完整後設資料紀錄
DC 欄位語言
dc.contributor.authorAubin, Christopheren_US
dc.contributor.authorLin, C. -J. Daviden_US
dc.contributor.authorSoni, Amarjiten_US
dc.date.accessioned2014-12-08T15:23:22Z-
dc.date.available2014-12-08T15:23:22Z-
dc.date.issued2012-03-29en_US
dc.identifier.issn0370-2693en_US
dc.identifier.urihttp://hdl.handle.net/11536/16362-
dc.description.abstractWe present an approach for computing the real parts of the nonleptonic B -> DP and B -> (D) over barP (P = K. pi) decay amplitudes by using lattice QCD methods. While it remains very challenging to calculate the imaginary parts of these matrix elements on the lattice, we stress that their real parts play a significant role in extracting the angle gamma in the b-d unitarity triangle of the CKM matrix. The real part on its own gives a lower bound to the absolute magnitude of the amplitude which is in itself an important constraint for determining gamma. Also the relevant phase can be obtained by using B decays in conjunction with relevant charm decay data. Direct four-point function calculations on the lattice, while computationally demanding, do yield the real part as that is not impeded by the Maiani-Testa theorem. As an approximation, we argue that the chiral expansion of these decays is valid in a framework similar to that of hard-pion chiral perturbation theory. In addition to constructing the leading-order operators, we also discuss the features of the next-to-leading order chiral expansion. These include the contributions from the resonance states, as well as the generic forms of the chiral logarithms. (C) 2012 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titlePossible lattice approach to B -> D pi (K) matrix elementsen_US
dc.typeArticleen_US
dc.identifier.journalPHYSICS LETTERS Ben_US
dc.citation.volume710en_US
dc.citation.issue1en_US
dc.citation.epage164en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000302672500019-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000302672500019.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。