標題: A Fully Integrated Wireless SoC for Motor Function Recovery After Spinal Cord Injury
作者: Lo, Yi-Kai
Kuan, Yen-Cheng
Culaclii, Stanislav
Kim, Brian
Wang, Po-Min
Chang, Chih-Wei
Massachi, Jonathan A.
Zhu, Minji
Chen, Kuanfu
Gad, Parag
Edgerton, V. Reggie
Liu, Wentai
交大名義發表
National Chiao Tung University
關鍵字: Bioelectronics;epidural;electroceuticals;EMG;implant;neuroprosthetics;neural engineering;neural interface;paralysis;power and data telemetry;recording;spinal cord injury;stimulation;system-on-a-chip (SoC)
公開日期: 1-Jun-2017
摘要: This paper presents a wirelessly powered, fully integrated system-on-a-chip (SoC) supporting 160-channel stimulation, 16-channel recording, and 48-channel bio-impedance characterization to enable partialmotor function recovery through epidural spinal cord electrical stimulation. A wireless transceiver is designed to support quasi full-duplex data telemetry at a data rate of 2 Mb/s. Furthermore, a unique in situ bio-impedance characterization scheme based on time-domain analysis is implemented to derive the Randles cell electrode model of the electrode-electrolyte interface. The SoC supports concurrent stimulation and recording while the high-density stimulator array meets an output compliance voltage of up to +/- 10 V with versatile stimulus programmability. The SoC consumes 18 mW and occupies a chip area of 5.7 mm x 4.4 mm using 0.18 mu m high-voltage CMOS process. In our in vivo rodent experiment, the SoC is used to perform wireless recording of EMG responses while stimulation is applied to enable the standing and stepping of a paralyzed rat. To facilitate the system integration, a novel thin film polymer packaging technique is developed to provide a heterogeneous integration of the SoC, coils, discrete components, and high-density flexible electrode array, resulting in a miniaturized prototype implant with a weight and form factor of 0.7 g and 0.5 cm(3), respectively.
URI: http://dx.doi.org/10.1109/TBCAS.2017.2679441
http://hdl.handle.net/11536/145559
ISSN: 1932-4545
DOI: 10.1109/TBCAS.2017.2679441
期刊: IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS
Volume: 11
起始頁: 497
結束頁: 509
Appears in Collections:Articles