Title: Modulo 2^n+1 乘法器的製作
The Implementation of a Modulo 2^n+1 Multiplier
Authors: 丁家駿
Ding, Daniel
張明峰
Chang Ming-Feng
資訊科學與工程研究所
Keywords: 乘法器;Multiplier;Modulo;Full-custom
Issue Date: 1996
Abstract: 在這篇論文中,我們將以0.6um full custom的方式製作一個高速
modulo乘法器。 這個乘法器採用一個高效率的CSA陣列架構,符合規律
化、模組化與局部化的特性,適 合VLSI的製作。這個架構以正常二進制
(standard binary representation)表示,不 需要碼轉換過程,即可
將處理的部份乘積由(n+1)x(n+1)個降至nxn個,而且這個架構將 部份乘
積位元的weight限制在以2^n下,使得最後總和加總階段只需要簡單的修
正電路。我們在製作過程中特別注意了三點;(1)所使用加法器的進位
與和輸出訊號延遲應力求平衡,(2)乘數與被乘數輸入訊號線的高負載
問題,(3)在最後總和加總階段,如何 選擇一個最適當的進位傳遞(
carry-propagate)加法器。最後經過比較,我們製作的 modulo乘法器
,無論在面積成本與速度上都較其他做法為優。
In this thesis, we adopt an efficient design and use the TSMC
0.6 um SPDM technology file to implement a modulo 2^n+1
multiplier. This design does not use a special binary
representation of numbers in R(2^n+1); however, its
hardware complexity is reduced by transforming the number of
partial products from (n+1)(n+1) to nxn. Since no code
translations is needed, there are very small hardware
overheads. This design is well-suited to full-custom
implementation since it exhibits a very regular CSA structure
composed almost exclusively of full and half adders. In
order to construct a high-speed multiplier based on CSA array,
we must consider three problems: (1) the delay
balance between the sum and carry signals of the full adders,
(2) the heavy loading effect of the multiplicand and multiplier
signals, (3) the proper carry-propagation adder for the
final addition adder. We will present our solutions for
the above three problems in this thesis. Finally, the
complete layout of modulo 2^16+1 multiplier will be presented.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT850392029
http://hdl.handle.net/11536/61777
Appears in Collections:Thesis