses the subroutine
pbn() to identify the physical block p that the logical block l

currently maps to. Step 8 copies the data of the logical block l from
the physical block p to the original victim block v, and then re-maps
the logical block l to the former victim block v using the subroutine
map(). After this re-mapping, Step 9 increases ev since the former

victim block v has been erased, and Step 10 updates the average
erase count. Step 14 returns the physical block p, which the logical
block l previously mapped to, to the FTL as a substitute for the
original victim block v.

3.4 Algorithm Demonstration
Figure 5 shows a four-step scenario of using the lazy wear-leveling
algorithm. In each step, the left-hand side depicts the physical
blocks and their erase counts, and the right-hand side shows the
logical blocks and their updates marked with bold crosses. This
example shows only the mapping of logical blocks with a low
update recency to elder physical blocks.

Step 1 shows the initial condition. Let the erase counts of the
elder physical blocks B, F , G, and H be greater than the average
by ∆. Step 2 shows that lazy wear leveling re-maps logical blocks
of a low update recency f , b, d, and e to elder physical blocks B,
F , G, and H , respectively. As garbage collection avoids erasing
physical block with no invalid data, Step 3 shows that physical
blocks other than B, F , G, and H increase their erase counts, after
processing a new batch of write requests. In this case, the wear of
all blocks is becoming even.

In Step 3, the write pattern generates several updates to the
logical block b. However, previously in Steps 1 and 2, this logical
block had a low update recency, and wear leveling already re-
mapped it to the elder physical block F . As previously mentioned
in Section 3.2, these new updates to the logical block b will cause
further wear of the elder physical block F , making the prior re-
mapping operation of the logical block b ineffective in terms of
wear leveling. Step 4 shows that lazy wear leveling re-maps another
logical block g with a low update recency to the elder physical
block F as soon as it learns that the FTL is about to erase the elder
physical block F .

4. Adaptive Self Tuning
Tuning the threshold parameter ∆ helps lazy wear leveling to
achieve good balance between overhead and wear evenness. This
tuning strategy consists of two parts: Section 4.1 presents an ana-
lytical model of the overhead and wear evenness of wear leveling.
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Figure 6. Erase counts of flash blocks right before the lazy wear-
leveling algorithm performs (a) the first re-mapping operation and
(b) the nbh+1-th re-mapping operation.

Section 4.2 introduces an on-line algorithm that adjusts ∆ based on
the analytical model.

4.1 Performance Analysis: Overhead and Wear Evenness
Consider a piece of flash memory consisting of nb physical blocks.
Let immutable logical blocks map to nbc among all physical
blocks. Let the sizes of write requests be multiples of the block size.
Let write requests be aligned to block boundaries. Suppose that the
disk workload uniformly writes the mutable logical blocks. Thus,
the FTL evenly increases the erase counts of the nbh=nb − nbc

physical blocks.
Let the function f(x) denote how many blocks garbage collec-

tion erases to process a workload writing x logical blocks. Consider
the case x = i×nbh ×∆, where i is a non-negative integer. As all
request sizes are multiples of the block size and requests are block-
aligned, erasing victim blocks does not cost garbage collection any
overhead in copying data. Thus, without wear leveling, we have

f(x) = x.

Now, consider wear leveling enabled. For ease of presentation,
this simulation revises the lazy wear leveling algorithm slightly:
instead of comparing the victim block’s erase count to the aver-
age erase count, the algorithm compares it against the smallest
among all blocks’ erase counts. Figure 6(a) shows that, right before
lazy wear leveling performs the first re-mapping, garbage collection
has uniformly accumulated nbh × ∆ erase counts in nbh physical
blocks. In the subsequent nbh erase operations, garbage collection
erases each of these nbh physical blocks one more time, and in-
creases their erase counts to ∆+ 1. Thus, lazy wear leveling con-
ducts nbh re-mapping operations for these physical blocks at the
cost of erasing nbh blocks. These re-mapping operations re-direct
garbage-collection activities to another nbh physical blocks. Simi-
larly, Fig. 6(b) shows that, after garbage collection accumulates an-
other nbh ×∆ erase counts in these new nbh physical blocks, lazy
wear leveling again spends nbh erase operations for re-mapping
operations. Let function f ′(x) be analogous to f(x), but with wear
leveling enabled. We have

f ′(x) = x+
⌊ x

∆

⌋
= x+ i× nbh.

