Title: 助聽器的噪音消除演算法
Noise cancellation algorithm in hearing aids
Authors: 鍾譯賢
Chung, Yi-Hsien
桑梓賢
Sang, Tzu-Hsien
電子研究所
Keywords: 子空間演算;頻譜相減演算;卡爾曼濾波器;subspace method;subtraction method;Kalman filter
Issue Date: 2009
Abstract: 子空間演算(subspace method),頻譜相減演算(subtraction method)與卡爾曼濾波器(Kalman filter)等在處理語音方面已使用多年,在消雜訊方面也有其效果,所以期望能將其效果使用在助聽器上,來得到較好語音的訊號,使助聽器在使用上也能擁有較好的語音品質。 為因應助聽器的需要,演算法須滿足一些特性,一 計算量,處理過程不能太大或是複雜,因為助聽器在使用上,無法容忍處理時間過長的情況,二 低功率,因為使用者幾乎是全天配帶,若是需要常常更換電池或充電,將會大大降低其實用性。我們在計算量方面,盡可能尋找結構較簡單的演算法,或是將演算法的計算加以簡化,低功率方面,則是盡量善用濾波器組(filter bank)帶來的一些好處,例如硬體共用,分頻取代DFT計算等等,另外在使用濾波器組的架構下,有時也會帶來提升演算法效果的機會,期望在運算複雜度與效果之間能取得一個最佳的平衡。 以下為章節排序,章節一為消雜訊演算法的相關工作,主要介紹一些語音的客觀評估方法,章節二到五,為演算法的介紹,相關的演算法有子空間演算, 頻譜相減演算,卡爾曼(Kalman filter)以及雙耳演算,章節六為濾波器組的硬體架構介紹,章節七跟八則是將適用的演算法應用到濾波器組上,章節九則為一些演算法的特性比較與結論。
Noise amplification has been an annoying problem for hearing aid user. There are several effective noise reduction algorithms for general audio applications. But for hearing aids, the requirement of real-time processing prohibits adopting existing approaches with high computation complexity. In this paper, a noise reduction scheme is proposed to utilize the filter bank structure which us already required for the function of hearing-loss compensation. Through such hardware-sharing arrangement, it is hopeful to achieve low hardware and, most importantly, real-time noise reduction.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079611658
http://hdl.handle.net/11536/41783
Appears in Collections:Thesis


Files in This Item:

  1. 165802.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.