完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Yang-Yinen_US
dc.contributor.authorChang, Jyh-Yeongen_US
dc.contributor.authorPal, Nikhil R.en_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:31:30Z-
dc.date.available2014-12-08T15:31:30Z-
dc.date.issued2013-06-01en_US
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TFUZZ.2013.2255613en_US
dc.identifier.urihttp://hdl.handle.net/11536/22347-
dc.description.abstractIn this paper, a mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS) is proposed for the identification of nonlinear and time-varying systems. The MRIT2NFS uses type-2 fuzzy sets in order to enhance noise tolerance of the system. In the MRIT2NFS, the antecedent part of each recurrent fuzzy rule is defined using interval type-2 fuzzy sets, and the consequent part is of the Takagi-Sugeno-Kang type with interval weights. The antecedent part of MRIT2NFS forms a local internal feedback and interaction loop by feeding the rule firing strength of each rule to others including itself. The consequent is a linear combination of exogenous input variables. The learning of MRIT2NFS starts with an empty rule base and all rules are learned online via structure and parameter learning. The structure learning of MRIT2NFS uses online type-2 fuzzy clustering. For parameter learning, the consequent part parameters are tuned by rule-ordered Kalman filter algorithm to reinforce parameter learning ability. The type-2 fuzzy sets in the antecedent and weights representing the mutual feedback are learned by the gradient descent algorithm. After the training, a weight-elimination scheme eliminates feedback connections that do not have much effect on the network behavior. This method can efficiently remove redundant recurrence and interaction weights. Finally, the MRIT2NFS is used for system identification under both noise-free and noisy environments. For this, we consider both time series prediction and nonlinear plant modeling. Compared with type-1 recurrent fuzzy neural networks, simulation results show that our approach produces smaller root-mean-squared errors using the same number of iterations.en_US
dc.language.isoen_USen_US
dc.subjectDynamic system identificationen_US
dc.subjecton-line fuzzy clusteringen_US
dc.subjectrecurrent neural fuzzy systemsen_US
dc.subjecttype-2 fuzzy systemsen_US
dc.titleA Mutually Recurrent Interval Type-2 Neural Fuzzy System (MRIT2NFS) With Self-Evolving Structure and Parametersen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TFUZZ.2013.2255613en_US
dc.identifier.journalIEEE TRANSACTIONS ON FUZZY SYSTEMSen_US
dc.citation.volume21en_US
dc.citation.issue3en_US
dc.citation.spage492en_US
dc.citation.epage509en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000319930000008-
dc.citation.woscount11-
顯示於類別:期刊論文


文件中的檔案:

  1. 000319930000008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。