Title: 最佳化功率分配於無線感測網路之線性一致離散估測
Linear coherent distributed estimation in wireless sensor networks with optimal power allocation
Authors: 吳建賢
Wu, Chien-Hsien
林清安
Lin, Ching-An
電控工程研究所
Keywords: 離散估測;無線感測網路;一致性通道;最佳功率分配;distributed estimation;wireless sensor networks;coherent multiple access channel;optimal power allocation
Issue Date: 2010
Abstract: 本論文以一致性多路存取通道與線性最小均方差融合規則為基礎,探討無線感測網路的離散估測,我們討論三種不同感測網路的離散估測:(i) 以群聚單輸入單輸出感測網路為基礎的估測、(ii) 單輸入單輸出感測網路在未知通道下的估測、以及 (iii) 多輸入多輸出感測網路下的估測;於每一種感測網路下,我們皆討論系統總功率有限的情況下,利用最佳化功率分配來得到最小估測失真。首先,我們討論一純量訊號於群聚感測網路中的離散估測,我們證明最佳的放大矩陣為一個利用兩已知向量做外積所得到的秩一矩陣,由此最佳的放大矩陣,我們證明利用感測器合作能夠改善系統的效能。第二,我們探討一純量訊號在未知通道的無線網路中的離散估測,我們利用二階段法來估測訊號:先分配訓練功率於各感測器來估測通道,再用最佳功率分配策略或平均功率分配策略結合前一步驟所得到的估測通道來估測信號,我們證明不論是最佳功率分配策略或是平均功率分配策略,最佳的訓練功率是相同的;當感測器的數量增加時,在通道未知的情況下所造成的的效能損失也會增加。最後,我們討論一向量訊號於多輸入多輸出感測網路的離散估測,我們利用奇異值分解法將求編碼矩陣的問題表示為凸面最佳化問題,藉此,我們推導出最佳編碼矩陣的封閉解,我們利用數值模擬來證明於三種感測網路下的分析結果。
We study distributed estimation in wireless sensor networks with
coherent multiple access channel model and LMMSE fusion rule. In
this thesis, three different sensor network systems for
distributed estimation are discussed: (i) estimation using
single-input single-output (SISO) cluster-based sensor network,
(ii) estimation using SISO sensor network over unknown channels,
and (iii) estimation using multiple-input multiple-output (MIMO)
sensor network. In each network system, we study the problem of
minimizing estimation distortion by optimally allocating power
under a total power constraint. We first discuss distributed
estimation of a scalar signal with cluster-based sensor network.
We show that the optimal amplification matrix for each cluster is
a rank one matrix, which is a scaled outer product of two known
vectors. With the optimal amplification matrices, we also show
that collaboration can improve performance. Secondly, we consider
distributed estimation of a scalar signal using sensor network
with unknown channels. We adopt a two-phase approach, which first
optimally allocates the training power for channel estimation, and
then uses the equal power scheme or optimal power scheme for
source signal estimation. We reveal that the optimal training
powers for the optimal and equal power schemes are the same.
Moreover, as the number of sensors increases, the penalty caused
by channel estimation becomes worse. Finally, we discuss
distributed estimation of a vector signal using MIMO sensor
network. Based on singular value decomposition technique, the
problem of choosing coding matrices can be formulated as a convex
optimization problem, based on which we derive closed form
expression of optimal coding matrices. We use simulations to
verify the analytical results in the three network systems.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079212815
http://hdl.handle.net/11536/40364
Appears in Collections:Thesis


Files in This Item:

  1. 281501.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.