Full metadata record
DC FieldValueLanguage
dc.contributor.author江孟峰en_US
dc.contributor.authorJiang, Mon-Fongen_US
dc.contributor.author曾憲雄en_US
dc.contributor.authorShian-Shyong Tsengen_US
dc.date.accessioned2014-12-12T02:15:19Z-
dc.date.available2014-12-12T02:15:19Z-
dc.date.issued1995en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT840394065en_US
dc.identifier.urihttp://hdl.handle.net/11536/60511-
dc.description.abstract傳統的甘蔗育種程序須依賴經驗豐富的育種研究人員。目前,電腦輔助的 觀念運用很廣,例如,電腦輔助製造、電腦輔助設計、電腦輔助教學。農 業上的許多問題非常複雜,像甘蔗育種就是一個適合以電腦輔助的研究方 向。在這篇論文中,我們依據類神經網路架構及遺傳演算法,發展一套能 從台灣糖業研究所建立於1990的親本資料庫中,歸納出甘蔗交配模式的方 法。經由實驗,我們提出的方法其正確率可以達到70%,收集更多資料使 正確率適度提高且實際於交配圃實驗,是我們未來須加強的工作。 The traditional sugar-cane breeding process depends on the determination of experienced breeding researcher. It's well known that computer-aided methodology is very useful in many fields today, such as CAD, CAM, and CAI. Since the sugar-can breeding problem in agriculture field is complex, it seems that using computer-aided methodology is very suitable to solve this problem. In this thesis, we use the techniques of neural networks and genetic algorithms to construct a method in order to induce thesugar-cane cross model from the sugar-cane parent database which established by Taiwan Sugar Research Institute (TSRI) since 1990. The experimental results show that the correct percentagge for testing is about 70%. To collect more data to increase the correct percentage and experiment in the actual cross garden is the work that we must strengthen in the future.zh_TW
dc.language.isozh_TWen_US
dc.subject甘蔗育種zh_TW
dc.subject類神經網路zh_TW
dc.subject遺傳演算法zh_TW
dc.subjectSugar-Cane Breedingen_US
dc.subjectNeural Networksen_US
dc.subjectGenetic Algorithmsen_US
dc.title甘蔗育種輔助系統之研製zh_TW
dc.titleDeveloping a Sugar-Cane Breeding Assistant System by a Hybrid Adaptive Learning Techniqueen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis