Title: 曲面薄殼結構3D積層製造技術的創新與實作
Innovative 3D Additive Manufacturing Technology Research on the Shell Structure of Curved Surface
Authors: 張雅雲
鄭璧瑩
Chang, Ya-Yun
Cheng, Pi-Ying
機械工程系所
Keywords: 3D積層製造;熔融沉積建模;頂棚式曲面薄殼結構;波浪 型支撐基座;3D Additive Manufacturing;Fused Deposition Modeling (FDM);Shell Structures Of Ceiling Surface;Base Of Wave Supporting
Issue Date: 2016
Abstract: 本研究提出一套創新的3D頂棚結構波浪型斜撐支柱的支撐方法,以應用於頂蓋式曲面薄殼結構的3D FDM積層製造技術;研究構想是採用在頂棚曲面成形的適當位置建構特定形狀的斜撐基座,可在靠近頂棚處形成局部支撐結構的加工概念,以期減少或取消傳統由基底開始堆高的支撐材,同時達到增強列印物件結構強度的目標。 本研究所採取的支撐結構設計乃結合拱橋力學與建築椼架等多種結構建造技術,利用近頂棚處建構的類似斜撐懸柱形成頂蓋形體的局部基座,強化產品的本體與頂棚造型結構使薄殼的物體內部支撐明顯減少;並藉由多種曲面薄殼內不同的內部支撐結構的強度分析歸納找出最佳的支撐方法,達到大幅降低耗材、減少加工時間,甚至可簡化支撐材後處理程序的目的。 本研究的理論分析檢驗方式採用ANSYS 結構力學分析軟體針對頂蓋式無支撐、傳統柱狀支撐及本研究方法的支撐結構做評估模擬,為使結構可以逐步成形本研究採用方法是由邊牆結構延伸斜撐懸柱去支撐頂棚結構,模擬分析頂棚結構體在不同支撐形狀與支撐傾斜角度下其應力、應變及最大變形量,配合實作驗證結果,用以評估歸納支撐結構的設計參數。 本研究利用實驗進行機台極限測試,並以此為基準去設計支撐基座的形狀及角度,將本研究所採用的波浪支撐基座應用於不同的曲面頂棚薄殼的建構,實驗成果證明斜撐式波浪型支撐基座可以有效取代傳統樹形支撐以及柱狀支撐,且更具有節省材料與加工時間等優勢。 採用波浪型支撐材的積層製造方式,其成型速度較快且耗材較少,同時此支撐法可應用於內部支撐及外部支撐,內部支撐可以在較少的支撐材下支撐模型本體而不變形,而外部支撐因為支撐材少所以可以選擇不需去除,若選擇去除其後處理的時間也較傳統的柱狀支撐方式或樹形支撐方式的後處理時間更為節省。 本研究基於理論設計的參數分析與實驗驗證數據建立具體有效的創新構造製程的3D FDM積層製造技術,研究證明本研究的新型波浪型支撐基座的支撐法可以有效減少或取消頂蓋式曲面薄殼結構支撐材的成本與加工時間。本研究成果“波浪型斜撐式懸柱支撐方法”為目前FDM基層製造 3D 列印成形的創新方法,由多項實驗範例可明顯驗證其實用功效,可做為新型3D 列印技術發展的參考。
This study presents an innovative 3D supporting methods to be applied on 3D manufacturing laminated surfaces shell ceiling structure. The idea of this study is to use the concept of the laminate surface machining. Reducing or eliminating the support substrate material and also achieving the goal of enhancing print object material strength. Studies using conventional two-dimensional slices path and changing the shape of the support structure, to achieve the goal of quick printing and strong strength. Supporting structure combined with mechanical technology of arch and architectural truss construction technology. Use product structure to reduce interior support of shell body. Using different internal support structure of shell body to find the best method of supporting and achieve the purpose of reducing processing time and supplies. Theoretical Conception of this study is to use ANSYS structural mechanics analysis software for the supporting structure simulation. In order to let the structure be formed gradually, we build the supporting structure which extending from the body structure. Simulation analysis of stress, strain and the maximum of deformation of arch structure with different supporting structural and inclination angle of supporting. In this study, we design the experiment of testing limits of the 3D printing machine, and use these limits as a reference to design the shape and inclination angle of the supporting material. This wave supporting is applied on different models, and the results of experiments prove that the wave supporting can effectively replace conventional tree supporting and pillar supporting. The model of using wave supporting can be molded faster and used less supplies, also this method can be applied to support the internal supporting and external supporting. The model with internal supporting can support the body under less supporting material without deformation. For the external support, because the support material was less than other supporting method that you can choose to remove the supporting or not. If you choose to remove the supporting material, you can find the processing time of removing is less than the conventional method. This study was based on theoretical and experimental design to establish specific effective and innovative construction process of 3D laminate manufacturing technology. Studies have shown that this new method of wave supporting can effectively support the structure by reduce or cancel the supporting structure of the dome Surfaces technical support.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070351012
http://hdl.handle.net/11536/138904
Appears in Collections:Thesis