完整後設資料紀錄
DC 欄位語言
dc.contributor.authorIwata, Koichien_US
dc.contributor.authorTerazima, Masahideen_US
dc.contributor.authorMasuhara, Hiroshien_US
dc.date.accessioned2018-08-21T05:53:13Z-
dc.date.available2018-08-21T05:53:13Z-
dc.date.issued2018-02-01en_US
dc.identifier.issn0304-4165en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.bbagen.2017.11.003en_US
dc.identifier.urihttp://hdl.handle.net/11536/144400-
dc.description.abstractNovel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.en_US
dc.language.isoen_USen_US
dc.subjectAdvanced laser applicationen_US
dc.subjectBiological assembliesen_US
dc.subjectSpectroscopyen_US
dc.subjectThermodynamicsen_US
dc.subjectManipulationen_US
dc.titleNovel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.bbagen.2017.11.003en_US
dc.identifier.journalBIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTSen_US
dc.citation.volume1862en_US
dc.citation.spage335en_US
dc.citation.epage357en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000423014400010en_US
顯示於類別:期刊論文