Under real-life workloads, the frequencies of erasing these nbh

blocks may not be uniform. Thus, f ′(x) adopts a coefficient K
to take this into account:

f ′(x) = x+ i× nbh ×K.

The coefficient K depends on various system conditions, such as
flash geometry, host workloads, and FTL algorithms. For exam-
ple, dynamic changes in temporal write localities can increase K
because the write pattern might start updating the logical blocks
which wear leveling has previously used for re-mapping.

Let the overhead function g(∆) denote the overhead ratio with
respect to ∆:

g(∆) =
f ′(x)− f(x)

f(x)
=

i× nbh ×K

i× nbh ×∆
=

K

∆
.

Because lazy wear leveling compares victim blocks’ erase counts
against the average erase count rather than the smallest erase count,
we use 2∆ as an approximation of the original ∆, and have the co-
efficient K include the compensation for the error in the approxi-
mation. Thus, we have

g(∆) =
K

2∆
. (1)

Notice that, when ∆ is small, a further decrease in ∆ rapidly
increases the overhead ratio. For example, decreasing ∆ from 4
to 2 doubles the overhead ratio.

Next, let us focus on the relation between ∆ and the wear even-
ness in flash. Let the metric of the wear evenness be the standard de-
viation of all blocks’ erase counts, i.e.,

√
1
nb

∑nb
i=1(ebi − eavg)2.

The smaller the standard deviation is, the more even the wear
of flash blocks is. Provided that wear leveling is successful,∑nb

i=1(ebi − eavg)
2 would be bounded by nb × ∆2. Thus, the

relation between the wear evenness and ∆ would be bounded by a
linear relation.

4.2 On-Line ∆ Tuning
As the wear evenness is linearly related to ∆, small ∆ values are
always preferred in terms of wear evenness. Differently, the relation
between the overhead and ∆ is non-linear, and decreasing ∆ value
can cause an unexpectedly large overhead increase. Thus, in spite
of limiting the total overhead, setting ∆ should consider whether
the overhead is worth the wear evenness. This section presents an
on-line algorithm that dynamically tunes ∆ for balance between
overhead and wear evenness. Because there are simple means to
limit the total overhead such as adjusting the duty cycle of wear
leveling, this study focuses on limiting the overhead growth rate
when tuning ∆.

Under dynamic disk workloads, the coefficient K in g(∆) may
vary over time. Thus, wear leveling must first determine the coef-
ficient K before using g(∆) for ∆-tuning. This study proposes a
session-based method for ∆-tuning. A session refers to a time in-
terval in which lazy wear leveling contributed a pre-defined number
of erase counts. This number is the session length. The basic idea
is to compute Kcur of the current session and use this coefficient
to find ∆next for the next session.

The first session adopts ∆=16, but in theory this initial ∆ value
can be any number because it will not affect K. Let the current
session adopts ∆cur . Figure 7 illustrates the concept of the ∆-
tuning procedure: during a runtime session, lazy wear leveling
records the erase counts contributed by the garbage collection and
wear leveling. At the end of the current session, the first step (in
Fig. 7) computes the overhead ratio f ′(x)−f(x)

f(x)
, i.e., g(∆cur), and

solves Kcur of the current session using Equation 1, i.e., Kcur =
2∆cur × g(∆cur).

