完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, LAen_US
dc.contributor.authorWelsh, AHen_US
dc.contributor.authorChan, Wen_US
dc.date.accessioned2014-12-08T15:44:24Z-
dc.date.available2014-12-08T15:44:24Z-
dc.date.issued2001-01-01en_US
dc.identifier.issn1017-0405en_US
dc.identifier.urihttp://hdl.handle.net/11536/29993-
dc.description.abstractWe develop an asymptotic, robust version of the Gauss-Markov theorem for estimating the regression parameter vector beta and a parametric function c'beta in the linear regression model. In a class of estimators for estimating beta that are linear in a Winsorized observation vector introduced by Welsh (1987), we show that Welsh's trimmed mean has smallest asymptotic covariance matrix. Also, for estimating a parametric function c'beta, the inner product of c and the trimmed mean has the smallest asymptotic variance among a class of estimators linear in the Winsorized observation vector. A generalization of the linear Winsorized mean to the multivariate context is also given. Examples analyzing American lobster data and the mineral content of bones are used to compare the robustness of some trimmed mean methods.en_US
dc.language.isoen_USen_US
dc.subjectlinear regressionen_US
dc.subjectrobust estimationen_US
dc.subjecttrimmed meanen_US
dc.subjectWinsorized meanen_US
dc.titleEstimators for the linear regression model based on Winsorized observationsen_US
dc.typeArticleen_US
dc.identifier.journalSTATISTICA SINICAen_US
dc.citation.volume11en_US
dc.citation.issue1en_US
dc.citation.spage147en_US
dc.citation.epage172en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000167038500010-
dc.citation.woscount11-
顯示於類別:期刊論文