Title: Dynamical approach to ballistic transport in graphene
Authors: Kao, H. C.
Lewkowicz, M.
Korniyenko, Y.
Rosenstein, B.
電子物理學系
Department of Electrophysics
Keywords: Graphene;Ballistic transport
Issue Date: 1-Jan-2011
Abstract: The process of the coherent creation of particle-hole excitations by an electric field in graphene is quantitatively described beyond linear response We calculate the evolution of the current density and the number of pairs in the ballistic regime using the tight binding model While for small electric fields the I-V curve is linear characterized by the universal minimal resistivity sigma = pi/2(e(2)/h) for larger fields after a certain time interval the linear regime crosses over to a quadratic one and finally at larger times Bloch oscillations set in (C) 2010 Elsevier BV All rights reserved
URI: http://dx.doi.org/10.1016/j.cpc.2010.07.029
http://hdl.handle.net/11536/26168
ISSN: 0010-4655
DOI: 10.1016/j.cpc.2010.07.029
Journal: COMPUTER PHYSICS COMMUNICATIONS
Volume: 182
Issue: 1
Begin Page: 112
End Page: 114
Appears in Collections:Articles


Files in This Item:

  1. 000285119900036.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.