The second step uses g(∆next)=Kcur/(2∆next) to find ∆next

for the next session. Basically, lazy wear leveling minimizes ∆
values subject to a user-defined limit λ on the growth rate of the
overhead ratio (when decreasing ∆). Let the unit of the overhead
ratio be one percent. For example, λ=-0.1 means that the overhead
ratio increases from x% to (x+0.1)% when decreasing ∆ from y to
(y-1). Solve d

d∆
g(∆next) = λ

100
for the smallest ∆ value subject

to λ. Rewriting this equation, we have

∆next =

√
100

−λ

√
g(∆cur)∆cur.
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Figure 7. Computing ∆next subject to the overhead growth limit
λ for the next session according to ∆cur and the overhead ratio
g(∆cur) of the current session.

For example, when λ=-0.1, if the overhead ratio g(∆cur) and ∆cur

of the current session are 2.1% and 16, respectively, then ∆next for

the next session is
√

100
0.1

√
2.1%× 16 = 18.3.

The ∆-tuning method adjusts ∆ on a session-by-session basis.
It requires the session length as the period of adjusting ∆, and λ
as a user-defined boundary between linear and super-linear over-
head growth rates. The later experiments show that λ=-0.1 is a rea-
sonably good setting, and wear-leveling results are insensitive to
different session lengths.

5. Performance Evaluation
5.1 Experimental Setup and Performance Metrics
We built a solid-state disk simulator using System C [8]. This sim-
ulator includes a flash module for behavioral simulation on read,
write, and erase operations. This flash module can also accept dif-
ferent geometry settings. Based on this flash module, the simulator
implements different FTL algorithms, including BAST [22], SAST
[15], and FAST [12], which are representative designs at the current
time. We tailored the lazy wear-leveling algorithm to accompany
each of the FTL algorithm. This simulator also includes the static
wear-leveling algorithm based on Chang’s design [5]. Static wear
leveling is widely used in industry [13, 14, 20] and has been proven
competitive with existing wear-leveling algorithms [2].

The input of the simulator is a series disk requests, ordered
chronologically. These disk requests were recorded from four types
of real-life host systems: a Windows-based laptop, a desktop PC
running Windows, a Ubuntu Linux desktop PC, and a portable me-
dia player. The user activities of the laptop and desktop workloads
include web surfing, word processing, video playback, and gam-
ing, while those of the media player workload are to copy, play,
and delete MP3 and video files. These choices include popular op-
tions of operating systems (e.g., Linux or Windows), file systems
(e.g., ext4 or NTFS), hard-drive capacity, and system usages (e.g.,
mobile or desktop). Table 1 describes the four disk workloads.

This study adopts two major performance metrics for flash-wear
evenness and wear-leveling overhead. The standard deviation of
all flash blocks’ erase counts (the standard deviation for short)
indicates the wear evenness in the entire flash. The smaller the
standard deviation is, the more level is the wear in flash. The
mean of all flash blocks’ erase counts (the mean for short) is
the arithmetic average of all blocks’ erase counts. The difference
between the means of with and without wear leveling reveals the
overhead of wear leveling in terms of erase operations. The smaller
the mean increase is, the lower is the wear-leveling overhead. It is
desirable to achieve both a small standard deviation and a small
mean increase.

Unless explicitly specified, all experiments adopted the follow-
ing default settings: The threshold parameters ∆ and TH of lazy

Workload Operating Volume File Total
system size system written

Notebook Windows XP 20 GB NTFS 27
Desktop 1 Windows XP 40 GB NTFS 81
Desktop 2 Ubuntu 9 40 GB ext4 55

Multimedia Windows CE 20 GB FAT32 20
GB

Table 1. The four experimental workloads.
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Figure 8. Evaluating lazy wear leveling and static wear leveling
with FTL algorithms BAST, SAST, and FAST under the notebook
disk workload.

wear leveling and static wear leveling were both 16. TH refers
to the ratio of the total erase count to the total number of re-
cently erased flash blocks (i.e., the blocks indicated as one in the
erase bitmap). Dynamic ∆ tuning will be evaluated in Section 5.3.
The flash page size and block size were 4KB and 512KB, respec-
tively, reflecting a typical geometry of MLC flash [18]. The in-
put disk workload was the notebook workload, and the FTL al-
gorithm was FAST [12]. The sizes of the logical disk volume and
the physical flash were 20GB and 20.5GB, respectively. Thus, the
over-provisioning ratio was (20.5-20)/20=2.5%. The experiments
replayed the input workload one hundred times to accumulate suffi-
ciently many erase cycles in flash blocks. This helped to differenti-
ate the efficacy of different wear-leveling algorithms. These replays
did not manipulate the experiments. Provided that wear leveling is
effective, replaying the input disk workload once sufficiently erases
the entire flash one time.

