Title: White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles
Authors: Chen, Kuo-Ju
Han, Hau-Vei
Chen, Hsin-Chu
Lin, Chien-Chung
Chien, Shih-Hsuan
Huang, Chung-Ching
Chen, Teng-Ming
Shih, Min-Hsiung
Kuo, Hao-Chung
光電系統研究所
應用化學系
Institute of Photonic System
Department of Applied Chemistry
Issue Date: 2014
Abstract: To enhance the uniformity of correlated color temperature (CCT) and luminous flux, we integrated ZrO2 nanoparticles into white light-emitting diodes. This novel packaging scheme led to a more than 12% increase in luminous flux as compared to that in conventional dispensing structures. This was attributed to the scattering effect of ZrO2 nanoparticles, which enhanced the utilization of blue light. Moreover, the CCT deviation was reduced from 522 to 7 K in a range of -70 to +70 degrees, and essentially eliminated the yellow ring phenomenon. The haze measurement indicated strong scattering across the visible spectrum in the presence of ZrO2 in the silicone layer, and this finding also substantiates our claim. In addition, the chromaticity coordinate shift was steady in the ZrO2 dispensing package structure as the drive current increased, which is crucial for indoor lighting. Combined with its low cost, easy fabrication, and superior optical characteristics, ZrO2 nanoparticles can be an effective performance enhancer for the future generation of white light-emitting devices.
URI: http://hdl.handle.net/11536/24319
http://dx.doi.org/10.1039/c3nr06894c
ISSN: 2040-3364
DOI: 10.1039/c3nr06894c
Journal: NANOSCALE
Volume: 6
Issue: 10
Begin Page: 5378
End Page: 5383
Appears in Collections:Articles


Files in This Item:

  1. 000335148800049.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.