標題: 多重網格計算法應用於多孔介質兩相不可壓縮不相容的流體與不可壓縮的Navier-Stokes方程式
A multigrid method and its applications to two-phase incompressible immiscible flows in porous media and the incompressible Navier-Stokes equations
作者: 吳長哲
Wu, Chang-Che
葉立明
Yeh, Li-Ming
應用數學系所
關鍵字: 多重網格法;不可壓縮;不可相容;多孔介質;水流問題;Navier-Stokes 方程式;局部守恆;數值方法;不連續係數;橢圓方程式;Laplace 方程式;Poisson 方程式;Transport 部分;Diffusive 部分;Prolongation 運算;Restriction 運算;Neumann 邊界條件;Multigrid method;Incompressible;Immiscible;Porous media;Waterflooding problem;Navier-Stokes equations;LCELM;Numerical simulation;Strongly discontinuous coefficients;Elliptic equation;Laplace equation;Poisson Equation;Transport part;Diffusive part;Prolongation Operator;Restriction Operator;Neumann Boundary Condition
公開日期: 2011
摘要: 此論文主要目的是著重於利用多重網格法來解決具有strongly discontinuous coefficients的橢圓方程式。首先介紹如何使用多重網格法來解決三維度具有strongly discontinuous coefficients的橢圓方程式並提供一些數值測試結果,並展示一些與其他數值方法比較的數據結果。然後應用此方法於以下兩個數學模型中,其中一個是兩相不可壓縮流與不相容的水流問題,另一個是Navier-Stokes方程式。而在這兩個數學模型上,我們利用Locally conservative Eulerian-Lagrangian methods (簡稱LCELM) 來計算這兩個數學模型的transport方程式,並針對這兩個數學模型展示一些數值結果。
The primary objective of this thesis is to introduce a multigrid method to solve elliptic equation with strongly discontinuous coefficients. In the beginning, we explain how to use the multigrid method to solve a 3D elliptic equation with strongly discontinuous coefficients, and then show some numerical testing results. Also, we provide some results compared with other numerical methods to show the efficency of the mutigrid method. Furthermore, we apply the multigrid method to solve two mathematical problems, one is for the waterflooding problem and the other is the incompressible Navier-Stokes equations. A locally conservative Eulerian-Lagrangian method (briefly LCELM) is used to compute the transport part of the two models. Some numerical results for the two problems will be presented as well. ii
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079722519
http://hdl.handle.net/11536/45073
Appears in Collections:Thesis