5.2 Experimental Results
5.2.1 Effects of Using Different FTL Algorithms
Figure 8 shows the results of using BAST, SAST, and FAST with
lazy wear leveling and static wear leveling. The Y-axes of Fig. 8(a)
and 8(b) indicate the standard deviations and the means, respec-
tively. First consider the results without using wear leveling. These
results show that FAST achieved the smallest mean among the three
FTL algorithms. This is because FAST fully utilizes free space in
every log bock [12]. On the contrary, BAST suffered from very
high garbage-collection overheads, because BAST has poor space
utilization in log blocks. These observations agreed with that re-
ported in prior work [12, 15, 22].

Lazy wear leveling consistently delivered low standard devia-
tions under the three FTL algorithms. Its standard deviations were
between 10 and 12, almost not affected by FTL algorithms. In con-
trast, static wear leveling’s standard deviations were much larger
than that of lazy wear leveling, and was very sensitive to the use of
different FTL algorithms. In particular, its standard deviations were
137 and 66 under BAST and FAST, respectively. Regarding wear-
leveling overhead, the mean increase of lazy wear leveling was very
small, which was no more than 3% in all experiments. Static wear
leveling’s mean increase was slightly larger, reaching 6%.

Figure 8(b) shows that when the FTL algorithm was SAST,
lazy wear leveling introduced a slightly larger mean increase than
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Figure 9. Experimental results of using lazy wear leveling and
static wear leveling under the four types of disk workloads.

static wear leveling. This is due to the different definitions of the
threshold parameters of lazy wear leveling and static wear leveling.
For a fair comparison, we set ∆ = 18 and TH = 16 such that the
two wear-leveling algorithms produced the same mean increase.
Under these settings, the standard deviations of lazy wear leveling
was 18, which was much better than 107 in static wear leveling.
Section 5.4 provides explanations of the large standard deviation of
static wear leveling.

5.2.2 Effects of Using Different Host Workloads
This part of the experiment evaluated wear-leveling algorithms
under the four types of disk workloads (as Table 1 shows). The
number of times each of the four workload replays was subject to a
constant ratio of the total amount of data written into the disk to the
logical disk volume size. This ratio was determined by replaying
the notebook workload 100 times, i.e., (100×27GB)/20GB=135.

Figure 9 shows that, without wear leveling, the multimedia
workload had the smallest mean and standard deviation among
the four workloads. This workload consisted of plenty of large
and sequential write requests that accessed almost the entire disk
space. Therefore garbage collection incurred mild overhead and
accumulated erase cycles in all flash blocks at nearly the same rate.
On the other hand, the standard deviations and means of using the
notebook workload and the two desktop workloads were large. This
is because these disk workloads consisted of temporal localities,
which amplified the garbage-collection overhead and biased the
flash wear as well.

Figure 9 shows that, regardless of the disk workload adopted,
lazy wear leveling successfully lowered the standard deviations to
about 10. Lazy wear leveling caused only marginal mean increase,
no more than 3% under all workloads. On the other hand, even
though static wear leveling’s increases on the mean were compara-
ble to that of lazy wear leveling, its large standard deviations indi-
cate that it failed to balance the flash wear in all workloads.

