Full metadata record
DC FieldValueLanguage
dc.contributor.authorLo, Yi-Kaien_US
dc.contributor.authorKuan, Yen-Chengen_US
dc.contributor.authorCulaclii, Stanislaven_US
dc.contributor.authorKim, Brianen_US
dc.contributor.authorWang, Po-Minen_US
dc.contributor.authorChang, Chih-Weien_US
dc.contributor.authorMassachi, Jonathan A.en_US
dc.contributor.authorZhu, Minjien_US
dc.contributor.authorChen, Kuanfuen_US
dc.contributor.authorGad, Paragen_US
dc.contributor.authorEdgerton, V. Reggieen_US
dc.contributor.authorLiu, Wentaien_US
dc.date.accessioned2018-08-21T05:54:04Z-
dc.date.available2018-08-21T05:54:04Z-
dc.date.issued2017-06-01en_US
dc.identifier.issn1932-4545en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TBCAS.2017.2679441en_US
dc.identifier.urihttp://hdl.handle.net/11536/145559-
dc.description.abstractThis paper presents a wirelessly powered, fully integrated system-on-a-chip (SoC) supporting 160-channel stimulation, 16-channel recording, and 48-channel bio-impedance characterization to enable partialmotor function recovery through epidural spinal cord electrical stimulation. A wireless transceiver is designed to support quasi full-duplex data telemetry at a data rate of 2 Mb/s. Furthermore, a unique in situ bio-impedance characterization scheme based on time-domain analysis is implemented to derive the Randles cell electrode model of the electrode-electrolyte interface. The SoC supports concurrent stimulation and recording while the high-density stimulator array meets an output compliance voltage of up to +/- 10 V with versatile stimulus programmability. The SoC consumes 18 mW and occupies a chip area of 5.7 mm x 4.4 mm using 0.18 mu m high-voltage CMOS process. In our in vivo rodent experiment, the SoC is used to perform wireless recording of EMG responses while stimulation is applied to enable the standing and stepping of a paralyzed rat. To facilitate the system integration, a novel thin film polymer packaging technique is developed to provide a heterogeneous integration of the SoC, coils, discrete components, and high-density flexible electrode array, resulting in a miniaturized prototype implant with a weight and form factor of 0.7 g and 0.5 cm(3), respectively.en_US
dc.language.isoen_USen_US
dc.subjectBioelectronicsen_US
dc.subjectepiduralen_US
dc.subjectelectroceuticalsen_US
dc.subjectEMGen_US
dc.subjectimplanten_US
dc.subjectneuroprostheticsen_US
dc.subjectneural engineeringen_US
dc.subjectneural interfaceen_US
dc.subjectparalysisen_US
dc.subjectpower and data telemetryen_US
dc.subjectrecordingen_US
dc.subjectspinal cord injuryen_US
dc.subjectstimulationen_US
dc.subjectsystem-on-a-chip (SoC)en_US
dc.titleA Fully Integrated Wireless SoC for Motor Function Recovery After Spinal Cord Injuryen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBCAS.2017.2679441en_US
dc.identifier.journalIEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMSen_US
dc.citation.volume11en_US
dc.citation.spage497en_US
dc.citation.epage509en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000402182200003en_US
Appears in Collections:Articles