5.2.3 Flash Geometry and Over-Provisioning Ratios
Flash geometry and over-provisioning ratios directly affect garbage-
collection overhead and the wear evenness in flash. This experi-
ment has two parts. The first part considered three kinds of flash
geometry of page size/block size: 2KB/128KB, 4KB/512KB, and
4KB/2MB. The first and the second setups were typical geome-
tries of SLC flash [17] and MLC flash [18], respectively. Advanced
architecture designs employ multiple channels for parallel access
over multiple flash chips [1, 10, 19]. Thus, the third setting cor-
responds to the effective geometry of a four-channel architecture.
The results in Fig. 10 show that, without wear leveling, adopting
coarse-grained flash geometry not only increased the overhead of
garbage collection but also degraded the evenness of flash wear.
When using lazy wear leveling, the standard deviations and the
mean increases were both small. This advantage remained whether
the flash geometry was coarse-grained or fined-grained.
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Figure 10. Experimental results under different settings of flash
geometry.
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Figure 11. Experimental results under different over-provisioning
ratios of flash memory.

The second part of this experiment adopted three over-provisioning
ratios: 1.25%, 2.5%, and 5%. The smaller the over-provisioning ra-
tio is, the fewer log blocks the FTL can have. Figure 11 indicates
that using small over-provisioning ratios resulted in high overhead
of garbage collection. This is because the demand for free space
forced the FTL to prematurely copy valid data for garbage col-
lection before these valid data might be invalidated by new write
request. Amplified garbage-collection activities also increased the
wear unevenness in flash. When using lazy wear leveling, the stan-
dard deviations and the mean increases were again small, and its
performance was not significantly affected by using different over-
provisioning ratios.

5.3 Automated ∆-tuning
This experiment adopted two system configurations C1 and C2:
the configuration C1 used the Linux desktop workload with BAST,
while the configuration C2 adopted the notebook workload with
FAST. The flash geometry was in both C1 and C2 were both
4KB/2MB. The over-provisioning ratios of C1 and C2 were 1.25%
and 0.625%, respectively.

This experiment consists of three parts. The first part reports the
overhead and the standard deviation with respect to different static
∆ settings (i.e., dynamic ∆-tuning was disabled) under various sys-
tem configurations. Figure 12(a) depicts that the relations between
∆ and standard deviations appear linear in both C1 and C2. This
agrees with the analysis of wear evenness in Section 4.1. When ∆
was large, the standard deviations of C1 were larger than those of
C2, indicating that C1 required more wear leveling than C2. Figure
12(b) depicts the overhead ratios (see Section 4.1 for definition)
for different ∆ values. The two solid curves depicts the actually
measured overhead ratios in C1 and C2. The two dotted lines plot
the estimated overhead using g(∆) with K=1.2 and K=0.76. The
dotted lines and the solid lines are very close, showing that g(∆)
can produce accurate overhead estimation. The overhead increased
faster in C1 than in C2, indicating that the cost of wear leveling was
higher in C1.

The second part of this experiment enabled the dynamic ∆-
tuning method presented in Section 4.2. The session length for
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Figure 12. Under system configurations C1 and C2, (a) the stan-
dard deviations and (b) the overhead ratios with respect to different
∆ settings.
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Figure 13. Runtime ∆ values and standard deviations in system
configurations C1 and C2 with the ∆-tuning method enabled. The
final overhead ratios of C1 and C2 were 2.22% and 1.95%, respec-
tively.

∆-tuning was 1,000, meaning that ∆ adjusted every time after
lazy wear leveling erased 1,000 blocks. The value of λ was -0.1.
Figure 13 plots the ∆ values and the standard deviations session-
by-session. The ∆ value dynamically adjusted during experiments,
and the standard deviations occasionally increased but remained
at controlled levels. Overall, even though C1 requires more wear
leveling than C2 (as Fig. 12(a) shows), the tuning method still
refrained from using small ∆ values in C1 because in C1 the
overhead grew faster than in C2 (as Fig. 12(b) shows).

The third part reports results of using different settings of λ and
session lengths. This part used λ=-0.2 in comparison with λ=-0.1 in
configuration C2. When switching λ from -0.1 to -0.2, the overhead
ratio increased about 1.7 times (from 1.95% to 3.37%), while the
standard deviation improved by only 15% (from 14.46 to 12.28).
This is because the overhead growth (when decreasing ∆) can
become super-linear when the tangent slope to g(∆) is smaller than
-0.1 (as Fig. 12(b) shows). Therefore, using λ=-0.2 produced only
marginal improvement upon the standard deviation which is not
worth the large overhead increase. This part also includes results
of using different session lengths. The final standard deviations of
C1 with session lengths 1000, 2000, and 3000 were 14.46, 14.86,
and 14.51, respectively. The final overhead ratios with these three
session lengths were 1.95%, 2.02%, and 2.05%, respectively. Thus,
the efficacy of the ∆-tuning method is insensitive to session-length
settings.

5.4 Wear-Leveling Stability
Keeping the standard deviation stable is as important as keeping it
low. This experiment observed the change history of standard de-
viations using different wear-leveling algorithms. The experiment
settings here are the same as those in Section 5.2.2. The trace-
collecting duration of the notebook workload was one month. Thus,
the experimental setting emulated an eight-year session of disk ac-
cess by replaying the trace 100 times.
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Figure 14. History of changes in standard deviations when using
lazy wear leveling and static wear leveling.

Figure 15. The final distribution of blocks’ erase counts under the
notebook workload.

Figure 14 shows the standard deviations when using lazy wear
leveling and static wear leveling under four types of disk work-
loads. The X-axes and Y-axes indicate the total amount of data
written into the disk and the standard deviations, respectively. Let
the stable interval of a wear-leveling algorithm be the longest time
period [t, t′] in which the standard deviations at time points t and
t′ are the same. A wear-leveling algorithm is stable if its stable
interval increases as the total amount of data written into the disk
increases. Figure 14(a) shows that lazy wear leveling was stable
under all workloads. On the contrary, Fig. 14(b) shows that static
wear leveling was instable. Figure 15 shows the final distribution of
erase counts under the notebook workload. As static wear leveling
was instable, the belt of erase counts gradually grew thicker dur-
ing experiments. A closer inspection of the static wear leveling’s
results revealed two causes of this instability.

Static wear leveling proactively moves static data away from
physical blocks with a low erase recency (called static blocks here-
after), giving static blocks a chance to participate in garbage col-
lection. Erasing a static (physical) block forcibly re-maps the log-
ical block previously mapped to this static block to a spare block.
However, static wear leveling conducts this re-mapping regardless
of whether the spare block is also static or not. Under the note-
book workload, there was a 70% probability that static wear lev-
eling would re-map a logical block of a low update recency from
a static block to another static block. This impeded the aging of
static blocks only. The second problem is that static wear leveling
erases static blocks regardless of their (absolute) erase counts. Un-
der the notebook workload, there was a 50% probability that the
block erased by static wear leveling was an elder block. Erasing an
elder block does not help wear leveling in any way.

6. An SSD Implementation
6.1 Hardware Architecture
This study reports the implementation of the lazy wear-leveling al-
gorithm in a real solid-state disk. This implementation used Global
UniChip Cooperation’s GP5086 system-on-a-chip (i.e., SoC) con-



No WL Lazy WL Ratios
Average write IOPS 390 380 -3%
Erase counts

standard deviation 613 11 -98%
mean 733 751 +2%

Table 2. Evaluation results of the GP5086-based SSD prototype.
The average size of write requests was 22 KB.

troller for solid-state disks. The controller includes an 150-MHz
ARM7 core, a BCH-based ECC engine, SLC/MLC flash interfaces,
and host interfaces including serial ATA and parallel ATA. This
controller supports 128KB of embedded SRAM for run-time vari-
ables and FTL mapping tables. GP5086 features a four-channel
architecture aiming at high sustained data transfer rates. GP5086
erases in terms of four parallel flash blocks in the four channels,
while reading and writing do not necessarily involve all the chan-
nels. We designed a solid-state disk using GP5086 and four MLC
flash chips, with one chip for each channel. The effective page
size and block size were 4KB and 2MB, respectively. The GP5086
firmware implemented a SAST-like FTL algorithm optimized for
its multichannel architecture. This firmware also included the lazy
wear-leveling algorithm for performance evaluation.

6.2 Experimental Results
In this experiment, the over-provisioning ratio was 2.5%, and the
threshold parameter ∆ was 16. The solid-state disk was connected
to a Windows-based PC. A user application ran on this PC and
replayed the notebook disk workload one hundred times on the
solid-state disk using non-buffered Win32 I/O APIs. To speed up
the experiment, the GP5086 firmware replaced its flash-accessing
routines with dummy functions.

The results in Table 2 show that enabling lazy wear leveling
significantly reduced the standard deviation from 613 to 11, while
the mean increase was only 2%. These numbers are consistent with
the simulation results. We also measured the time overhead in terms
of the average number of write requests completed per second
(i.e., the average write IOPS). When measuring IOPS, the firmware
switched back to real flash-access routines and the experiment
measured the response times of one million write requests. Results
show that enabling lazy wear leveling decreased the write IOPS by
3%, which is slightly greater than the 2% mean increase. This is
because wear leveling involves extra copy operations in addition to
erasing blocks.

7. Conclusion
Successful wear leveling relies on monitoring not only the current
wear in flash, but also recent trends in flash wear. Thus, keeping
track of blocks’ erase frequency (i.e., erase counts) and erase re-
cency is a fundamental design issue. This study presents a simple
but effective wear-leveling design called lazy wear leveling. This
approach does not require any extra data structures for storing erase
counts in RAM. Instead, it borrows the mapping information from
the sector-translating algorithm to seek out data that has not been
updated recently, and utilizes only in-flash erase counts to identify
worn blocks. The timely re-mapping of these data to worn blocks
helps even out flash wear.

Lazy wear leveling subjects wear evenness to a threshold vari-
able. This study shows the feasibility of on-line overhead estimat-
ing using an analytical overhead model. Based on these estima-
tions, lazy wear leveling can tune the threshold variable for appro-
priate balance between overhead and wear evenness. A series of
trace-driven simulations show the merits of lazy wear leveling, and
a prototype proves the applicability of lazy wear leveling in real
solid-state disks.
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技術移轉 

權利金 0 0 100% 千元  
碩士生 4 4 100%  
博士生 0 0 100%  
博士後研究員 0 0 100%  

國外 

參與計畫人力 
（外國籍） 

專任助理 0 0 100% 

人次 

 



其他成果 
(無法以量化表達之成

果如辦理學術活動、獲
得獎項、重要國際合
作、研究成果國際影響
力及其他協助產業技
術發展之具體效益事
項等，請以文字敘述填
列。) 

期刊論文部分，目前仍在撰寫中。 

 成果項目 量化 名稱或內容性質簡述 
測驗工具(含質性與量性) 0  
課程/模組 0  
電腦及網路系統或工具 0  
教材 0  
舉辦之活動/競賽 0  
研討會/工作坊 0  
電子報、網站 0  

科 
教 
處 
計 
畫 
加 
填 
項 
目 計畫成果推廣之參與（閱聽）人數 0  

 



國科會補助專題研究計畫成果報告自評表 

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估 
■達成目標 
□未達成目標（請說明，以 100 字為限） 

□實驗失敗 

□因故實驗中斷 
□其他原因 

說明： 

2. 研究成果在學術期刊發表或申請專利等情形： 
論文：■已發表 □未發表之文稿 □撰寫中 □無 

專利：□已獲得 □申請中 ■無 

技轉：□已技轉 □洽談中 ■無 

其他：（以 100 字為限） 
已經發表會議論文兩篇（IWSSPS 2010, CPSNA 2011，如附件），並被邀請投稿至 IEEE 

embedded systems letter 的一個 special issue 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限） 
本計劃成果為固態硬碟的虛擬平台。原則上我們透過產學合作的管道推廣至業界使用，目

前廠商的回應都相當不錯。而學術研究方面，基於這個虛擬平台，我們目前得以研究開發

新的儲存裝置與主機端的溝通方式，藉以達成更好的效能改善。 

 


